Теория химического строения органических соединений. Электронная природа химических связей. Предпосылки теорий строения. Теория химического строения. Изомерия

Теория строения органических соединений. Электронная природа химических связей, предпосылки теории строения. Теория А.М. Бутлерова. Порядок соединения атомов в молекулах. Структурные формулы. Влияние порядка соединения атомов на свойства веществ.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 19.09.2008
Размер файла 3,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

БАШКИРСКИЙ ЭКОНОМИКО-ЮРИДИЧЕСКИЙ ТЕХНИКУМ

Курсовая работа

ПО ДИСЦИПЛИНЕ «ОРГАНИЧЕСКАЯ ХИМИЯ»

НА ТЕМУ: «ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ. ЭЛЕКТРОННАЯ ПРИРОДА ХИМИЧЕСКИХ СВЯЗЕЙ, ПРЕДПОСЫЛКИ ТЕОРИИ СТРОЕНИЯ. ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ. ИЗОМЕРИЯ»

Выполнил студент:

Очного отделения юридического факультета

Группы О-05-19

Диргамов Р.Р.

Проверила преподаватель:

Исламгулова. И.М.

с. Иванаево-2008 год

СОДЕРЖАНИЕ

Введение

1. Теория химического строения органических соединений. Электронная природа химических связей, предпосылки теории строения

2. Теория химического строения

3. Изомерия

Заключение

Литература

ВВЕДЕНИЕ

Предмет органической химии. Изучая неорганическую химию, мы знакомились с веществами самого разнообразного состава и при этом ни разу не встречали, чтобы какой--нибудь один химический элемент непременно присутствовал во всех веществах. Органические вещества в своем составе наряду с другими элементами всегда содержат углерод. Изучение соединений углерода -- их строения, химических превращений и составляет предмет органической химии.

Вещества органические и неорганический. Наряду с углеродом в состав органических веществ чаще всего входят водород, кислород и азот, сравнительно реже -- сера, фосфор, галогены и другие элементы.

Известно несколько миллионов органических соединений, неорганических же веществ значительно меньше. Из всех химических элементов только углерод образует такое большое число соединений.

С органическими веществами мы встречаемся на каждом шагу. Они содержатся во всех растительных и животных организмах, входят в состав нашей пищи (хлеба, мяса, овощей и т. п.), служат материалом для изготовления одежды, образуют различные виды топлива, используются нами в качестве лекарств, красителей, средств защиты урожая и т. д.

Почти все органические вещества горючи и сравнительно легко разлагаются при нагревании. По образованию оксида углерода (IУ) при горении или по обугливанию вещества при нагревании легко установить принадлежность его к органическим соединениям.

Резкой грани между органическими и неорганическими веществами не существует. Оксиды углерода, угольная кислота, ее соли я некоторые другие вещества по наличию в них углерода должны считаться органическими, но по свойствам они близки к неорганическим соединениям подобного типа и изучаются обычно в неорганической химии. Из курса биологии вам известно, что из неорганических веществ образуются органические, которые могут превращаться в неорганические. Все вещества природы взаимосвязанью, между ними существует единство.

Возникновение органической химии как науки. С органическими веществами человек знаком с давних времен. Наши далекие предки применяли природные красители для окраски тканей, использовали в качестве продуктов питания растительные масла, животные жиры, тростниковый сахар, получали уксус брожением спиртовых жидкостей и т. д.

Но наука о соединениях углерода возникла лишь в первой половине ХIХ в. до этого времени в химии делили вещества по их происхождению на три группы -- минеральные, растительные и животные -- и изучали их раздельно.

С развитием методов химического анализа было установлено, что вещества растительного и животного происхождения содержат углерод. Шведский химик Я. Берцелиус (1807 г.) предложил называть вещества, получаемые из организмов, органическими, а науку, изучающую их, -- органической химией.

Однако Я. Берцелиус и другие химики того времени считали, что органические вещества принципиально отличаются от неорганических: они не могут быть получены лабораторным способом, как неорганические вещества, а создаются только организмами под влиянием особой «жизненной силы. Это учение о «жизненной силе», иначе называемое виталистическим, было глубоко ошибочным, идеалистическим, так как заставляло верить в наличие каких-то нематериальных, сверхъестественных сил.

Своим утверждением о невозможности создать органические вещества из неорганических виталистическое учение тормозило развитие науки. Но оно, конечно, не могло остановить поступательного процесса познания природы.

В 1828 г. ученик Я. Верцелиуса -- немецкий ученый Ф. Вёлер из неорганических веществ синтезирует органическое вещество -- мочевину. В 1845 г. немецкий химик А. Кольбе искусственным путем получает уксусную кислоту. В 1854 г. французский химик М. Вертло синтезирует жиры. Русский ученый А. М. Вутлеров в 1861 г. впервые синтезом получает сахаристое вещество.

