Синтетический каучук
Развитие производства синтетического каучука. Полимеризация дивинила по радикальному или ионному механизму. Строение бутадиен-стирольного сополимера. Превращение каучука в резину в процессе вулканизации. Ионная полимеризация в присутствии катализаторов.
Рубрика | Химия |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 25.11.2009 |
Размер файла | 37,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство образования и науки Республики Казахстан
Павлодарский государственный университет им. С. Торайгырова
Биолого-химический факультет
Кафедра химии и химических технологий
КУРСОВАЯ РАБОТА
КР. . 21-05. . .
По дисциплине Физика и химия органических в-в
Тема Синтетический каучук
(оценка)
Члены комиссии
Руководитель
Студент
Быков Ю. А
2009
Содержание
Введение
1 Каучуки
1.1 Природный каучук
1.2 Синтетический каучук
2 Ионная полимеризация
2.1 Катионная полимеризация
2.2 Анионная полимеризация
Заключение
Список использованной литературы
Введение
Ученые добились успеха и сегодня более одной трети резины, производимой в мире, изготовляется из синтетического каучука. Каучук и резина внесли огромный вклад в технический прогресс последнего столетия. Вспомним хотя бы о минах и разнообразных изоляционных материалах, и нам станет ясна роль каучука в важнейших отраслях хозяйства. Каучук делает нашу жизнь удобнее.
Но вряд ли найдется другое природное сырье, добыча которого так была связана с кровью, произволом и безграничной колониальной эксплуатацией. Сотни тысяч негров и индейцев погибли от болезней и непосильного труда на плантациях белых колонизаторов. Их насмерть забивали бесчеловечные надсмотрщики - Европа и Америка все настоятельнее требовали каучука, и бесправные рабы-туземцы вынуждены были добывать его.
Когда испанские конквистадоры в XVI веке высадились в Южной Америке, их внимание привлекли мячи, которыми индейцы пользовались в спортивных играх. Эти мячи были сделаны из неизвестного в Испании упругого и пластичного вещества, получаемого индейцами из сока каких-то деревьев. Индейцы находили ему и другое применение. Изготавливали из него водонепроницаемую обувь или обрабатывали им ткань, чтобы сделать ее непромокаемой. Слухи о странном веществе достигли Испании. Вначале это показалось интересным, но вскоре о диковинных игрушках просто забыли. И суда отправились в опасные путешествия на за ними, а за золотом. Когда гораздо позже французский ученый Шарль де ля Кондамин напомнил об этом веществе, его сообщение восприняли как занятный курьез. Однако этим деревом, которое росло в огромных девственных лесах Амазонки, в последующие годы продолжали интересоваться и наблюдали, как местные жители добывали его сок - каучук. Каучуки - это эластичные материалы, из которых методом вулканизации (нагреванием с серой) получают резину. Из каучуков изготавливают покрышки и камеры для колес самолетов, автомобилей и велосипедов. Они применяются для электроизоляции, производства промышленных товаров и медицинских приборов.
1 Каучуки
1.1 Природный каучук
Натуральный (природный) каучук - это высоко-молекулярный непредельный углеводород элементарного состава (С5Н8)n, его относительная молекулярная масса колеблется в пределах 150000-500000. Рурирование каучука приводит к предельному углеводороду состава (С5Н10)n, озонирование - к озониду (С5Н8О3)n. Из продуктов сухой перегонки каучука (М.Фарадей) был выделен изопрен:
Р. Штаудингером (1931 г.) была предложена гипотеза об изопренаизном строении каучука, содержащего цепочки последовательно соединенных остатков изопрена. Тщательно выполненное озонирование подтвердило предположение Р.Штаудингера - продукты озонирования на 95% состоят из левулинового альдегида:
Методом рентгеноструктурного анализа установлено цис-1,4-строение изопреноидной цепи, при котором метиленовые СН2-группы расположены по одну сторону от двойной связи:
Макромолекула каучука имеет спиральное строение с периодом идентичности 0,913 нм и содержит более 1000 изопреновых остатков. Строение макромолекулы каучука обеспечивает его высокую эластичность - наиболее важное техническое свойство. Каучук обладает поразительной способностью обратимо растягиваться до 900% первоначальной длины.
