Галлий

Исторические сведения об элементе. В природе галлий, в основном, тяготеет к своим ближайшим соседям по периодической системе – алюминию, цинку и германию. Способы получения в чистом виде. Химические свойства. Применение элемента и его соединений.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 30.12.2008
Размер файла 33,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

17

Содержание.

1.Исторические сведения…………………………………………………..2

2. Распространение в природе …………………………………………….4

3. Способы получения элемента…………………………………………..5

4. Свойства элемента……………………………………………………….7

4.1. Физические ………………………………………………………….…7

4.2. Химические………………………………………………………….…9

5. Особые свойства элемента и его соединений,

их применение …………………………………………………………….11

6. Литература ………………………………………………………………19

ГАЛЛИЙ, (лат. Gallium) Ga

1. ИСТОРИЧЕСКИЕ СВЕДЕНИЯ.

В конце 1870 года, выступая на заседании Русского физико -химического общества, Д. И. Менделеев сказал, в частности, что в пятом ряду третьей группы должен находиться пока еще не открытый, но безусловно существующий в природе элемент. При этом Менделеев очень подробно описал свойства "эка-алюминия" (так ученый условно назвал этот элемент, поскольку в таблице ему отводилось место под алюминием) и даже высказал уверенность, "что он будет открыт спектральным исследованием". (Ирония судьбы: мог ли Бунзен предположить, что разработанный им спектральный анализ сыграет с ним горькую шутку - неопровержимо докажет ошибочность его скоропалительной оценки периодического закона?) Ждать пришлось сравнительно недолго. В 1875 году французский химик Поль Эмиль Лекок де Буабодран, исследуя спектроскопическим путем цинковую обманку - хорошо известный минерал, привезенный из местечка Пьерфитт в Пиренеях, обнаружил фиолетовую незнакомку - новую спектральную линию, свидетельствовавшую о том, что в минерале присутствует неизвестный химический элемент. Но увидеть новую линию - это лишь полдела, теперь предстояло выделить из минерала виновника ее появления в спектре. Задача была не из легких, так как содержание искомого элемента в цинковой обманке оказалось крайне незначительным. Все же химику сопутствовал успех: после многочисленных опытов ему удалось получить крупицу нового металла - всего 0,1 грамма. Итак, трудности позади, а на повестке дня стоял уже следующий вопрос: пользуясь почетным правом первооткрывателя, Лекок де Буабодран должен был дать "новорожденному" имя. В честь своей родины ученый решил назвать его "галлием " (Галлия - латинское название Франции). Правда, злые языки вскоре стали поговаривать, что в этом слове химик хитро зашифровал намек на свою фамилию: ведь "галлус " - по-латыни "петух", по-французски же петух - "ле кок", ну, а отсюда до Лекока де Буабодрана, как говорится, рукой подать.

Вскоре сообщение об открытии галлия было опубликовано в докладе французской Академии наук. Когда Д. И. Менделеев ознакомился с ним, он сразу понял, что речь идет о том самом эка-алюминии, которому уже было уготовано место в его таблице элементов. В письме, адресованном французской Академии наук, Менделеев сообщал: "...способ открытия и выделения, а также немногие описанные свойства заставляют предполагать, что металл - не что иное, как эка-алюминий".

В самом деле, свойства теоретического эка-алюминия и реального галлия удивительно совпадали. Расхождение оказалось лишь в плотности: по мнению Менделеева, она должна была составлять около 6 г/см3, а Лекок де Буабодран указывал другое значение - 4,7. Так кто же прав? Тот, кто никогда даже не видел этот металл, или тот, кто не только держал его в руках, но и проводил с ним различные исследования? Не впервые в истории науки теория сталкивалась с практикой, мысль спорила с экспериментом.

Чтобы доказать точность своих первоначальных данных, Лекок де Буабодран снова выделил крупицы галлия, тщательно очистил их и подверг скрупулезному исследованию. И что же выяснилось?

Плотность галлия действительно была близка к 6. Французский химик публично признал правоту своего русского коллеги. "He нужно, я думаю, указывать на исключительное значение, которое имеет плотность нового элемента для подтверждения теоретических выводов Менделеева",- писал тогда первооткрыватель галлия.