Синтезы веществ, ранее вырабатывавшихся только живыми организмами, начали быстро следовать один за другим. Идеалистическое учение о «жизненной силе потерпело полное поражение.

В настоящее время синтезированные многие органические вещества, не только имеющиеся в природе, но и не встречающиеся в ней, например: многочисленные пластмассы, различные виды каучуков, всевозможные красители, взрывчатые вещества, лекарственные препараты.

Синтетически полученных веществ сейчас известно даже больше, чем найденных в природе, и число их быстро растет. Начинают осуществляться синтезы самых сложных органических веществ -- белков.

Смысл термина «органические вещества» давно стал шире его первоначального значения. Теперь это название охватывает не только вещества, входящие в состав организмов, но и синтетически получаемые, не имеющие отношения к организмам. Однако, как исторически сложившееся, это название оставлено для обозначения всей многочисленной группы веществ, содержащих углерод.

Название науки «органическая химия», утратив первоначальный смысл, приобрело в связи с этим более широкое толкование. Можно сказать, что такое название получило и новое подтверждение, так как ведущей познавательной задачей современной органической химии является глубокое изучение процессов, происходящих в клетках организмов на молекулярном уровне, выяснение тех тонких механизмов, которые составляют материальную основу явлений жизни.

Изучение химии органических веществ, таким образом, расширяет наши знания о природе. Раскрывая взаимосвязь веществ, прослеживая процесс усложнения их от наиболее простых -- неорганических -- до самых сложных, составляющих организмы, эта наука раскрывает нам картину развития природы, позволяет глубже понять процессы, происходящие в природе, и закономерности, лежащие в их основе.

Достижения органической химии широко используются в современном производстве. Осуществляя в широких масштабах процессы переработки природных веществ и разнообразные органические, промышленность органической химии создает многочисленные вещества и материалы для других отраслей промышленные кости, с/х. культуры, быта.

Все эти стороны органической химии раскроются перед вами в процессе дальнейшего изучения науки.

1. ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ. ЭЛЕКТРОННАЯ ПРИРОДА ХИМИЧЕСКИХ СВЯЗЕЙ, ПРЕДПОСЫЛКИ ТЕОРИИ СТРОЕНИЯ

Подобно тому, как в неорганической химии при изучении элементов и их соединений мы постоянно руководствовались периодическим законом и периодической системой химических элементов д. И. Менделеева, в органической химии при изучении веществ мы будем опираться на теорию химического строения.

Теория химического строения в своей основе была создана в 60-х годах прошлого столетия.

В первой половине ХIХ в. 0сновная задача органической химии состояла в изучении состава и свойств природных соединений, в разработке способов Рационального использования их для практических нужд.

В связи с развитием промышленности, торговли, ростом городов к органической химии стали предъявляться большие требовании Текстильная промышленность нуждалась в разнообразных красителях; для развития пищевой промышленности более совершенные методы переработки сельскохозяйственных продуктов; нужно было решить проблему освещения растущих городов на основе использования природных материалов; удовлетворить потребность населения в лекарственных веществах и т. д.

Однако дальнейшее органической химии стало замедляться из-за отставания в ней теоретических представлений. Открывавшиеся в процессе исследования веществ новые явления требовали систематизации и объяснения их с единой точки зрения, между тем теории того времени оказывались для этого недостаточными, Органическая химия должна была создавать новые вещества, но теоретические знания не могли указать Пути их целенаправленного синтеза.

Необходимость новых теоретических воззрений в органической химии станет более Понятной, если мы обсудим некоторые известные нам фактор из данной области.

При изучении курса неорганической химии вы узнали, что углерод образует с водородом большое число соединений, так называемых углеводородов. В состав горючего природного газа, например, наряду с простейшим углеводородом метаном СН4, входят этан С2Н6, пропан С3Н8, бутан С4Н10 и др.; при термическом разложении каменного угля образуются бензол, толуол С7Н3 и т. д.; много различных углеводородов содержится в нефти. Возникают вопросы: почему два элемента могут образовывать так много соединений и, вообще, почему органических веществ значительно больше, чем неорганических?

Присмотримся теперь к составу углеводородов, например тех, что содержатся в природном газе. Углерод нам известен как элемент четырехвалентный, но здесь он как будто только в метане СН4 сохраняет эту валентность. Если следовать нашим представлениям, углерод должен быть трехвалентным, а в пропане С3Н8 иметь даже дробную валентность. Какова же валентность углерода в органических соединениях?

