Синтез пара-нитродифенила. Теоретические основы нитрования
Понятие нитрирования, его сущность и особенности, значение в промышленности. Этапы химического процесса нитрирования, характерные реакции. Условия реакции нитрирования некоторых ароматических соединений. Методика получения в лаборатории 4-нитродефинила.
Рубрика | Химия |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 17.01.2009 |
Размер файла | 661,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
24
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
Химико-технологический факультет
Кафедра органической химии
Синтез паранитродифенила
Курсовая работа
Выполнил студент
Научный руководитель
(учёная степень, учёное звание)
(фамилия, инициалы)
(подпись)
Работа защищена
« » 200 г.
Оценка
Зав. кафедрой
(учёная степень, учёное звание)
(фамилия, инициалы)
(подпись)
САМАРА 2005
Зміст
- Введение 2
- Обзор литературы 2
- Обсуждение результатов 17
- Экспериментальная часть 19
- Выводы 21
- Перелік літератури 22
- Введение
- Нитрования - один из важнейших процессов в химической промышленности. Продукты, получаемые за счёт нитрования, являются полуфабрикатами для производства многих товаров различных назначений от взрывчатых веществ до продукции фармацевтической промышленности. Чаще всего нитросоединения являются промежуточными продуктами производство азокрасителей и других веществ. В данной работе рассмотрен механизм и кинетика процесса нитрования ароматических углеводородов, описаны различные нитрующие агенты, а так же описаны их свойства, рассмотрено строение нитрогруппы. Также рассмотрены методы нитрования ароматических соединений, приводятся механизмы реакции.
- Целью курсовой работы является синтез 4-ниродифенила.
- 4-ниродифенила белые до жёлтых кристаллов с характерным запахом. Вещество разлагается при сжигании с образованием токсичных газов. Реагирует с сильными восстановителями с опасностью отравления. Температура кипения: 340°C, температура плавления: 114°C, растворимость в воде: очень плохая, температура вспышки: 143°C
- Д. - полупродукт в производстве некоторых красителей; в смеси с дифениловым эфиром (73,5%) применяется как высокотемпературный теплоноситель, известный под названием "даутерм".
- Обзор литературы
Нитрование - введение нитрогруппы - NO2 в молекулы органических соединений. Может проходить по электрофильному, нуклеофильному и радикальному механизмам; активные частицы в этих реакциях - соответственно катион нитрония NO2, нитрит - ион NO2 и радикал NO2. нитрование может осуществляться по атомам С, N, О замещением атома водорода (прямое нитрование) или других функциональных групп (заместительное нитрование) либо в результате присоединения группы NO2; по кратной связи.
Нитрогруппу в молекулу ароматического углеводорода можно вводить различными путями; главным из них является нитрование углеводородов смесью азотной и серной кислот (нитрующая смесь) в жидкой фазе, последняя одновременно является катализатором процесса, водоотнимающим средством и веществом, способствующим более полному использованию азотной кислоты и препятствующим окислительным процессам. Но по механизму все способы нитрования ароматических углеводородов идут по электрофильному замещению.
Нитрования как процесс принято называть взаимодействие органического соединения с азотной кислотой или её производными, в результате которого атом водорода при одном или нескольких атомах углерода замещается нитрогруппой. В общем случае для процесса нитрования ароматических углеводородов (в ароматическое кольцо) можно написать уравнение:
ArH + NO2+ Ar-NO2 +H+
При нитровании только азотной кислотой реакция может быть выражена уравнением:
ArH + HONO2 Ar-NO2 +H2O
Это уравнение даёт лишь общее представление о ходе реакции, но не характеризует всего сложного процесса нитрования, протекающего в несколько стадий; в действительности в реакцию с ароматическими углеводородами вступает не сама азотная кислота, а продукты её превращения.
Как видно из приведённого уравнения, при нитровании азотной кислотой введение каждой нитрогруппы в молекулу углеводорода сопровождается образованием молекулы воды. Это значительно уменьшает концентрацию азотной кислоты и понижает её нитрующую способность, а образующаяся слабая азотная кислота увеличивает степень окисления углеводородов. Поэтому нитрование углеводородов только азотной кислотой осуществляют крайне редко; в том случае необходим избыток азотной кислоты по сравнению с теоретически требуемым, а реакцию надо проводить при низких температурах, чтобы ослабить протекание нежелательных окислительных процессов.
