Медь и её роль

Значение меди и ее сплавов в жизни человека, ее основные физические и химические свойства. Широкое применение сплавов меди в бронзовый век и ее использование до сегодняшнего дня. Добыча, промышленное получение, конвертирование, рафинирование.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 03.11.2009
Размер файла 22,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат

Медь и её роль.

План

1.Нахождение в природе.

2.Получение.

3.Физические и химические свойства.

4.Применение.

5.Биологическая роль.

6.Медь в кормах.

7.Заключение

1.Нахождение в природе

В земной коре содержание меди составляет около 5·10-3% по массе. Очень редко медь встречается в самородном виде (самый крупный самородок в 420 тонн найден в Северной Америке). Из руд наиболее широко распространены сульфидные руды: халькопирит, или медный колчедан, CuFeS2 (30% меди), ковеллин CuS (64,4% меди), халькозин, или медный блеск, Cu2S (79,8% меди), борнит Cu5FeS4.(52-65% меди). Существует также много и оксидных руд меди, например: куприт Cu2O, (81,8% меди), малахит CuCO3·Cu(OH)2 (57,4% меди) и другие. Известно 170 медьсодержащих минералов, из которых 17 используются в промышленных масштабах.

Различных руд меди много, а вот богатых месторождений на земном шаре мало, к тому же медные руды добывают уже многие сотни лет, так что некоторые месторождения полностью исчерпаны. Часто источником меди служат полиметаллические руды, в которых, кроме меди, присутствуют железо, цинк, свинец, и другие металлы. Как примеси медные руды обычно содержат рассеянные элементы (кадмий, селен, теллур, галий, германий и другие), а также серебро, а иногда и золото. Для промышленных разработок используют руды, в которых содержание меди составляет немногим более 1% по массе, а то и менее.

В морской воде содержится примерно 1·10-8% меди.

Самородная медь, минерал класса самородных элементов, Cu. Примеси Fe, Ag, Au. Медно-красные кристаллы, дендриты и др. выделения, сплошные массы. Твердость 2,5-3; плотность 8,4-8,9 г/см3. Гидротермального и гипергенного происхождения. Входит в состав медных руд.

2.Получение

Промышленное получение меди -- сложный многоступенчатый процесс. Добытую руду дробят, а для отделения пустой породы используют, как правило, флотационный метод обогащения. Полученный концентрат (содержит 18-45% меди по массе) подвергают обжигу в печи с воздушным дутьем. В результате обжига образуется огарок -- твердое вещество, содержащее, кроме меди, также и примеси других металлов. Огарок плавят в отражательных печах или электропечах. После этой плавки, кроме шлака, образуется так называемый штейн, в котором содержание меди составляет до 40-50%.

Далее штейн подвергают конвертированию -- через расплавленный штейн продувают сжатый воздух, обогащенный кислородом. В штейн добавляют кварцевый флюс (песок SiO2). В процессе конвертирования содержащийся в штейне как нежелательная примесь сульфид железа FeS переходит в шлак и выделяется в виде сернистого газа SO2:

2FeS + 3O2 + 2SiO2 = 2FeSiO3 + 2SO2

Одновременно сульфид меди(I) Cu2S окисляется:

2Cu2S + 3О2 = 2Cu2О + 2SO2

Образовавшийся на этой стадии Cu2О далее реагирует с Cu2S:

2Cu2О + Cu2S = 6Cu + SО2

В результате возникает так называемая черновая медь, в которой содержание самой меди составляет уже 98,5-99,3% по массе. Далее черновую медь подвергают рафинированию. Рафинирование на первой стадии -- огневое, оно заключается в том, что черновую медь расплавляют и через расплав пропускают кислород. Примеси более активных металлов, содержащихся в черновой меди, активно реагируют с кислородом и переходят в оксидные шлаки.