Обратимся к другим фактам. Из курса биологии известна глюкоза, ее молекулярная формула. Оказывается, что такая же формула у фруктозы (сахаристого вещества, содержащегося в меде, фруктах). При изучении неорганической химии мы не встречали случаев, чтобы разные вещества имели один и тот же молекулярный состав. В органической химии такие факты стали накапливаться еще с начала ХIХ столетия. Вещества, имеющие один и тот же состав, но разные свойства, 51. Верцелиус назвал изомерами. Причина изомерии также требовала научного обоснования.

Сложившееся в органической химии положение образно выразил ф. в письме к я. Берцелиусу (1835): Химия может сейчас кого угодно свести с ума, она представляется мне дремучим лесом, полным удивительных вещей,

безграничной чащей, из которой нельзя выбраться, куда не осмеливаешься проникнуть..

Мы отметили лишь несколько проблем, требовавших теоретического объяснения. Перед учеными того времени стояли и другие сложные вопросы.

2. ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ

Основы новой теории сформулировал 1861 г. профессор Казанского университета Александр Бутлеров.

В химии к тому времени уже значительное распространение получили идеи атомистики. Понят атома и молекулы получили на международном съезде Химиков в 1860 г. свое точное определение. Но ученые еще не придавали значения тому, как строятся молекулы из атомное, и считали, что позвать это строение химическими методами невозможно. Были и такие ученые, которые вообще не реального существования атомов и молекул.

А.М. Бутлеров не только считал атомы и молекулы реально существующими частицами веществ, но и пришел к выводу, что атомы в молекулах не находится в беспорядке, а соединены друг с другом в определенной последовательности которую можно установить химическими методами и отразить в формуле.

Основную идею своей теории А.М. Бутлеров выразил в следующих словах: е Химическая натура сосной частицы определяется натурой элементарных составных частей, количеством их и химическим строением». В более привычной для нас формулировке это означает, что химические свойства молекулы определяются свойствами составляющих ее атомов, их числом и химическим строением молекулы,

Химическое строение, по А.М. Бутлерову -- это последовательность соединения атомов в молекуле, порядок их взаимосвязи и взаимного влияния друг Руга. Соединения атомов в молекулы, указывал А.М. Бутлеров происходит в соответствии с их атомностью (валентностью).

На примерах из неорганической химии можно видеть, что атомы, соединяясь в Молекулу, оказывают влияние друг на друга. Так, водород и кислород, образовав воду, настолько изменились в результате взаимного влияния, что первый уже Не Роит, а второй не поддерживает горения; вода не Обещает свойствами ни водорода, ни кислорода. Основывается на приведенных выше высказываниях А. М. Бутлерова, сущность теории химического строения можно выразить в следующих положениях:

* 1. Атомы в молекулах располагаются не беспорядочно, они соединены друг с другом в определенной последовательности согласно их валентности.

* 2. Свойства веществ зависят не только от того, атомы каких элементов и в каком количестве входят в состав молекул, но и от последовательности соединения атомов в молекулах, от порядка их взаимного влияния друг на друга.

Рассмотрим на примере известных нам углеводородов первое из этих положений. В какой последовательности соединены атомы в молекуле простейшего углеводорода метана? Мы уже знаем, что каждый атом водорода в нем соединен с атомом углерода. Легко понять, что иначе и быть не может. Если, например, предположить, что какие-нибудь два атома водорода связаны друг с другом непосредственно, то, исчерпав при этом свою валентность, они уже не смогут соединяться с другими атомами. Обозначая валентность элементов условно черточками, мы так изображаем порядок связи атомов в молекуле метана:

Профессор казанского, затем петербургского университета, академик. Создал теорию химического строения, заложив тем самым основы современной органической химии. Руководствуясь теорией, предсказал и впервые синтезировал ряд новых соединений. Открыл реакцию полимеризации непредельных углеводородов, положив начало синтезу высокомолекулярных соединений. Работы по ротации этилена легли в основу одного из современных способов получения этилового спирта, первый в истории химии синтез сахаристого вещества.

Чтобы в молекуле этана С2Н6 все атомы углерода и водорода были соединены в одну частицу, очевидно, должны быть связаны между собой атомы углерода. Затратив на взаимное соединение по единице валентности, углеродные атомы имеют еще по три единицы валентности, за счет которых они и удерживают шесть атомов водорода:

В молекулах пропана С3Н3 и бутана С4Н10 атомы соединены в таком порядке:

Зная строение углеводородов, мы теперь можем ответить на некоторые из тех вопросов, которые волновали в свое время ученых.

В чем причина многообразия соединений углерода? Как видим, она заключается в том, что атомы углерода обладают свойством соединяться друг с другом в цепи.

Нарушается ли валентность элементов в рассмотренных соединениях? Нет, углерод всюду остается четырехвалентным.

* Химические формулы, в которых изображен порядок соединения атомов в молекулах, называются структурными формулами или формулами строения.