Для связывания воды, выделяющейся в процессе нитрования, применяют водоотнимающие вещества - серную кислоту, полифосфорные кислоты, уксусных ангидрид, трёхфтористый бор. Серная кислота - наиболее доступное и дешёвое вещество для этих целей. Она эффективно связывает воду и переводит азотную кислот в активную нитрующую форму; это позволяет резко снизить расход азотной кислоты почти до теоретического.
Роль серной кислоты заключается не только в связывании реакционной воды. Ещё в 1889 г. В.В. Марковников установил, что наличие в реакционной среде серной кислоты ускоряет реакцию нитрования. Следовательно, серную кислоту можно рассматривать как катализатор этой реакции. Заводская практика подтвердила, что нитрование ароматических углеводородов смесью азотной и серной кислот протекает значительно быстрее, чем при действии безводной азотной кислоты, даже взято в большом избытке.
Для промышленных процессов нитрования (и сульфирования) в качестве водоотнимающего средства предложен трёхфтористый бор BF3 при добавлении достаточного количества трёхфтористого бора реакции сульфирования и нитрования можно проводить стехиометрическими количествами соответствующих кислот (серной и азотной). Полагают, что реакции протекают по следующим схемам:
ArH + HNO3 + BF3 Ar-NO2 + BF3·H2O
ArH + H2SO4 + BF3 Ar-SO3H + BF3·H2
По окончании реакции добавляют воду; при этом моногидрат фтористого бора превращается в дигидрат BF3·2H2O, который можно отогнать в вакууме. Далее его обрабатывают фтористым кальцием
2BF3·2H2O + CaF2 Ca(BF4)2 + 4H2O
и при нагревании регенерируют BF3:
Ca(BF4)2 2BF3 + CaF2
Особенности проведения нитрования зависят как от использующихся реагентов, так и от субстрата реакции.
Реагенты для проведения реакции нитрования:
1. HNO3 (63-65%, d 1.35 г/мл, товарный продукт) + H2SO4 (96%). Наиболее распространенный.
2. HNO3 (98%, d 1.5 г/мл, также товарный продукт) + H2SO4 (96-100%). Для мало реакционноспособных соединений.
3. HNO3 (98%) + SO3 (4-63%), олеум. Для соединений с очень низкой реакционной способностью.
4. К(Na)NO3 или NH4NO3 + H2SO4 (96%). Распространенный реагент для получения полинитропроизводных.
5. HNO3 (98%, d 1.5 г/мл) + (CH3CO)2O (или СН3СООН). Для реакционноспособных соединений, селективный реагент. Реагент дорогой, поэтому необходимо обосновать экономическую целесообразность его использовании.
6. HNO3 (d 1,3-1,5). Для реакционноспособных соединений. Осложнение - побочная реакция окисления.
Кинетика процесса нитрования
Нитрование ароматических углеводородов смесями азотной и серной кислот протекает по ионному механизму. В.В. Марковников указал, что при взаимодействии серной и азотной кислот образуется нитросерная кислота:
HNO3 + H2SO4 HOSO2-ONO2 + H2O
В дальнейшем было установлено (Титов, Инголд, Беннет), что нитросерная кислота в водной среде диссоциирует с образованием нитроний-катиона:
H2O
HOSO2-ONO2 NO2+ + HSO4-
Ионы нитрония образуются и в концентрированной (безводной) азотной кислоте, не содержащей серной кислоты:
2HNO3 NO3H+ + NO3-
NO3H2+ NO2+ + H2O
При добавлении воды к азотной кислоте диссоциация HNO3 c образованием нитроний-катиона NO2+ подавляется почти полностью, концентрация этих ионов становится ничтожно малой.
Серная кислота реагирует не только с азотной кислотой, но и с водой, образуя ион гидроксония H3O+ и бисульфатный анион HSO4-:
H2SO4 + H2O H3O+ + HSO4-
Таким образом, процесс взаимодействия азотной и серной кислот можно выразить следующим уравнением:
HNO3 + 2H2SO4 NO2+ + H3O+ + 2HSO4- (1)
Следовательно, главным активирующим действием серной кислоты является превращение азотной кислоты в наиболее сильное нитрующее средство - нитроний-катион NO2+
В безводной азотной кислоте (без серной кислоты) концентрация иона нитрония составляет около 2% вследствие самодегидратации.