2. РАСПРОСТРАНЕНИЕ В ПРИРОДЕ.

Галлий состоит из двух стабильных изотопов с массовыми числами 69 (60,5%) и 71 (39,5%). Хотя среднее содержание галлия в земной коре относительно высокое, 0,0015% по массе, что равно содержанию свинца и молибдена, и в десятки раз больше, чем, например, тантала или вольфрама, в сотни раз больше, чем ртути или серебра. Галлий - типичный рассеянный элемент. В природе он встречается в исключительно малых количествах (0,002% и меньше), обычно это - бокситы, нефелины, сфалериты, каменные угли, некоторые железные руды. Основная часть галлия заключена в минералах с алюминием, меньше - с железом, цинком, медью и другими металлами. Дело в том, что галлий практически не имеет как собственных месторождений, так и "персональных" минералов.

Лишь сравнительно недавно в юго-восточной части Африки был обнаружен первый галлиевый минерал, который и получил название галлит- CuGaS2. В нем содержится почти 37% галлия. До этого самым богатым галлием минералом - был германит из Тсумба в Юго-Восточной Африке. В нём содержится 0,6 - 0,7% галлия. Как выяснилось, сравнительно богата галлием зола каменных углей. Английские ученые подсчитали, что каждая тонна угля, добытого на Британских островах, содержит в среднем 5 граммов галлия.

3. Способы получения элемента.

Даже такая, казалось бы, ничтожная концентрация этого элемента, как в золе каменных углей, считается вполне достаточной для его промышленного извлечения. (Все в мире относительно: железную руду, на тонну которой приходится 300 - 400 килограммов железа, принято называть бедной.) Зато и масштабы производства галлия невелики. Первые 50 килограммов этого металла получили в Германии в 1932 году. Спустя примерно четверть века производство галлия возросло лишь до 350 килограммов. И хотя сегодня счет идет на тонны, даже такой редчайший металл, как рений, которого в земной коре содержится в десятки тысяч раз меньше, чем галлия, по объему производства оставил его далеко позади.

Главным источником получения галлия служат... отходы алюминиевого производства. Хоть на сырье и не приходится тратиться, сам процесс извлечения галлия настолько сложен (чего стоит, например, хотя бы отделение его от алюминия!), что он оказывается одним из самых дорогих металлов на мировом рынке. В середине 50-х годов 1 килограмм галлия стоил 3000 долларов - почти в три раза дороже золота!

Методы выделения и получения галлия были разработаны самим первооткрывателем и его учеником Юнгфлейшем. Для получения в лабораторных условиях лучше всего сначала осадить галлий в виде ци- аноферрата(II). Последний при сильном нагревании превращается в смесь Ga2O3 и Fe2O3. Смесь окислов сплавлением с бисульфатом калия переводят в растворимое состояние. Затем из солянокислого раствора действием большого количества едкого кали высаживают железо (окись галлия растворима в щелочи). После этого галлий можно выделить из щелочного раствора электролитически. Кейл (Keil, 1926) рекомендует сплавлять цианоферрат(II) с твёрдым едким кали в серебряном тигле, затем растворять сплав в воде (при этом железо выделится в виде гидроокиси) и из фильтрата после подкисления соляной кислотой аммиаком осадить галлий в виде гидроокиси. Гидроокись при прокаливании переходит в окись, из которой можно получить металл, сильно нагревая вещество в токе водорода. Ричардс (Richards,.1923) описал метод, по которому свинец, полученный при рафинировании цинка дистилляцией (выделенного из руд, содержащих галлий), перерабатывается на галлий. Из германита галлий можно просто и количественно получить по методике Берга и Кейла (Berg, Keil, 1932), которая основана на лёгкой растворимости GaCl, в эфире. В Леопольдсхолле много лет назад стали получать галлий в заводских условиях при переплавке мансфельдского медного сланца. Содержащие галлий остатки, в которых имеются также тяжёлые металлы и алюминий,преимущественно в виде сульфатов, фосфатов и молибдатов (Feit, 1933) - прежде всего обрабатывают NaOH. Затем отфильтровывают выпадающие гидроокиси тяжелых металлов, а раствор нейтрализуют. Выпадающий при этом осадок, помимо галлия, содержит еще цинк и алюминий в виде фосфатов и сульфатов. Осадок вновь растворяют в серной кислоте и раствор разбавляют водой. При этом в результате фракционного осаждения сероводородом из сернокислого раствора последний обогащается галлием вследствие отделения остатков молибдена и цинка.