Разновидностью каучука является менее эластичная гуттаперча, или балата, - сок некоторых каучуконосных растений, произрастающих в Индии и на Малайском полуострове. В отличие от каучука молекула гуттаперчи короче и имеет транс-1,4-строение с периодом идентичности 0,504 нм.
Выдающееся техническое значение натурального каучука, отсутствие в ряде стран, в том числе в Советском Союзе, экономически рентабельных источников, стремление располагать материалами, превосходящими по ряду свойств (масло-, морозостойкость, прочность к стиранию) натуральный каучук, стимулировали исследования по получению синтетического каучука.
1.2 Синтетический каучук
Синтетический каучук в промышленном масштабе впервые получен в 1931 году в СССР по способу С.В.Лебедева. На полузаводской установке было получено 260 кг синтетического каучука из дивинила, а в 1932 году впервые в мире осуществлен его промышленный синтез. В Германии каучук был синтезирован в 1936-1937 годах, а в США - в 1942 году.
Сырьем для получения синтетического каучука по способу Лебедева служит этиловый спирт. Теперь разработано получение бутадиена из бутана через каталитическое дегидрирование последнего.
Мономерами для синтетического каучука служат преимущественно сопряженные диеновые углеводороды: дивинил, изопрен, хлоропрен, полимеризующиеся по радикальному или ионному механизму. Для улучшения технических свойств каучука диены часто полимеризуют совместно с мономерами, содержащими активный винильный остаток (например, с акрилонитратом, со стиролом):
Подобный процесс, получивший название сополимеризации, имеет широкое промышленное применение.
Дивинил (1,3-бутадиен) - важнейший мономер для синтетического каучука - может быть полимеризован по радикальному или ионному механизму. В первом промышленном синтезе каучука инициатором полимеризации был металлический натрий, на поверхности которого происходила адсорбция и поляризация 1,3-бутадиена; механизм этой реакции анионный:
Изопрен в присутствии металлоорганических комплексов легко превращается в синтетический каучук, физико-механические свойства которого подобны свойствам натурального.
Сополимерные каучуки имеют наибольшее техническое применение. К ним относятся бутадиен-стирольный каучук, получаемый сополимеризацией 1,3-бутадиена и стирола, он является лучшей маркой синтетического каучука для автомобильных покрышек.
Строение бутадиен-стирольного сополимера не выяснено, предполагаемую структуру отдельных звеньев можно изобразить следующей схемой:
Бутадиен-нитрильный каучук - сополимер 1,3-бутадиена и акрилонитрила - обладает вязкостью натурального каучука, однако превышает его по устойчивости к стиранию, масло- и бензиностойкости.
Бутилкаучук - сополимер изобутилена и 1,3-бутадиена, вводимого для придания каучуку способности к вулканизации, получается низкотемпературной ионной полимеризацией в присутствии фторида бора (III). Он обладает высокой химической стойкостью и газонепроницаемостью, является хорошим изолятором для проводов и кабелей. Предполагаемая структура сополимера:
Сопряженные диеновые углеводороды при ионной полимеризации в зависимости от характера катализатора образуют различно построенные полимерные цепи. Различают два типа цепеобразования: цис-1,4, транс-1,4 и цис-1,2. Полимеризация изопрена в присутствии триалкилалюминия и хлорида титана (IV) приводит у цис-1,4-полимеру, в котором цис-построеные остатки диена связаны друг с другом в положении 1,4:
При полимеризации смешанным гидридом алюминия и щелочного металла в присутствии хлорида титана (IV) преобладает полимер транс-1,4-строения, в котором остатки транс-диена связаны в положении 1,4:
Диены с неконцевыми двойными связями полимеризуются с трудом, так как пространственные предприятия затрудняют их адсорбцию на активных центрах катализатора.
Один из видов синтетического каучука получают из ацетилена. При полимеризации ацетилена образуется винилацетилен СН?С-СН=СН2. Винилацетилен присоединяет молекулу хлористого водорода, при этом получается 2-хлорбутадиен-1,3 (хлоропрен):
Хлоропрен - бесцветная жидкость, кипящая при 590С. Он самопроизвольно весьма легко полимеризуется, образуя сначала пластическую массу, сходную с невулканизированным каучуком, а в дальнейшем - твердый продукт (вулканизация без серы):
Такое строение доказывается тем, что при окислении этого вида синтетического каучука образуется янтарная кислота, формула которой СООН-СН2-СН2-СООН. Места разрыва углеродной цепи показаны на схеме пунктиром.