На заключительной стадии медь подвергают электрохимическому рафинированию в сернокислом растворе, при этом черновая медь служит анодом, а очищенная медь выделяется на катоде. При такой очистке примеси менее активных металлов, присутствовавшие в черновой меди, выпадают в осадок в виде шлама, а примеси более активных металлов остаются в электролите. Чистота рафинированной (катодной) меди достигает 99,9% и более.

3.Физические и химические свойства

Кристаллическая решетка металлической меди кубическая гранецентрированная, параметр решетки а = 0,36150 нм. Плотность 8,92 г/см3, температура плавления 1083,4°C, температура кипения 2567°C. Медь среди всех других металлов обладает одной из самых высоких теплопроводностей и одним из самых низких электрических сопротивлений (при 20°C удельное сопротивление 1,68·10-3 Ом·м).

В сухой атмосфере медь практически не изменяется. Во влажном воздухе на поверхности меди в присутствии углекислого газа образуется зеленоватая пленка состава Cu(OH)2·CuCO3. Так как в воздухе всегда имеются следы сернистого газа и сероводорода, то в составе поверхностной пленки на металлической меди обычно имеются и сернистые соединения меди.

Такая пленка, возникающая с течением времени на изделиях из меди и ее сплавов, называется патиной. Патина предохраняет металл от дальнейшего разрушения. Для создания на художественных предметах «налета старины» на них наносят слой меди, который затем специально патинируется.

При нагревании на воздухе медь тускнеет и в конце концов чернеет из-за образования на поверхности оксидного слоя. Сначала образуется оксид Cu2O, затем -- оксид CuO.

Красновато-коричневый оксид меди(I) Cu2O при растворении в бромо- и иодоводородной кислотах образует, соответственно, бромид меди(I) CuBr и иодид меди(I) CuI. При взаимодействии Cu2O с разбавленной серной кислотой возникают медь и сульфат меди:

Cu2O + H2SO4 = Cu + CuSO4 + H2O

При нагревании на воздухе или в кислороде Cu2O окисляется до CuO, при нагревании в токе водорода -- восстанавливается до свободного металла.

Черный оксид меди (II) CuO, как и Cu2O, c водой не реагирует. При взаимодействии CuO с кислотами образуются соли меди (II):

CuO + H2SO4 = CuSO4 + H2O

При сплавлении со щелочами CuO образуются купраты, например:

CuO + 2NaOH = Na2CuO2 + H2O

Нагревание Cu2O в инертной атмосфере приводит к реакции диспропорционирования:

Cu2O = CuO + Cu

Такие восстановители, как водород, метан, аммиак, оксид углерода (II) и другие восстанавливают CuO до свободной меди, например:

CuO +СО = Cu + СО2

Кроме оксидов меди Cu2O и CuO, получен также темно-красный оксид меди (III) Cu2O3, обладающий сильными окислительными свойствами.

Медь реагирует с галогенами, например, при нагревании хлор реагирует с медью с образованием темно-коричневого дихлорида CuCl2. Существуют также дифторид меди CuF2 и дибромид меди CuBr2, но дииодида меди нет. И CuCl2, и CuBr2 хорошо растворимы в воде, при этом ионы меди гидратируются и образуют голубые растворы.

При реакции CuCl2 с порошком металлической меди образуется бесцветный нерастворимый в воде хлорид меди (I) CuCl. Эта соль легко растворяется в концентрированной соляной кислоте, причем образуются комплексные анионы [CuCl2]-, [CuCl3]2- и [СuCl4]3-, например за счет процесса:

CuCl + НCl = H[CuCl2]

При сплавлении меди с серой образуетcя нерастворимый в воде сульфид Cu2S. Сульфид меди (II) CuS выпадает в осадок, например, при пропускании сероводорода через раствор соли меди (II)

H2S + CuSO4 = CuS + H2SO4

C водородом, азотом, графитом, кремнием медь не реагирует. При контакте с водородом медь становится хрупкой (так называемая «водородная болезнь» меди) из-за растворения водорода в этом металле.