Затем раствор смешивают с твердым едким натром, причем фосфорная кислота отделяется в виде тринатрийфосфата, почти нерастворимого в щёлочи. Оставшийся раствор подвергают электролизу. При тщательной работе получается почти чистый галлий.

В промышленности галлий получают так. При переработке бокситов галлий по способу Байера концентрируется в оборотных маточных растворах после выделения Al(OH)3. Из таких растворов галлий выделяют электролизом на ртутном катоде. Из щелочного раствора, полученного после обработки амальгамы водой, осаждают Ga(OH)3, которую растворяют в щёлочи и выделяют галлий электролизом.

При содово-известковом способе переработки бокситовой или нефелиновой руды галлий концетрируется в последних фракциях осадков, выделяемых в процессе карбонизации. Для дополнительного обогащения осадок гидроокисей обрабатывают известковым молоком. При этом большая часть Al остаётся в осадке, а галлий переходит в раствор, из которого пропусканием CO2 выделяют галлиевый концентрат (6-8% Ga2O3); последний растворяют в щелочи и выделяют галлий электролитически.

Источником галлия также может служить остаточный анодный сплав процесса рафинирования Al по методу трёхслойного электролиза. В про- изводстве цинка источниками галлия являются возгоны (вельцокислы), образующиеся при переработке хвостов выщелачивания цинковых огарков.

Полученный электролизом щелочного раствора жидкий галлий, промытый водой и кислотами (HCl, HNO3), содержит 99,9-99,95% Ga.

Более чистый металл получают плавкой в вакууме, зонной плавкой

или вытягиванием монокристалла из расплава.

4. СВОЙСТВА.

4.1. ФИЗИЧЕСКИЕ СВОЙСТВА.

Галлий - относительно мягкий, ковкий металл, блестящего серебристого цвета с голубовато-серыми штрихами. Он плавится при 29,78 С (теплота плавления 19,16 кал/г). Закипает только при - 2230 C. Расплавленный металл при охлаждении не застывает немедленно, если только его не помешивать палочкой; без такого вмешательства он может оставаться жидким месяцами. Свойства галлия, во многих отношениях отличающиеся от остальных металлов, определяются его необычным строением. В кристалле у каждого атома три соседа по слою. Один из них расположен на расстоянии 0,244 нм, а два других - на значительно большем расстоянии друг от друга - 0,271 нм. Расстояние между слоями также велико и составляет 0,274 нм. Поэтому можно считать, что кристалл галлия состоит из частиц Ga2, связанных между собой вандерва-альсовыми силами. Этим объясняется его низкая температура плавления.Он имеет уникальный температурный интервал жидкого состояния (от 29,78 до 2230 C). Молекулы Ga2 сохраняются в жидком состоянии, тогда как в парах металлический галлий почти всегда одноатомен. Высокую температуру кипения галлия объясняют тем, что при плавлении образуется плотная упаковка атомов с координационным числом 12, для разрушения которой требуется большая энергия. В частности таким строением объясняется большая плотность жидкого галлия по сравнению с кристаллическим. Плотность расплавленного галлия больше, чем у твердого металла. В отличие от ртути жидкий галлий (если он недостаточно очищен) хорошо смачивает стекло. Галлий очень склонен к переохлаждению. Будучи расплавлен и вновь охлажден, он может месяцами сохраняться в жидком состоянии при комнатной и более низкой температуре.

При затвердевании сильно переохлажденного диспергированного металла могут образоваться кристаллы неустойчивой b-модификации галлия с температурой плавления - 16,3 С, в структуре которой атомы галлия образуют зигзагообразные цепочки. Кроме нее, получены еще три неустойчивые модификации галлия.