2HNO NO2+ + NO3- + H2O (2)
Существование NO2+ доказано с помощью спектров комбинационного рассеяния (наблюдается интенсивная полоса при 1400 см). В растворах HNO3 + H2SO4; HNO3 + HClO4; HNO3 + HBF4 азотная кислота практически полностью ионизована, были выделены в твердом виде соли катиона нитрония NO2+X- (X = ClO4, HSO4, BF4). Добавление воды к концентрированной азотной кислоте приводит к уменьшению содержания иона NO2+, и при наличии более 5% воды его сигнал в спектре КР исчезает. Реакция нитрования по мере добавления воды замедляется, сохраняя первый порядок по субстрату.
В органических растворителях, таких как CCl4, ацетонитрил, нитрометан, сульфолан, образование катиона NO2+ по уравнению (2) является стадией, определяющей скорость нитрования, вследствие чего реакция имеет нулевой порядок по ароматическому субстрату. Добавки веществ, влияющих на концентрацию NO2+, сказываются на скорости нитрования. Так, введение нитратов или воды, подавляя ионизацию, замедляет нитрование.
В среде концентрированной серной кислоты равновесие целиком сдвинуто вправо (1). Исследование спектроскопическими (КР-, ИК-, УФ- спектроскопия), криоскопическим и кондуктометрическим методами привело к заключению, что полное превращение HNO3 в NO2+ сохраняется при снижении концентрации H2SO4 до 90%; при концентрации H2SO4 82-70% присутствуют только неионизированные молекулы HNO3, при разбавлении H2SO4 ниже 70% появляются анионы NO3-, а ниже 15% присутствуют только ионы NO3-. По данным спектров ЯМР 14N, для 0,5 М раствора HNO3 степень превращения в NO2+ в среде 91,2% H2SO4 составляет 92%, в 88,6% - 54%, в 86,2% - 12%, а в 81% содержание NO2+ ниже предела чувствительности метода.
Нитрование ароматических углеводородов нитроний-катионом протекает как ионно-комплексная реакция. Сначала нитроний катион NO2+ присоединяется к ядру ароматического углеводорода, затем от образовавшегося соединения отрывается протон.
Более подробно этот процесс можно расписать через образование ?- и ?- комплекса. Лимитирующей стадией является образование ?- комплекса, т.е. скорость процесса нитрования определяется скоростью присоединения нитроний-катиона к углеродному атому в молекуле ароматического углеводорода, так как протон отщепляется от этого углеродного атома почти мгновенно. Лишь в отдельных случаях нитрования в пространственно затрудненное положение отмечался значительный первичный кинетический изотопный эффект, обусловленный, очевидно, ускорением обратной реакции на стадии образования ?- комплекса из-за стерических препятствий и именно в таких случаях стадия образования ?- комплекса не является лимитирующей. К таким примерам относятся нитрование антрацена в положение 9 солями нитрония (KH/KD=6,1 в ацетонитриле, 2,6 в нитрометане), нитрование 1,3,5-три (трет-бутил)-2-R-бензолов азотной кислотой в серной кислоте (R=F, NO2, CH3, KH/KD=2,3-3,7). Но в большинстве случаев стадия образования ?- комплекса является определяющей для скорости процесса.
Поэтому уравнение скорости нитрования будет выглядеть так:
Wнитр =
K2 >> K1 и K-1, так как отсутствует кинетический изотопный эффект и связывание протона не ускоряет реакцию. Величиной K-1 пренебрегают.
В концентрированной серной кислоте равновесие практически нацело сдвинуто вправо. Тогда кинетическое уравнение можно представить в следующем виде:
Как видно из уравнения, скорость реакции обратно пропорциональна концентрации воды и сульфат иона и прямо зависит от концентрации азотной кислоты. Это хорошо просматривается в условиях проведения реакции нитрования ряда ароматических соединений, содержащих электронодонорные или электроноакцепторные заместители.
Правила ориентации:
1. Заместители, имеющиеся в бензольном ядре, направляют вновь вступающую группу в определенные положения, т.е. оказывают ориентирующее действие.
2. Все заместители в бензольном кольце делятся на две группы: ориентанты первого рода и ориентанты второго рода.