В присутствии окислителей, прежде всего кислорода, медь может реагировать с соляной кислотой и разбавленной серной кислотой, но водород при этом не выделяется:

2Cu + 4HCl + O2 = 2CuCl2 + 2H2O.

С азотной кислотой различных концентраций медь реагирует довольно активно, при этом образуется нитрат меди (II) и выделяются различные оксиды азота. Например, с 30%-й азотной кислотой реакция меди протекает так:

3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO + 4H2O

С концентрированной серной кислотой медь реагирует при сильном нагревании:

Cu + 2H2SO4 = CuSO4 + SO2+ 2H2O

Практическое значение имеет способность меди реагировать с растворами солей железа (III), причем медь переходит в раствор, а железо (III) восстанавливается до железа (II):

2FeCl3 + Cu = CuCl2 + 2FeCl2

Этот процесс травления меди хлоридом железа (III) используют, в частности, при необходимости удалить в определенных местах слой напыленной на пластмассу меди.

Ионы меди Cu2+ легко образуют комплексы с аммиаком, например, состава [Cu(NH3)]2+. При пропускании через аммиачные растворы солей меди ацетилена С2Н2 в осадок выпадает карбид (точнее, ацетиленид) меди CuC2.

Гидроксид меди Cu(OH)2 характеризуется преобладанием основных свойств. Он реагирует с кислотами с образованием соли и воды, например:

Сu(OH)2 + 2HNO3 = Cu(NO3)2 + 2H2O

Но Сu(OH)2 реагирует и с концентрированными растворами щелочей, при этом образуются соответствующие купраты, например:

Сu(OH)2 + 2NaOH = Na2[Cu(OH)4]

Если в медноаммиачный раствор, полученный растворением Сu(OH)2 или основного сульфата меди в аммиаке, поместить целлюлозу, то наблюдается растворение целлюлозы и образуется раствор медноаммиачного комплекса целлюлозы.

Из этого раствора можно изготовить медноаммиачные волокна, которые находят применение при производстве бельевого трикотажа и различных тканей.

Также медь легко растворяется в концентрированной серной кислоте и в азотной кислоте при нагревании:

Cu+2H2SO4(конц)> Cu SO4+ SO2^+2H2O

Cu+4H2NO3(конц)> Cu (NO3)+ 2NO2^+2H2O

3Cu+8HNO3(разб)> 3Cu (NO3)2+ 2NO ^+4H2O

Все летучие соединения меди окрашиваются несветящееся пламя газовой горелки в синий или зеленый цвет.

Поскольку медь обладает высокой тепло- и электропроводностью, ковкостью, хорошими литейными качествами, большим сопротивлением на разрыв и стойкостью к коррозии, она широко используется в промышленности.

4.Применение

Медь, как полагают, -- первый металл, который человек научился обрабатывать и использовать для своих нужд. Найденные в верховьях реки Тигр изделия из меди датируются десятым тысячелетием до нашей эры. Позднее широкое применение сплавов меди определило материальную культуру бронзового века (конец 4 -- начало 1 тысячелетия до нашей эры) и в дальнейшем сопровождало развитие цивилизации на всех этапах. Медь и ее использовались для изготовления посуды, утвари, украшений, различных художественных изделий. Особенно велика была роль бронзы.

С 20 века главное применение меди обусловлено ее высокой электропроводимостью. Более половины добываемой меди используется в электротехнике для изготовления различных проводов, кабелей, токопроводящих частей электротехнической аппаратуры. Из-за высокой теплопроводности медь -- незаменимый материал различных теплообменников и холодильной аппаратуры. Широко применяется медь в гальванотехнике -- для нанесения медных покрытий, для получения тонкостенных изделий сложной формы, для изготовления клише в полиграфии и др.