Галлий имеет ромбическую (псевдотрегональную) решётку с параметрами a = 4,5197 A, b = 7,6601 A, c = 4,5257 A. Плотность (г/см3) твёрдого металла 5,904 (20 C), жидкого 6,095 (29,8 C), т. е. при затвердевании объём увеличивается. Кроме большого интервала жидкого состояния (2200 C), ещё одной отличительной особенностью галлия является низкое давление пара при температурах до 1100-1200 C. Удельная теплоёмкость твёрдого галлия 376,7 Дж/(кг*К), т.е. 0,09 кал/(г*град) в интервале 0-24 C, жидкого соответственно 410 Дж/(кг*К), т.е. 0,098 кал/(г*град) в интервале 29-100 C. Удельное электрическое сопротивление (ом*см) твёрдого галлия 53,4*10-6 (0 C), жидкого 27,2*10-6 (30 C). Вязкость (пуаз= 0,1 н*сек/м2): 1,612 (98 C), 0,578 (1100 C), поверхностное натяжение 0,735 н/м (735 дин/см) (30 C в атмосфере H2). Коэффициенты отражения для длин волн 4360 A и 5890 A соответственно равны 75,6% и 71,3%. Сечение захвата тепловых нейтронов 2,71 барна (2,7*10-28 м2).

4.2. ХИМИЧЕСКИЕ СВОЙСТВА.

На воздухе галлий устойчив при обычной температуре, так как покрывается, подобно алюминию, прочной оксидной плёнкой. Выше 260 C в сухом кислороде наблюдается медленное окисление. Воду не разлагает. В серной и соляной кислотах галлий растворяется медленно, в плавиковой - быстро, в азотной кислоте на холоду - устойчив. В горячих растворах щелочей галлий медленно растворяется.

2Ga + 6H2O + 6NaOH --> 3H2 + 2Na3[Ga(OH)6]

Хлор и бром сильно действуют на металл уже на холоду. С йодом галлий соединяется при нагревании. При накаливании галлий соединяется с кислородом и серой. Расплавленный галлий при температурах выше 300 C взаимодействует со всеми конструкционными металлами и сплавами. Из водного раствора галлий легко можно выделить электролитически, но количественно это сделать трудно.

Нормальный потенциал галлия относительно нормального водородного электрода равен - 0,52 в.

Галлий взаимодействует практически со всеми металлами, кроме подгруппы цинка, скандия и титана.

Последним соответствуют двойные системы, которые имеют либо эв- тектический характер, либо (в случае тяжелых металлов - Cd, Hg, Tl, Bi, Pb) ограниченную взаимную растворимость в жидком состоянии. Для этих металлов не характерно также образование непрерывных твердых растворов; наибольшей растворимостью (0,85 ат. % ) в галлии обладает цинк.

В отдельную группу выделяются щелочные металлы. Они образуют с галлием сравнительно высокоплавкие соединения, большей частью состава M5Ga8 и MGa4.

Твердых растворов в этих системах нет совсем. В областях, прилегающих к щелочным металлам, наблюдается расслаивание (кроме системы с литием и, возможно, с натрием).

Все остальные металлы (переходные, кроме подгруппы цинка, щелочноземельные, а также лантаниды и актиниды) образуют с таллием большое число интерметаллических соединений (до 5 - 6 и более в одной системе). Они не имеют областей расслоения, однако для них характерно наличие широких областей твердых растворов на основе этих металлов (до 20 - 30 ат. %) при отсутствии растворимости в галлии.

Некоторые из образующихся в этих системах интерметаллидов обладают высокими температурами плавления. Но наибольший интерес представляют соединения V3Ga и их аналоги с относительно высокими температурами перехода в сверхпроводящее состояние.

Сплавы металлов с галлием, жидкие при комнатной температуре, называются галламами.

Наиболее стойки к воздействию галлия при нагревании бериллий (до 1000), вольфрам (до 300), тантал (до 450), молибден и ниобий (до 400).

Основная валентность галлия 3+, и только соединения, отвечающие этой степени окисления, устойчивы в водных растворах. Нормальный потенциал галлия относительно раствора его соли - 0,56 В. Относительно щелочного раствора, где можно предполагать реакцию

Ga+ 4OH-= Ga(ОН)4 + 3e, потенциал галлия -1:326 В.

Галлий образует устойчивые в водных растворах комплексы - галогеногаллаты и производные щавелевой, винной, лимонной, аскорбиновой и т. п. кислот.