Ориентанты 1-го рода (орто-пара-ориентанты) направляют последующее замещение преимущественно в орто- и пара-положения. К ним относятся электронодонорные группы (электронные эффекты групп указаны в скобках):
-R (+I); -OH (+M,-I); -OR (+M,-I); -NH2 (+M,-I); -NR2 (+M,-I)
+M-эффект в этих группах сильнее, чем -I-эффект.
Ориентанты 1-го рода повышают электронную плотность в бензольном кольце, особенно на углеродных атомах в орто- и пара-положениях, что благоприятствует взаимодействию с электрофильными реагентами именно этих атомов.
Ориентанты 1-го рода, повышая электронную плотность в бензольном кольце, увеличивают его активность в реакциях электрофильного замещения по сравнению с незамещенным бензолом.
Особое место среди ориентантов 1-го рода занимают галогены, проявляющие электроноакцепторные свойства: -F (+M<-I), -Cl (+M<-I), -Br (+M<-I).
Являясь орто-пара-ориентантами, они замедляют электрофильное замещение. Причина - сильный -I-эффект электроотрицательных атомов галогенов, понижащий электронную плотность в кольце.
Ориентанты 2-го рода (мета-ориентанты) направляют последующее замещение преимущественно в мета-положение. К ним относятся электроноакцепторные группы:
-NO2 (-M, -I); -COOH (-M, -I); -CH=O (-M, -I); -SO3H (-I); -NH3+ (-I); -CCl3 (-I).
Ориентанты 2-го рода уменьшают электронную плотность в бензольном кольце, особенно в орто- и пара-положениях. Поэтому электрофил атакует атомы углерода не в этих положениях, а в мета-положении, где электронная плотность несколько выше.
Все ориентанты 2-го рода, уменьшая в целом электронную плотность в бензольном кольце, снижают его активность в реакциях электрофильного замещения.
Нитрующая способность смеси серной и азотной кислот характеризуется фактором нитрующей активности (Ф.Н.А.):
В этой формуле дробь характеризует степень возрастания концентрации серной кислоты после израсходования всей HNO3 и выделения соответствующего количества H2O:
Таблица 1. Условия реакции нитрования некоторых ароматических соединений ArX
Х |
Избыток HNO3 (моль) |
Состав нитрующей смеси,% |
Температура, 0С |
|||
HNO3 |
H2SO4 |
H2O |
||||
NHCOCH3 |
0 |
31 |
48 |
21 |
0 - 5 |
|
CH3 |
0 |
24 |
59 |
17 |
40 |
|
H |
0 |
20 |
65 |
15 |
40-60 |
|
Cl |
0 |
18 |
71 |
11 |
60-80 |
|
COOC2H5 |
0,1 |
18 |
75 |
7 |
80-95 |
|
NO2 |
0,1 |
18 |
80 |
2 |
90-100 |
|
1-CH3,2,4-ди-NO2 |
0,15 |
18 |
82 |
0 |
100-120 |
где 18 и 63 - молекулярные массы воды и азотной кислоты.
Следовательно, Ф.Н.А. численно равен концентрации отработанной H2SO4 при условии полного использования HNO3. При этом Ф.Н.А., тем более высокое, чем ниже реакционная способность этого соединения. Для каждого процесса нитрования имеется предел Ф.Н.А., ниже которого нитрование практически не идёт. Когда азотная кислота почти полностью израсходована на нитрование, фактор нитрующей активности приближается к концентрации серной кислоты в отработанной смеси
Расход азотной кислоты на нитрование определяется стехиометрическими соотношениями; это количество несколько увеличивают с учётом побочных процессов окисления, потерь кислоты и др., а так же для интенсификации процесса и более полного превращения ароматического соединения. Необходимый избыток азотной кислоты сверх расчётного определяют для каждого нитруемого углеводорода опытным путём. Естественно, что степень использования азотной кислоты оказывается в таком случае ниже 100%.
Количество вводимой серной кислоты определяется фактором нитрующей активности Ф.Н.А. В таблице 2 приведены показатели промышленных процессов нитрования некоторых ароматических углеводородов.
Механизм нитрования ароматических углеводородов
Процесс нитрования углеводородов смесью азотной и серной кислот протекает в гетерогенной среде, так как образуются две фазы - органическая (углеводородная) и кислотная. Благодаря частичной взаимно растворимости реагирующие компоненты распределяются между двумя фазами, и реакция протекает как в этих фазах, так и на поверхности их раздела.