Хлоропреновый каучук благодаря своей негорючести, термостойкости, светостойкости, а также устойчивости к воздействию масел находит широкое применение в производстве резино-технических изделий.
Каучуки на основе кремнийорганических соединений отличаются сохранением эластических свойств как при низких, так и при высоких температурах; каучуки на основе фторорганических соединений сочетают высокую термостойкость с почти абсолютной химической устойчивостью; каучуки, полученные сополимеризацией дивинила с акрилонитрилом, хорошо выдерживают действие бензина и других нефтепродуктов.
Натуральный и синтетический каучуки не могут быть непосредственно использованы для химических целей вследствие термической нестойкости, непрочности к стиранию и способности к набуханию и растворению в органических растворителях.
Важнейшим процессом превращения каучука в технический продукт - резину - является вулканизация, в результате которой происходит резкое изменение физико-механических свойств каучуков: повышается термостойкость, механическая прочность, устойчивость к действию растворителей и т.д.
В 1939 году два американца Гудвир и Хейвардс обнаружили, что при обработке сырого каучука серой происходит его вулканизация. После такой обработки каучук теряет вязкость, становится гораздо эластичнее и сохраняет эту эластичность в широком температурном интервале.
Сущность вулканизации заключается в образовании новых поперечных связей между полимерными цепями. При вулканизации серой мостики образуют дисульфидные группы, а при радикальной вулканизации появляются поперечные связи между полимерными цепями:
Для получения резиновых изделий сначала формуют изделия из смеси каучука с серой, а также так называемыми наполнителями - сажей, мелом, глиной и некоторыми органическими соединениями, которые служат ускорителями вулканизации. Затем изделия подвергаются нагреванию - горячей вулканизации.
При холодной вулканизации, которая применяется для тонких и мелких изделий (прорезиненные ткани, тонкие трубки и т.д.), их непродолжительное время обрабатывают раствором серы в сероуглероде или в хлористой сере. Каучук с большим содержанием серы (до 32%) представляет собой твердое неэластичное вещество и называется эбонитом; применяется он как изолятор в электроприборах.
В результате вулканизации сера химически связывается с каучуком. Кроме того, в вулканизированном каучуке содержится в виде мельчайших частиц и свободная сера.
Теперь открылись новые области применения каучука. Резину, полученную из него, начали применять в качестве амортизаторов на автомашинах и мотоциклах. Позднее такие амортизаторы превратились в современные шины и камеры.
Бурное развитие электротехники сделало резину необходимым изоляционным материалом для электрических проводов и кабелей. Каучук очень подходил для этой цели, так как не проводил тока, а его эластичность делала провода с изоляцией гибкими.
В Германии в 1935 году началось производство синтетического каучука в больших количествах. Во вращающиеся горизонтально расположенные автоклавы накачивают бутадиен и при охлаждении прибавляют регулятор полимеризации - диоксан и ускоритель - металлический натрий. От слов бутадиен и натрий образовано название «буна». В зависимости от степени полимеризации получают буна-85 или буна-115. Если этот буна-каучук с высоким молекулярным весом подвергнуть вулканизации, получается резина, которая имеет высокую прочность на истирание, теплостойка и не стареет, однако обладает низкой эластичностью и невысокой прочностью на разрыв и растяжение. Лишь твердая резина, изготовленная из буна-85, в некоторой степени удовлетворяла необходимым требованиям.
Открытие Гудвира и Хейворда, которые в 1840 году обнаружили, что каучук-сырец, смешанный при нагревании с серой, превращается в эластичную массу, создало основу для широкого применения каучука. Ведь только при вулканизации каучук-сырец теряет свою клейкость, приобретает прочность и эластичность - становится резиной с ее ценными качествами. В зависимости от содержания серы и состава наполнителей, добавляемых при вулканизации, получают различные сорта резины, отвечающие любым требованиям.