В неводных средах образуются аммиакаты и комплексы с органическими веществами, содержащими азот, кислород, серу, фосфор и т. д. Галлий может занимать центральное место в комплексах типа гетерополисоединений.

Ионы одновалентного галлия образуются в качестве промежуточного продукта при растворении металлического галлия в кислотах, но их равновесная концентрация очень мала (1 * 10-4 моль/л при 30 C). Однако известен ряд комплексов, где галлий имеет низшие степени окисления.

Помимо уже описанных солей органических кислот и разного рода комплексов с органическими лигандами, а также алкоголятов и т. п. соединений известны многочисленные галлийорганические соединения , в которых галлий непосредственно связан с углеродом. Они могут быть получены действием соответствующих ртутноорганических соединений на металлический галлий или соединений алюминия на хлорид галлия.

5. ОСОБЫЕ СВОЙСТВА ЭЛЕМЕНТА И ЕГО СОЕДИНЕНИЙ, ИХ ПРИМЕНЕНИЕ.

Не стоит брать этот элемент в руки - тепла человеческого тела достаточно, чтобы этот серебристый мягкий (его можно резать ножом) металл превратился в жидкость.

Температура плавления его необычайно низка - всего 29,78 C. В этом отношении он уступает только ртути, которую способен утихомирить лишь сорокаградусный мороз, и чуть-чуть - цезию, плавящемуся при 28,5 С. Галлий не стоит брать в руки еще и потому, что он довольно токсичен (токсичнее ртути) и общение с ним может привести к не очень приятным последствиям.

Благодаря низкой температуре плавления галлий - основной компонент многих легкоплавких сплавов. Создан, например, сплав галлия (67%) с индием (20,5%) и оловом (12,5%), который даже при комнатной температуре не может остаться твердым: он плавится при 10,6 С. Такие сплавы широко используют в технике, в частности в устройствах пожарной сигнализации. Стоит воздуху в помещении слегка нагреться, как столбик галлиевого сплава, вмонтированный в реле, начинает таять -жидкий металл замыкает электрические контакты и звуковой или световой сигнал возвещает об опасности.

Легкоплавкие галлиевые сплавы (как и сам галлий) обладают еще и способностью хорошо смачивать твердые материалы, благодаря чему их успешно применяют вместо ртути для создания жидких затворов в вакуумной аппаратуре. Галлиевые затворы надежнее сохраняют вакуум, чем ртутные.

Сплавы галлия с индием и оловом служат в качестве смазок и прокладок при соединении деталей из кварца, стекла и керамики, для склеивания этих материалов под давлением. Галлий-индиевый сплав,нанесенный на поверхность подшинников, заметно продлевает срок их службы. Добавлением галлия к алюминию получают сплавы хорошо поддающиеся горячей обработке. Галлий весьма токсичен, однако в компании с никелем и кобальтом он не проявляет свой ядовитый характер; из сплава этих элементов зубные врачи изготовляют пломбы высокого качества. Сплав галлия с золотом применяется в ювелирном и зубопротезном деле.

В медицине широко применяют лампы ультрафиолетового излучения, катоды которых раньше обычно делали из ртути. Сплав алюминия с галлием лучше ртути справляется с этой работой: излучаемый лампами свет богаче целебными лучами.

Большинство металлов плавится и застывает при одной и той же температуре. Уникальное свойство галлия - его "умение" длительное время (многие месяцы!) не затвердевать в переохлажденном состоянии. Так, если капельку его вылить на лед, галлий еще долго будет оставаться в расплавленном виде. Зато, когда он все же затвердеет, объем металла заметно возрастет, поэтому нельзя заполнять жидким галлием металлические или керамические сосуды - они разорвутся при затвердевании металла. Обычно его хранят либо в небольших желатиновых капсулах, либо в резиновых баллончиках.

Эту характерную черту галлия (все прочие металлы, кроме сурьмы и висмута, как известно, при переходе из жидкого состояния в твердое "худеют") предложено использовать в установках для получения сверхвысоких давлений.

Главное же достоинство галлия в том, что он остается жидким в огромном интервале температур, значительно большем, чем у любого другого легкоплавкого металла. Расплавленный галлий начинает кипеть лишь после того, как температура достигнет 2230 С.