Таблица 2. Показатели процессов нитрования некоторых ароматических углеводородов
Исходный углеводород |
нитросоединение |
Ф.Н.А. |
Расход HNO3 в% от теоретического |
|
Бензол |
мононитробензол |
70 |
103-105 |
|
Мононитробензол |
Динитробензол |
88 |
110-115 |
|
Толуол |
Мононитротолуол |
70 |
103-105 |
|
Ксилол |
Динитроксилол |
72 |
110-115 |
|
Нафталин |
Мононитронафталин |
61 |
103-105 |
|
Мононитронафталин |
Динитронафталин |
72 |
130-140 |
Легконитруемые углеводороды успевают прореагировать с ионом нитрония на поверхности раздела фаз; в этом случае существенное влияние на скорость реакции оказывает величина этой поверхности, которую можно значительно увеличить интенсивным перемешиванием. Для труднонитруемых углеводородов процесс не успевает пройти на поверхности раздела фаз, и реакция протекает в объёме той фазы, в которую проникают реагенты; для таких реакций поверхность раздела меньше влияет на степень превращения углеводорода и перемешивание способствует лишь насыщению одной фазы другой. Труднонитруемые вещества реагируют в основном в кислотном слое. В органический слой проникает главным образом азотная кислота, которая в отсутствие серной кислоты обладаем меньшей нитрующей способностью.
Стадия отрыва протона от ?- комплекса необратима, что делает необратимой реакцию в целом. Это объясняется сильным электроноакцепторным эффектом нитрогруппы, препятствующим протонированию по связанному с ней атому углерода. Однако если нитрогруппа занимает стерически затрудненное положение, при действии кислот может происходить денитрование, например в 9-нитроантрацене, 3,4,6-триизопропил-2-нитро-N-ацетиланилине или миграция нитрогруппы - например в 3-замещённых 2-нитрофенолах и в 3-замещённых 2-нитроанилинах. Миграция нитрогруппы в 3-R-2-нитроанилинах происходит из геминального узла в ?- комплексе (3), находящемся в равновесии с анилиниевым ионом (4)
(4) (3)
С использованием спектров ЯМР 15N показано, что превращение 2,3-динитроанилина (5) в смесь 2,5- (6) и 3,4-динитроанилинов (7) (соотношение 2:1) в 98% H2SO4 при 110oC не менее чем на 95% протекает внутримолекулярно.
(5) (6) (7)
Константа скорости нитрования по мере увеличения кислотности возрастает, достигая максимума при концентрации H2SO4 90%, а затем снижается. Поскольку содержание ионов NO2+ при концентрации H2SO4 > 90% остаётся постоянным вследствие полного превращения азотной кислоты, снижение скорости в этом интервале относят к изменению главным образом коэффициента активности субстрата, возможно, в результате образования межмолекулярных водородных связей или протонирования. Для соединений, содержащих электроноакцепторные заместители, процесс протонирования цикла затруднен, так как электронная плотность на атомах углерода мала. При этом можно для увеличения концентрации катиона нитрония использовать концентрированную азотную кислоту и олеум.
Из других сильных кислот кроме серной для нитрования применяют фосфорную, хлорную, трифторуксусную, метан- и трифторметансульфокислоты.
Мощным нитрующим реагентом являются соли нитрония, которые могут быть приготовлены взаимодействием азотной кислоты с HF и кислотами Льюиса (BF3, PF3, SbF5).
Как уже говорилось ранее возможно проведение реакции нитрования и в азотной кислоте, в отсутствие серной кислоты. Преимуществом данного метода является то, что азотная кислота может быть регенерирована. При этом отпадает проблема утилизация разбавленной серной кислоты, азотная кислота возвращается в сферу производства. К существенным недостаткам метода относится необходимость использования коррозионностойкой аппаратуры (эмалированной или из нержавеющей стали), так как разбавленная кислота вызывает ее коррозию. При концентрации азотной кислоты 75% и выше в растворе с помощью спектров комбинационного рассеяния обнаруживается нитроний-катион (в небольших концентрациях, около 2%). Но даже в среде концентрированной серной кислоты не всегда достаточное генерирование ионов нитрония NO2+.