Большое значение имеют медные сплавы -- латуни (основная добавка цинк, Zn), бронзы (сплавы с разными элементами, главным образом металлами -- оловом, алюминием, берилием, свинцом, кадмием и другими, кроме цинка и никеля) и медно-никелевые сплавы, в том числе мельхиор и нейзильбер. В зависимости от марки (состава) сплавы используются в самых различных областях техники как конструкционные, антидикционные, стойкие к коррозии материалы, а также как материалы с заданной электро- и теплопроводностью Так называемые монетные сплавы (медь с алюминием и медь с никелем) применяют для чеканки монет -- «меди» и «серебра»; но медь входит в состав и настоящих монетного серебра и монетного золота.

5.Биологическая роль

Медь присутствует во всех организмах и принадлежит к числу микроэлементов, необходимых для их нормального развития (см. Биогенные элементы). В растениях и животных содержание меди варьируется от 10-15 до 10-3%. Мышечная ткань человека содержит 1·10-3% меди, костная ткань -- (1-26) ·10-4%, в крови присутствует1,01 мг/л меди. Всего в организме среднего человека (масса тела 70 кг) содержится 72 мг меди. Основная роль меди в тканях растений и животных -- участие в ферментативном катализе.

Медь служит активатором ряда реакций и входит в состав медьсодержащих ферментов, прежде всего оксидаз, катализирующих реакции биологического окисления. Медьсодержащий белок пластоцианин участвует в процессе фотосинтеза. Другой медьсодержащий белок, гемоцианин, выполняет роль гемоглобина у некоторых беспозвоночных. Так как медь токсична, в животном организме она находится в связанном состоянии. Значительная ее часть входит в состав образующегося в печени белка церулоплазмина, циркулирующего с током крови и деставляющего медь к местам синтеза других медьсодержащих белков.

Церулоплазмин обладает также каталитической активностью и участвует в реакциях окисления. Медь необходима для осуществления различных функций организма -- дыхания, кроветворения (стимулирует усвоение железа и синтез гемоглобина), обмена углеводов и минеральных веществ.

Недостаток меди вызывает болезни как растений, так и животных и человека. С пищей человек ежедневно получает 0,5-6 мг меди.

Сульфат меди и другие соединения меди используют в сельском хозяйстве в качестве микроудобрений и для борьбы с различными вредителями растений. Однако при использовании соединений меди, при работах с ними нужно учитывать, что они ядовиты. Попадание солей меди в организм приводит к различным заболеваниям человека. ПДК для аэрозолей меди составляет 1 мг/м3, для питьевой воды содержание меди должно быть не выше 1,0 мг/л.

6.Медь в кормах

Поступая в организм животного с кормами и питьевой водой, медь всасывается в тонком отделе кишечника и депонируется в печени. В печени крупного рогатого скота концентрация меди в 30-50 раз больше чем в крови .

Абсорбция меди, вероятно, зависит также от белка металлотионеина. Химические свойства, благодаря которым медь играет важную роль в обменах веществ, выражены у неё в большей степени, чем у других микроэлементов. Это объясняется тем, что ионы меди по сравнению с ионами других металлов активнее взаимодействуют с белками, образуя устойчивые (хелатные) комплексы. Медь служит исключительно эффективным катализатором. К тому же медь легко переходит из одного валентного состояния в другое, являясь как донором, так и акцептором электронов.

Почти всё количество меди в организме животного находится в составе белков. Известен лишь единственный медный порфирин - ярко-красный пигмент турацин, имеющийся только в крыльях африканской птицы турако.

Участие меди в метаболических процессах организма сопряжено главным образом с функциональной нагрузкой медьсодержащих ферментов. Медьсодержащие ферменты играют регулирующую роль в окислительно-восстановительных процессах и тканевом дыхании (цитохромоксидаза), что важно не только эритроцитов, но и для клеток лимфоидно-макрофагальной системы. Отдельные дисмутазы фагоцитарных клеток содержат медь, а также цинк, марганец, железо. Эти ферменты играют ключевую роль в бактерицидной активности фагоцитов.