Именно эта поистине удивительная способность галлия предопределила его важнейшее амплуа в технике - изготовление высокотемпературных термометров и манометров. Галлиевые термометры позволяют измерять такую высокую температуру (более 1000 C), при которой ртутным термометрам, как говорится, нечего делать: ведь ртуть закипает уже при 357 C.

Легкоплавкость в сочетании с широким интервалом существования расплава делают галлий потенциальным теплоносителем для атомных реакторов. Однако жидкий галлий ведет себя явно не по-товарищески по отношению к тем конструкционным материалам, которые могли бы окружать его в реакторе: при повышенных температурах он растворяет и тем самым разрушает большинство металлов и сплавов. Агрессивность мешает галлию занять ответственный пост теплоносителя (в этой роли сейчас обычно выступают натрий и калий). Но, возможно, ученым удастся найти на него управу: так, уже установлено, что тантал и вольфрам легко переносят контакт с галлием даже при 1000 C. А эвтекический сплав Ga-Zn-Sn оказывает меньшее коррозийное действие, чем чистый галлий. Любопытно, что небольшие (до 5 %) добавки "едкого" галлия к магнию повышают его антикоррозионные свойства, а заодно и прочность.

Интересна еще одна особенность галлия: величина электрического сопротивления его кристаллов сильно зависит от того, вдоль какой их оси (т. е. в продольном или поперечном направлении) проходит ток; отношение максимума сопротивления к минимуму равно 7 - больше, чем у любого другого металла. То же самое можно сказать и о коэффициенте теплового расширения, который изменяется в зависимости от направления тока почти втрое.

Незаурядные способности галлия хорошо отражать световые лучи позволили ему не без успеха попробовать свои силы в производстве зеркал, причем галлиевые зеркала не тускнеют даже при повышенных температурах. Окись этого металла необходима для получения специальных стекол, обладающих большим коэффициентом преломления, хорошо пропускающих инфракрасные лучи.

Сверхчистый галлий (не менее 99,999%) применяют как легирующую присадку к германию и кремнию для повышения их полупроводниковых свойств.

Особенно ярко они проявились при создании так называемых гетерпереходов, обеспечивающих высокие рабочие характеристики полуп- роводниковых приборов. Гетерпереход - это содружество двух различных по химическому составу полупроводников, которые сращены в монокристалле. Теоретически ученые уже давно сумели доказать, что такое совместное "проживание под одной крышей" сулит полупроводниковой технике интересные перспективы. Однако подобрать подходящую пару оказалось архитрудной задачей.

Исследователи перепробовали десятки различных сочетаний, но все они были далеки от идеала, а часто вещества откровенно демонстрировали свою несовместимость. Ученым пришла в голову мысль испытать в качестве партнеров арсенид галлия и арсенид алюминия: их кристаллические решетки похожи, как две капли воды, а это не могло не обнадеживать. Но неожиданно на пути вырос новый барьер - арсенид алюминия был настолько неустойчив, что во влажной атмосфере разлагался буквально на глазах.

Атомы галлия, введенные в арсенид алюминия, придавали тому нужную устойчивость.

Проблема была решена - техника обогатилась множеством новых совершенных приборов. Коллективу ученых, создавших чудо - кристаллы, в 1972 году была присуждена Ленинская премия.

Сфера деятельности химических соединений галлия постоянно рас-ширяется. Их можно встретить сегодня в вычислительных устройствах и радарных установках, термоэлементах для солнечных батарей и полупроводниковых приборах ракетной техники. Они участвуют в изготовлении лазеров, создании люминесцентных (светящихся) веществ, оказывают сильное каталитическое воздействие на многие важные процессы органической химии.

Еще недавно "гиперболоид инженера Гарина" (а точнее, писателя Алексея Толстого) казался несбыточной фантазией, а сегодня современные "гиперболоиды" - лазеры - прочно вошли в жизнь. Одним из первых лазерных материалов стал арсенид галлия. По зарубежным данным, лазеры на арсениде галлия - простые, эффективные, компактные - предполагалось использовать в космической технике, в частности для связи между космонавтом, вышедшим в открытое пространство, и космическим кораблем или между двумя станциями, находящимися на околоземных орбитах. Намечалось также применить такой лазер для ориентации корабля при посадке на Луну.