Однако нитрование проводят азотной кислотой с концентрацией от 15% до 63%. В ряде случаев для успеха реакции требуется присутствие азотистой кислоты (соединений азота (III)). Например, нафталин-1,3,5-трисульфокислота, которую в промышленности гладко нитруют в положение 8 действием технической нитрующей смеси, остаётся неизменной в тех же условиях, если применяется чистая серная кислота и азотная кислота, не содержащая оксидов азота. Для нитрования нафталина азотной кислотой в 56% H2SO4 необходима добавка NaNO2. При нитровании активированных ароматических соединений - N,N-диалкиланилинов, фенолов, анизола, мезитилена и др. азотистая кислота оказывает каталитическое влияние.
В связи с тем, что катион нитрония имеет малый радиус и высокий заряд, он является «жестким» реагентом и атакует ароматический цикл по положению с наибольшей электронной плотностью. При наличии электроноакцепторных групп в фенильном цикле наибольший отрицательный заряд локализован на атоме углерода в м-положении и углероде, связанном с этим заместителем. Существенно меньшая величина электронной плотности имеется в о- и п-положении кольца.
В результате реакции образуется смесь м-, о- и п-нитропроизводных, а также нитробензол.
Выход изомерных нитросоединений (без учета образующегося нитробензола), приведен в таблице 3.
Таблица 3. Выходы нитропроизводных
Изомеры |
Заместители X, выход в% |
|||||
Орто- |
18,5 |
28,3 |
19 |
17,1 |
9 |
|
Мета- |
80,5 |
68,4 |
72 |
80,7 |
90 |
|
Пара- |
1 |
3,3 |
9 |
2,2 |
1 |
Высокий выход о-нитропроизводных при нитровании (так называемая «орто-ориентация») может быть объяснен ипсо-атакой катиона нитрония по атому углерода, связанному с электроноакцепторным заместителем, и последующим 1,2-сдвигом с получением «нормального» ?- комплекса.
Способность к ипсо-замещению используют в техническом органическом синтезе. При получении пикриновой кислоты для предотвращения окисления фенола азотной кислотой, ведущего к значительному осмолению реакционной массы, ароматическое ядро вначале дезактивируют с помощью введения электроноакцепторных сульфогрупп и только затем проводят нитрование:
На первой стадии образуется фенол-2,4-дисульфокислота, сульфогруппы в которой далее замещаются нитрогруппами и проходит нитрование в положение 6 цикла.
Синтез о- и п-нитрофенола, а также 2,4-динитрофенола осуществляют с помощью щелочного гидролиза соответствующих хлорбензолов. В последнее время разработан способ получения и пикриновой кислоты с помощью нитрования 2,4-динитрохлорбензола. Нитрование фенола не проводят, так как реакция идет очень энергично, а также в основном в связи с тем, что азотная кислота (особенно разбавленная) обладает высокой окисляющей способностью. Так, даже при нитровании бензола образуется примесь нитрофенолов за счет окисления азотной кислотой.
Подобно сульфогруппе ипсо-замещению подвергаются и другие группировки.
Низкая региоселективность наблюдается при нитровании бензолсульфокислоты. Наряду с м-нитробензолсульфокислотой образуется до 15% о-изомера. Однако трудно объяснить наличие в реакционной массе нитробензола, т.к. концентрация отработанной серной кислоты составляет 93 - 95%, а в этих условиях процесс десульфирования маловероятен.
В промышленности м-нитробензолсульфокислоту получают сульфированием нитробензола, при этом образуется только один изомер.
Аномальные результаты реакции нитрования объясняются тем, что происходит «ипсо»-замещение с последующим 1,2-сдвигом:
Катион нитрония атакует атом углерода связанный с сульфогруппой. Образующийся «аномальный» -комплекс переходит в ароматическое состояние как за счет отщепления сульфогруппы, так и за счет смещения нитрогруппы к соседнему атому углерода (1,2-сдвиг) и отрыву протона от «нормального» -комплекса.
Для решения проблемы низкой селективности процесса проводят нитрование в среде уксусного ангидрида. При нитровании в уксусном ангидриде образуется ацетилнитрат, который в малой степени дает катион нитрония:
Ацетилнитрат пожаро- и взрывоопасен, применяют этот реагент в тех случаях, когда с помощью других методов не удается достичь нужного результата. В связи с низкой концентрацией электрофильного агента в растворе селективность процесса увеличивается. Пример сравнительной селективности при нитровании пара-хлортолуола (Таблица 4).