Небольшое количество серы при вулканизации превращает пластический каучук в эластичную резину. Уже при введении 0,15% серы
2 Ионная полимеризация
Если в радикальной полимеризации активным центром является радикал, то в ионной - ионы. Полимеризация, при которой её активный центр - заряд иона - передаётся последовательно по макромолекулярной цепи при её росте, называется ионной полимеризацией.
Ионная полимеризация, как и радикальная - цепной процесс. Однако растущая макромолекула при ионной полимеризации в отличие от радикальной представляет собой в процессе роста не свободный радикал, а ион - катион или анион. В зависимости от этого различают катионную и анионную полимеризацию.
Ионная полимеризация протекает в присутствии катализаторов, способствующих образованию ионов. Но в противоположность инициаторам они не входят в состав полимера, т. е. не расходуются в процессе полимеризации.
Особенность ионной полимеризации - её очень высокая скорость при низких температурах (от -50 до -70 оС). Эта скорость зависит от полярности среды, в которой протекает полимеризация.
2.1 Катионная полимеризация
Еще в 1877 г. А.М. Бутлеров осуществил полимеризацию изобутилена в присутствии серной кислоты. По современным воззрениям, при этой реакции, благодаря нуклеофильности метильных групп и притягиванию электронов протоном серной кислоты происходит вначале поляризации двойной связи изобутилена, а потом присоединение к ней иона водорода с образованием иона карбония, являющегося первоначальным центром полимеризации.
Данные о закономерностях катионной полимеризации противоречивы, что связано с недостаточной воспроизводимостью результатов опытов и с зависимостью характера закономерностей от условий эксперимента и природы исследуемой системы. Тем не менее, удалось установить ряд особенностей этой реакции, резко отличающих её от радикальной полимеризации:
1 Молекулярный вес полимера снижается при наличии в реакционной среде небольших добавок воды и других ионизирующих веществ и часто не зависит от концентрации мономера.
2 Полимеризации значительно ускоряется при применении наряду с катализаторами небольших добавок воды, кислот и др. доноров протонов (сокотолизаторы). Некоторые третичные галогенопроизводные также являются сокатализаторами.
3 На реакцию существенное влияние оказывает диэлектрическое постоянная следы.
4 Энергия активации катионной полимеризации всегда меньше 15 ккал/моль; в случае радикальной полимеризации она часто превышает эту величину. Благодаря этому катионная полимеризация протекает с очень большой скоростью; она нередко имеет отрицательный температурный коэффициент.
Катионную полимеризацию можно представить в виде следующих элементарных стадий:
1. Инициирование. На этой стадии происходит взаимодействие катализатора и сокатализатора с образованием комплексного соединения, которое проявляет свойства сильной кислоты. Эта кислота отдаёт протон молекуле мономера, превращая его в карбониевый ион, уравновешенный комплексным противоионом.
2. Рост цепи. В процессе роста цепи поляризованные молекулы мономера присоединяются к растущему иону, внедряясь макрокарбкатионом и противоионом.
3. Обрыв цепи. Рост цепи прекращается в результате отщепления от растущего иона катализатора в свободном виде.
2.2 Анионная полимеризация
При анионной полимеризации возникновение активного центра связано с образованием карбаниона Анионную полимеризацию часто подразделяют на собственно анионную и анионно - координационную. К последней относят полимеризацию присутствии металлорганических соединений, протекающую через стадию образования промежуточного комплекса катализаторов - мономер, в котором катализатор связан с мономером координационными связями. В зависимости от полярности среды и других условий реакции, механизм полимеризации может изменяться от чисто ионного к ионно - координационному и наоборот.
При полимеризации стирола в присутствии амида калия в жидком аммиаке каждая образующаяся макромолекула полистирола содержит группу NH2. При этом молекулярный вес полимера не зависит от концентрации катализатора и прямо пропорционален концентрации мономера. С повышением температуры полимеризации молекулярный вес полимера уменьшается. Обрыв цепи происходит при взаимодействии карбаниона с аммиаком в результате присоединения протона аммиака с регенерацией иона амида.
С амидами щелочных металлов полимеризуются также производные акриловой кислоты - метилметакрилат, акрилонитрил, метакрилонитрил. Эти мономеры содержат электроотрицательные заместители, т.е. являются акцепторами электронов и благодаря этому очень активны в анионной полимеризации.