Космическая невесомость создает неповторимые условия для проведения различных технологических операций. Интересные опыты по выращиванию полупроводникового кристалла арсенида галлия проведены на американской космической станции "Скайлэб".

Если в земных условиях не удается вырастить кристаллы этого вещества размером более 2 - 3 миллиметров, то в невесомости получен отличный кристалл-великан длиной около 25 миллиметров.

Подобные эксперименты в космосе успешно прошли и на борту советской научно-исследовательской станции "Салют-6 ". Кроме того, наши космонавты провели на установке "Сплав " опыты по получению слитка, состоящего из молибдена и галлия. Дело в том, что молибден почти вдвое тяжелее галлия и в обычных условиях эти металлы не могут равномерно перемешиваться: при застывании слитка верхние его слои оказываются богатыми галлием, а нижние - молибденом. В космосе же царит невесомость, и перед ее законами молибден и галлий равны, поэтому слиток получается равномерным по составу.

Вполне вероятно, что именно галлий поможет ученым ответить на вопрос, почему... светит Солнце. Одна из самых распространенных и авторитетных гипотез утверждает, что в недрах небесного светила постоянно идут процессы термоядерного синтеза. Но как это доказать?

Самыми убедительными, хотя и косвенными уликами могли бы стать нейтрино - частицы, которые образуются при термоядерных реакциях. Но вот беда: приобщить к делу эти улики необычайно трудно. Даже сам Вольфганг Паули - швейцарский физик, еще в 1933 году теоретически предсказавший существование нейтрино, полагал, что никто не сможет экспериментально подтвердить наличие этих частиц, так как они не имеют ни массы, ни электрического заряда. В то же время нейтрино обладают определенной энергией и огромной проникающей способностью. Высвобождаясь в ядре Солнца, они беспрепятственно проходят через толщу солнечного вещества и колоссальным потоком низвергаются на Землю (как, разумеется, и на другие небесные тела). Ученые считают, что на каждый квадратный сантиметр поверхности нашей планеты ежесекундно обрушивается свыше 60 миллиардов нейтрино. Однако зарегистрировать их крайне сложно: через любое вещество они проходят, словно сквозь пустоту. И все же физики нашли некоторые материалы, в которых нейтрино оставляют следы. Так, ядро атома хлора с атомной массой 37, поглощая нейтрино, испускает электрон и превращается в атом аргона с той же атомной массой.

Эта реакция эффективно протекает лишь с участием нейтрино, обладающих большой энергией. Но доля таких частиц в нейтринном солнечном потоке чрезвычайно мала (менее одной десятитысячной). Вот почему для экспериментов, связанных с поисками "неуловимых", нужны поистине стерильные условия.

Попытка создать такие условия была предпринята в США. Чтобы по возможности устранить влияние других космических частиц, громадную цистерну с перхлорэтиленом (эту жидкость обычно применяют при хим- чистке) физики упрятали под землю на глубину около полутора километров, воспользовавшись для этого заброшенным золотым рудником в штате Южная Дакота. Согласно теоретическим расчетам, каждые двое суток в цистерне три атома хлора-37 должны были превращаться в атомы аргона-37, причем считалось, что два таких превращения произойдут "по вине" нейтрино, а третье - под действием других излучений, ухитряющихся проникнуть даже через полуторакилометровую толщу земли. Увы, обнаружить удавалось лишь один из трех атомов аргона-37, а это скорее всего означало, что посланники Солнца тут ни при чем.

Так что же: нейтрино не поступают на Землю и, следовательно, гипотеза о термоядерном происхождении солнечной энергии неверна?

Российские физики полагают, что указанные эксперименты еще не дают основания отказываться от сложившихся представлений о Солнце как о гигантском термоядерном реакторе. Видимо, подобные опыты требуют еще большей точности. Кроме того, теория говорит о том, что Солнце посылает на Землю большие потоки нейтрино с относительно низкой энергией, для фиксации которых хлор - аргоновый метод попросту непригоден. Вот тут на помощь и приходит галлий. Оказалось, что он может служить отличной мишенью (или, как говорят физики, детектором) для нейтрино с малой энергией: ядра изотопа галлия-71 охотно поглощают эти частицы и превращаются в ядра германия-71. Определив число образовавшихся в мишени атомов германия-71, ученые смогут измерить поток солнечных нейтрино. Пока это только теория, но в нашей стране уже создана галлий- германиевая установка, а в горах Северного Кавказа (в Баксанском ущелье) пробита глубокая штольня для нейтринной обсерватории. И хотя для работы установки потребуется не одна тонна галлия, в ходе экспериментов этот довольно дорогой металл практически останется целым и невредимым.