Таблица 4. Региоселективность реакции нитрования
Условия нитрования |
Выход 2-нитро-4-хлортолуола (%) |
Выход 3-нитро-4-хлортолуола (%) |
|
HNO3; SO3 |
55 |
45 |
|
H2SO4; HNO3 |
65 |
35 |
|
(CH3CO)2О; HNO3 |
87 |
13 |
Обсуждение результатов
Для нитрования дифенила использовалась смесь азотной и уксусной кислот. Так как при нитровании в смеси азотной и серной кислот образуются динитропроизводные. Это связано с тем, что серная кислота способствует увеличению концентрации катиона нитрония NO2+.
Подробнее о смеси Систему азотная кислота - уксусная кислота можно с некоторой степенью упрощения рассматривать как систему азотная кислота - вода. При увеличении концентрации уксусной кислоты образуются комплексы состава: HNO3-CH3COOH; HN03-2CH3COOH.
При добавлении к концентрированной азотной кислоте ледяной уксусной кислоты происходит разрушение димеров с образованием недиссоциированной формы азотной кислоты:
Однако не исключено и химическое взаимодействие азотной и уксусной кислот с образованием малоустойчивого соединения - ацетил нитрата:
Образование этого соединения доказано исследованием свойств (вязкость, плотность, рефракция, поверхностное натяжение, электропроводность) растворов азотной кислоты в уксусной кислоте. Допускается протонизация ацетилнитрата по уравнению
В растворах уксусной кислоты, содержащей 2 моля HNO3 и более, в спектрах комбинационного рассеяния обнаружена линия с частотой 1300 см2, принадлежащая недиссоциированной молекуле азотной кислоты. Считают, что ведиссоциированная форма азотной кислоты является нитрующим агентом в растворе HNO3 - СН3СООН - НгО. Однако в отдельных работах в качестве нитрующего агента предполагается действие нитроний катиона. Маловерояно, чтобы ион нитрония мог существовать как таковой в уксусной кислоте; скорее всего активным нитрующим агентом в смеси азотной и уксусной кислот является протонированный ацетилнитрат.
Дымящая азотная кислота в уксусной кислоте является менее активным нитрующим агентом, чем концентрированная HNO3 в концентрированной серной кислоте. Раствор азотной кислоты в уксусной кислоте не только мягкий нитрующий агент из всех известных, за исключением концентрированной азотной кислоты, но и самый слабый окисляющий агент.
Фенильный радикал является ориентантом 1-го рода в орта- и пара- положения. Нитрование в орто- положение затруднено в следствии стерического эффекта, поэтому нитрогруппа занимает пара- положение.
Экспериментальная часть
a. Реагенты и оборудование
Для проведения синтеза использовались следующие реагенты:
Дифенил C12H10
Молекулярная масса: 154.2
Температура кипения: 256°C
Температура плавления: 70°C
Относительная плотность (вода = 1): 1.04
Растворимость в воде: нерастворимо
Давление паров, Па при 71°C: 133
Относительная плотность пара (воздух = 1): 5.3
Ледяная уксусная кислота CH3COOH:
Температура кипения: 118°C
Температура плавления: 16.7°C
Относительная плотность (вода = 1): 1.05
Растворимость в воде: смешивается
Давление паров, кПа при 20°C: 1.5
Относительная плотность пара (воздух = 1): 2.1
Концентрированная азотная кислота (77%) HNO3:
Молекулярная масса: 63.0
Температура кипения: 121°C
Температура плавления: -41.6°C
Относительная плотность (вода = 1): 1.45
Растворимость в воде: смешивается
Давление паров, кПа при 20°C: 6.4
Относительная плотность пара (воздух = 1): 2.2
b. Методика эксперимента
В круглодонную колбу емкостью 50 мл помещают 5,5 г дифенила, 10 мл ледяной уксусной кислоты и 4 г 77%-ной HNO3 (плотн. 1,45 г/см3), присоединяют колбу к обратному холодильнику и кипятят, осторожно нагревая на сетка, до полного растворения дифенила (синтез проводят в вытяжном шкафу, так как выделяются ядовитые окислы азота), на что обычно требуется около 1 ч. Осадок, выпавший после охлаждения реакционной смеси до комнатной температуры, дважды промывают водой (декантацией), тщательно отфильтровывают и перекристаллизовывают из спирта объёмом 30 мл. Выход около 5 г (70% от теоретического).