Особенностью такой полимеризации является бифункциональное присоединение мономера. БМ присоединяется по одной функции. В реакции роста цепи при полимеризации участвуют 2 центра катализатора - металл и алкил (двухцентровый механизм полимеризации).
Механизм не изучен до конца и очень сложен. Предполагается, что при соединению молекулы мономера предшествует образование комплекса с катализатором.
В таких комплексах металл связан с мономером координационной связью, поэтому полимеризация, протекающая с образованием подобных комплексов, называется анионно - координационной полимеризацией.
При анионной полимеризации рост цепи осуществляется при участии карбониона или ионной пары; при этом концевая группа растущей макромолекулы, обладая высокой активностью в тоже время достаточно стабильно. Поэтому анионная полимеризация в отсутствие примесей, способна привести к обрыву цепи, во многих случаях может протекать без обрыва цепи до полного исчерпания мономера. В результате такой полимеризации образуются полимеры, макромолекулы которых содержат активные центры и способны инициировать полимеризацию. Эти полимеры называют «живыми» полимерами. При добавлении к такому полимеру новой порции мономера его молекулярный вес возрастает.
Особенность «живых» полимеров :
- при добавлении к «живым» полимерам или олигомерам другого мономера можно получить блоксополимеры ( метод определения «живых» макромолекул);
- «живой» полимер для обрыва цепи можно вводить различные соединения и получать полимеры с разнообразными концевыми функциональными группами, что открывает большие возможности в синтезе блоксополимеров с гетероцепными олигомерами.
В последние годы широкое распространение получила анионно - координационная полимеризация присутствии комплексных катализаторов Циглера - Натта. (Этот метод используется в промышленном синтезе стереорегулярных полимеров.) В состав катализаторов Циглера - Натта входят металлоорганические соединения I-III групп и хлориды IV-VII групп с переходной валентностью. Наиболее часто используются металлоорганические соединения алюминия и хлориды титана, которые легко образуют координационные связи. Такие комплексные катализаторы нерастворимы и их строение не установлено, но предполагается, что они представляют собой биметаллический комплекс с координационными связями.
Зависимость скорости полимеризации от конформации молекулярной цепи синтетических полимеров впервые была показана на примере полимеризации N - карбоксинангидридов аминокислот с образованием полипептидов. При этом реакция протекает в 2 стадии, которые различаются по скорости. 1 стадия протекает относительно медленно до тех пор, пока не образуется олигомер, способный свернуться в спираль, затем реакция идет с высокой скоростью с образованием высокомолекулярного полипептида. Присутствие в реакционной смеси изомерных аминокислот резко снижает скорость полимеризации.
Затем представления по направляющей роли конформации образующейся молекулярной цепи в процессе полимеризации были перенесены на винильные мономеры. С этой позиции рассматривается влияние природы растворителя и температуры на стереоспецифичность полимеризации винильных соединений. Так , было показано, что полимеризации полимеризация стирола в присутствии трифенилметилкалия в бензоле приводит к образованию атактического полистирола, а с тем же катализатором в гексане получается стереорегулярный полимер. С позиции так называемой спиральной полимеризации это объясняется большой устойчивостью спиральной конформации растущих макромолекул полистирола при полимеризации в плохом по сравнению бензолом растворителе - гексане. Аналогичным образом объясняются образование стереорегулярного полистирола при полимеризации присутствии бутиллития при -30°С среде углеводородов и отсутствие стереоспецифичности при полимеризации стирола с этим катализатором при более высокой температуре. Такое новое направление в изучении механизма стереоспецифической полимеризации является чрезвычайно интересной, хотя для создания стройной концепции еще мало экспериментальных данных.
Заключение
Народнохозяйственное значение каучука (являющегося основной составной частью резины) очень велико. Громадные и все возрастающие количества каучука потребляют автомобильная, авиационная и тракторная промышленность. Большое количество его идет на изготовление приводных ремней и транспортных лент, шлангов и рукавов, электроизоляционных изделий, прорезиненных тканей, изделий широкого потребления (обувь, спортивные товары, игрушки), изделий санитарии и гигиены и многое другое. Достаточно привести данные о ежегодном мировом производстве натурального и синтетического каучука - свыше 4 миллионов тонн, чтобы принять роль каучука в жизни человека.