Пройдет несколько лет, и галлий, возможно, прольет свет на одну из важнейших проблем современной астрофизики.

Литература:

1. БСЭ, том. 6, "Советская энциклопедия", Москва, 1971

2. "Общая и неорганическая химия", Н.С.Ахметов, "Высшая школа",

3. Москва, 1988

4. "Курс неорганической химии" т.1, Г.Реми, "Мир", Москва, 1972

5. "Химия галлия, индия и таллия", П.И.Фёдоров, "Наука",

6. Новосибирск, 1977

7. "О редких и рассеянных. Рассказы о металлах", С.И.Венецкий,

8. "Металлургия", Москва, 1981

9. "Синтез и свойства соединений редких элементов III-V групп",

10. Сб. статей, Свердловск, 1976 (УНЦ АН СССР)

11. "Халькогениды переходных металлов на основе галлия, германия,

12. мышьяка", Е.М.Нанобашвили, Тбилиси, "Мецниереба", 1974

13. "Халькогениды галлия", П.Г.Рустамов, Баку, Издательство АН

14. Азербайджанской ССР, 1967


Подобные документы

  • История открытия магния. Характеристика по положению в периодической системе Д.И. Менделеева. Применение магния и его соединений. Его физические свойства. Химические свойства магния и его соединений. Распространение в природе и особенности получения.

    реферат [37,0 K], добавлен 26.08.2014

  • История открытия железа. Положение химического элемента в периодической системе и строение атома. Нахождение железа в природе, его соединения, физические и химические свойства. Способы получения и применение железа, его воздействие на организм человека.

    презентация [8,5 M], добавлен 04.01.2015

  • Характеристика галлия как не самого легкоплавкого из металлов, температура плавления. История открытия элемента, область его применения. Попытки применения галлия в атомных реакторах. Патент на применение галлия. Взаимодействие галлия с серной кислотой.

    реферат [22,4 K], добавлен 19.01.2010

  • История открытия элемента и его нахождение в природе. Способы получения металлов из руд, содержащих их окислы. Восстановление двуокиси титана углем, водородом, кремнием, натрием и магнием. Физические и химические свойства. Применение титана в технике.

    реферат [69,5 K], добавлен 24.01.2011

  • История открытия водорода. Общая характеристика вещества. Расположение элемента в периодической системе, строение его атома, химические и физические свойства, нахождение в природе. Практическое применение газа для полезного и вредного использования.

    презентация [208,2 K], добавлен 19.05.2014

  • Исторические сведения о серебре и его соединениях, физические и химические свойства, нахождение и добыча в природе, основные лабораторные и промышленные методы их получения. Качественные и количественные методы определения серебра и его соединений.

    курсовая работа [2,5 M], добавлен 15.01.2014

  • Физические и химические свойства хлора. Химическая активность, соединение с другими элементами, распространенность в природе в чистом виде и в соединениях. Биологическое значение и применение хлора. Основная форма поступления в организм – хлорид натрия.

    презентация [942,9 K], добавлен 09.12.2012

  • История открытия хлора. Распространение в природе: в виде соединений в составе минералов, в организме человека и животных. Основные параметры изотопов элемента. Физические и химические свойства. Применение хлора в промышленности. Техника безопасности.

    презентация [811,2 K], добавлен 21.12.2010

  • Происхождение, методы получения и физико-химические свойства висмута - химического элемента V группы периодической системы Д.И. Менделеева. Содержание в земной коре и в воде, добыча и производство. Применение в промышленности, машиностроении и в медицине.

    курсовая работа [161,6 K], добавлен 01.05.2011

  • История и происхождение названия меди, ее нахождение в природе. Физические и химические свойства элемента, его основные соединения. Применение в промышленности, биологические свойства. Нахождение серебра в природе и его свойства. Сведения о золоте.

    курсовая работа [45,1 K], добавлен 08.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.