Достаточно хорошо изучен медьсодержащий белок церулоплазмин, находящийся в значительных количествах в печени. Церулоплазмин как депо меди участвует в синтезе железосодержащего белка плазмы крови трансферрина. Последний может предоставлять своё железо клеткам костного мозга, в которых идет продукция гемоглобина и эритроцитов.

Важнейшая функция меди - участие в процессах кроветворения - эритропоэзе.

Медь является компонентом ряда других металлоферментов, включая полифенолоксидазу, аминоксидазу, дофамингидроксилазу, лизилоксидазу.

Например, лизилоксидаза необходима для превращения остатков лизина в коллагене и эластине в аллизин.

При недостатке меди у цыплят отмечают гипохромную анемию, деформацию костей и депигментацию тканей.

У овец отмечают снижение качества шерсти. Медь выводится из организма в основном в составе желчи.

7.Заключение

В истории человечества использовалась и используется медь и до сегодняшнего дня. Она играет важную роль в жизни человека.


Подобные документы

  • Медь - химический элемент I группы периодической системы Менделеева. Общая характеристика меди. Физические и химические свойства. Нахождение в природе. Получение, применение, биологическая роль. Использование соединений меди.

    реферат [13,4 K], добавлен 24.03.2007

  • Положение меди в периодической системе Д.И. Менделеева. Распространение в природе. Физические и химические свойства. Комплексные соединения меди. Применение меди в электротехнической, металлургической и химической промышленности, в теплообменных системах.

    реферат [62,6 K], добавлен 11.08.2014

  • Физические и химические свойства меди - первого металла, который впервые стал использовать человек в древности за несколько тысячелетий до нашей эры. Значение меди для организма человека. Область ее применения, использование в народной медицине.

    презентация [5,0 M], добавлен 19.05.2014

  • Физические и химические свойства меди: тепло- и электропроводность, атомный радиус, степени окисления. Содержание металла в земной коре и его применение в промышленности. Изотопы и химическая активность меди. Биологическое значение меди в организме.

    презентация [3,9 M], добавлен 12.11.2014

  • Общая характеристика и свойства меди. Рассмотрение основных методов получения меди из руд и минералов. Определение понятия сплавов. Изучение внешних характеристик, а также основных особенностей латуни, бронзы, медно-никелевых сплавов, мельхиора.

    презентация [577,5 K], добавлен 14.04.2015

  • Общая характеристика меди. История открытия малахита. Форма нахождения в природе, искусственные аналоги, кристаллическая структура малахита. Физические и химические свойства меди и её соединений. Основной карбонат меди и его химические свойства.

    курсовая работа [64,2 K], добавлен 24.05.2010

  • Атомные, физические и химические свойства элементов подгруппы меди и их соединений. Содержание элементов подгруппы меди в земной коре. Использование пиро- и гидрометаллургическиех процессов для получения меди. Свойства соединений меди, серебра и золота.

    реферат [111,9 K], добавлен 26.06.2014

  • Распространение меди в природе. Физические и химические свойства меди. Характеристики основных физико-механических свойств. Отношение меди к галогенам и другим неметаллам. Качественные реакции на ионы меди. Двойные и многокомпонентные медные сплавы.

    реферат [68,0 K], добавлен 16.12.2010

  • Физиологическая роль и индикаторы элементного статуса меди. Применение ее в промышленности и медицине. Физические свойства химического элемента, нахождение его в природе. Оценка содержания меди в организме человека, индикаторы ее элементного статуса.

    презентация [3,5 M], добавлен 23.02.2015

  • История открытия меди и серебра. Применение меди в промышленности: электротехнике, машиностроении, строительстве, химическом аппаратуростроении, денежном обращении и ювелирном деле. Основные химические свойства и физическая характеристика металлов.

    презентация [1,1 M], добавлен 25.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.