Каучуки непосредственно связаны с высокомолекулярными кремнийорганическими соединениями.
Например, силиконовые (силоксановые каучуки).
Химические соединения, вырабатываемые промышленностью основного органического синтеза, служат полупродуктами для производства пластических масс, синтетических волокон, синтетических каучуков, синтетических моющих средств и многого другого.
Список использованной литературы
1 Грандберг И.И. Органическая химия. - М.: Высшая школа, 1980. - 463 с.
2 Жиряков В.Г. Органическая химия. - М.: Химия, 1974. - 407 с.
3 Павлов Б.А. Курс органической химии. - М.: Химия, 1972. - 648 с.
4 Третьяков Ю.Д. Химия: Справочные материалы. - М.: Просвещение, 1984. - 239 с.
5 Хомченко Г.П. Химия для поступающих в ВУЗы. - Высшая школа, 1985. - 357 с.
6 Фурмер И.Э. Общая химическая технология. - М.: Высшая школа, 1987. - 334 с.
Подобные документы
Использование млечного сока бразильской гевеи. Состав латекса. Производство первых ластиков, открытие вулканизации. Химическое строение натурального и синтетического каучука и резины. Понятие о терпенах. Получение каучука, области его применения.
презентация [78,4 K], добавлен 20.12.2012Натуральный каучук. История открытия натурального каучука. Природные каучуконосы. Сбор латекса и производство натурального каучука. Физические и химические свойства натурального каучука. Состав и строение натурального каучука. Синтетический каучук. Резина
доклад [27,7 K], добавлен 06.02.2006История создания технологии синтетического каучука. Получение мономеров для синтетических каучуков. Производство СК полимеризацией в растворе. Свойства изоперена, и его получение методом полимеризации. Поточная схема переработки нефти месторождения.
курсовая работа [2,2 M], добавлен 23.12.2014Бутадиен-нитрильный каучук: понятие, свойства, производство. Сера, стеариновая кислота, сульфенамид, ацетонанил. Метод определения пластоэластических свойств на пластометре, условного предела прочности при растяжении. Экскурсия на завод "РТИ Каучук".
отчет по практике [3,1 M], добавлен 21.12.2012Способы синтеза и структура изопренового каучука до и после вулканизации. Метод инфракрасной спектроскопии для определения молекулярной структуры полимеров. Деформационно-прочностные свойства полимеров, находящихся в высокоэластическом состоянии.
дипломная работа [3,7 M], добавлен 04.09.2013- Методы аналитического контроля в производстве из изобутилена на примере производства полиизобутилена
Строение и свойства полиизобутилена, получаемого из изобутилена. Полимеризация изобутилена как сырья для производства синтетических каучуков. Производство высокомолекулярного полиизобутилена. Химические свойства материалов, производимых из изобутилена.
реферат [159,1 K], добавлен 25.01.2015 Полимеризация капролактама по катионному или анионному механизмам. Использование реактопластов в качестве связующих для магнитопластов. Устойчивость полученных полимеров к дополнительной поликонденсации. Образование амидных групп в процессе синтеза ПКА.
отчет по практике [441,6 K], добавлен 05.04.2009Исследование полимеризации диацетиленовых мономеров, полимеризующихся только в кристаллическом состоянии с образованием полимеров, состоящих из вытянутых цепей с сопряженными связями. Термическая полимеризация и полимеризация под действием Y излучения.
реферат [323,3 K], добавлен 22.02.2010Структура макромолекул, надмолекулярная структура. Распределение по длинам и молекулярным массам. Свободнорадикальная, ионная полимеризация, сополимеризация. Ступенчатые реакции синтеза полимеров. Технологическое оформление синтеза промышленных полимеров.
контрольная работа [1,6 M], добавлен 08.03.2015Основные типы сополимеров. Реакции в системе полимер-мономер. Радикальная полимеризация (одностадийный, двухстадийный метод). Ионная полимеризация, механохимический синтез. Реакции в системе полимер-полимер. Введение функциональных групп в макромолекулы.
реферат [710,9 K], добавлен 06.06.2011