Выводы
В результате курсовой работы была проработана литература по нитрованию ароматических углеводородов. Была найдена методика получения 4-нитродифенила, по которой проведён синтез. В результате выход сырого продукта составил 91%. После проведения перекристаллизации было получено 68% продукта, 4.9 г. Точка плавления составила 103-1070С, это говорит о том, что после проведения одной перекристаллизации не было достигнуто максимальной чистоты продукта.
Перелік літератури
1. Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза. М.: Химия, 1969. 670 с.
2. Адельсон С.В. и др. Технология нефтехимического синтеза. М.: Химия, 1985. 607 с.
3. Горелик М.В., Эффос Л.С. Основы химии и технологии ароматических соединений. М: Химия, 1992. 640 с.
4. Чичибабин А.Е. Основные начала органической химии. М.: Государственное научно-техническое изд-во химической литературы, 1963. т.1 545 с.
5. Грейш А.А., Демыгин С.С., Кустов Л.М. Нанесенные вольфрам-циркониевые и цеолитные катализаторы // Катализ в промышленности, 2002, № 4 с. 17
6. Чичибабин А.Е. Основные начала органической химии. М.: Государственное научно-техническое изд-во химической литературы, 1957. т.2 614 с.
7. Агрономов А.Е., Шабаров Ю.С. Лабораторные работы в органическом практикуме. Изд. 2-е, пер. и доп. М., "Химия", 1974 г.
Подобные документы
Понятие фенолов, их сущность и особенности, общая формула, характеристика и химические свойства. Распространенность в природе производных фенолов и их использование в медицине и парфюмерии. Реакции нуклеофильного замещения ароматических соединений.
реферат [114,0 K], добавлен 04.02.2009Органический синтез как раздел химии, предмет и методы его изучения. Сущность процессов алкилирования и ацилирования, характерные реакции и принципы протекания. Описание реакций конденсации. Характеристика, значение реакций нитрования, галогенирования.
лекция [2,3 M], добавлен 28.12.2009Понятие оксиранов, их сущность и особенности, характерные реакции. Окись этилена как простейший оксиран, методы получения, использование в промышленности. Реакции окисления алкенов органическими надкислотами, внутримолекулярное замещение галогенгидринов.
реферат [117,5 K], добавлен 04.02.2009Понятие поверхности потенциальной энергии системы. Динамика химического акта. Путь химической реакции. Индексы реакционной способности. Реакции замещения сопряженных ароматических и гетероциклических соединений. Правила построения корреляционных диаграмм.
презентация [396,1 K], добавлен 22.10.2013Синтез 4-нитробензоилазида в несколько стадий из 4-нитробензальдегида. Изучение реакции ГМЦГ-аниона с азидом n-нитробензойной кислоты. Установление структуры полученных соединений на основании данных масс-спектрометрии. Описание и схема механизма реакции.
курсовая работа [700,8 K], добавлен 11.05.2015Экзотермический процесс гидратации этилена в газовой фазе. Реакции синтеза акриламида и адипиновой кислоты, биотехнологические способы получения. Гидрохлорирование ацетилена в промышленности. Синтез динитрила адипиновой кислоты по методу фирмы Du Pont.
реферат [51,6 K], добавлен 28.01.2009Понятие и сущность соединений. Описание и характеристика ароматических гетероциклических соединений. Получение и образование соединений. Реакции по атомному азоту, электрофильного замечания и нуклеинового замещения. Окисление и восстановление. Хинолин.
лекция [289,7 K], добавлен 03.02.2009Основные методы получения силиловых эфиров енолов. Применение силиловых эфиров енолов в синтезе. Силиловые эфиры енолов как С-нуклеофилы. Синтез исходных соединений. Реакции бис-(2,6-триметилсилилокси) бициклов нонандиена-2,6. Реакция с электрофилами.
курсовая работа [763,0 K], добавлен 21.11.2008Окисление органических соединений и органический синтез. Превращение, протекающее с увеличением степени окисления атома. Соединения переходных металлов. Реакции окисления алкенов с сохранением углеродного скелета. Окисление циклических соединений.
лекция [2,2 M], добавлен 01.06.2012Понятие и практическое значение галогенов, их физические и химические свойства, отличительные признаки. Характеристика и способы получения галогенов: йода, брома, хлора, фтора, астат. Реакции, характерные для данных галогенов, сферы их использования.
презентация [988,7 K], добавлен 11.03.2011