Следует иметь в виду, что подобные формулы отображают только последовательность соединения атомов, но не показывают, как атомы расположены в пространстве. Поэтому, как бы мы ни изобразили структурную формулу пропана:

это будет одна и та же молекула, так как порядок, последовательность соединения атомов не изменяется.

Структурные формулы веществ часто изображают в сокращенном виде, например: СН3--СН2--Сн3. В сокращенных структурных формулах черточки обозначают связь атомов углерода между собой, но не показывают связи между атомами углерода и водорода.

3. ИЗОМЕРИЯ

Рассмотрим теперь, какое влияние на свойства веществ оказывает порядок соединения атомов в молекуле.

Обратимся сначала к историческим фактам. Изучая строение молекул углеводородов, А. М. Бутлеров пришел к выводу, что у этих веществ, начиная с бутана, возможен различный порядок соединения атомов при одном и том же составе молекул.

Так, в бутан СМ10 мыслимо двоякое расположение атомов углерода в виде прямой (неразветвленной) и разветвленной цепи:

В первом случае каждый атом углерода соединен с одним (если он крайний) или с двумя атомами углерода; во втором случае появляется атом, соединенный с тремя атомами углерода. Различному порядку взаимосвязи атомов при одном и том же качественном и количественном составе молекулы отвечают, как учит теория химического строения, разные вещества. Если эта теория правильна, должны существовать два бутана, различающиеся по своему строению и свойствам. Так как в то время был известен лишь один бутан, то А. М. Бутлеров предпринял попытку синтезировать бутан другого строения. Полученное им вещество имело тот же состав С4Н10, но другие свойства, в частности более низкую температуру кипения. В отличие от бутана новое вещество получило название изобутан»

Рассматривая возможное строение пентана С5Н12, А. М. Бутлеров пришел к выводу, что должны существовать три углеводорода такого состава:

Все эти вещества были получены.

С увеличением числа атомов углерода в молекуле число веществ одного и того же состава сильно возрастает. Так, согласно теории может существовать 75 углеводородов состава С10Н22, 1858 веществ с формулой С14Н,0 и т. д. Явление изомерии, т. е. существования разных веществ одного и того же состава, известно давно. Но только теория химического строения дала ему убедительное объяснение. Теперь мы можем сформулировать более точно, какие вещества называются изомерами.

* Вещества, имеющие одинаковый состав молекул (одну и ту же молекулярную формулу), но различное химическое строение и обладающие поэтому разными свойствами, называются изомерами.

С каждым годом в науке накапливались подтверждения истинности теории химического строения. Постепенно она завоевала всеобщее признание ученых и вот уже более столетия является основной теорией органической химии. Сформулированная первоначально как учение о строении органических веществ, эта теория стала общей теорией химии, так как в равной степени она справедлива и для тех неорганических соединений, которые состоят из молекул (вспомните, например, строение молекул воды, аммиака, азотной и серной кислот). Научное значение этой теории заключается в том, что она углубила наши представления о веществе, указала путь к познанию внутреннего строения молекул, дала возможность понять накопленные в химии факты, предсказывать существование новых веществ и находить пути их синтеза. Всем этим она в огромной степени способствовала дальнейшему развитию органической химии и химической промышленности.

Создавая теорию химического строения, А. М. Вутлеров опирался на труд своих предшественников. Исходным для этой теории прежде всего явилось понятие валентности элементов Оно введено в науку в начале 50-х годов ХIХ в. английским химиком К. Франкландом, а четырехвалентно углерода, что особенно важно для органической химии, была установлена немецким ученым А. Кекуле. А. Кекуле и А. Купер высказывали мысль и о соединении атомов углерода друг с другом в цепи. Однако это были лишь отдельные идеи. Целостное учение о химическом строении веществ, о зависимости свойств от строения, о возможности устанавливать это строение и предсказывать существование новых веществ создал А. М. Вутлеров.

Разработав теорию и подтвердив правильность ее синтезом новых соединений, А. М. Вутлеров не считал теорию абсолютной и неизменной. Он утверждено, что она должна развиваться, и предвидел, что это развитие пойдет путем разрешения противоречий между знаниями и возникающими новыми фактами.

Теория химического строен, как и предвидел А. М. Вутлеров, не осталась неизменно дальнейшее ее развитие шло главным образом в двух взаимосвязанных направлениях.

Первое из них было а самим А. М. Вутлеровым. Он считал, что наука в будущей сможет устанавливать не только порядок соединения атомов в молекуле, но и их пространственное расположение. Учение о пространственном строении молекул, называемое стереохимией (греч.-- пространственный), вошло в науку в 80-х годах прошлого столетия. Оно позволило объяснять и предсказывать новые факты, не вмещавшиеся в рамки прежних представлений.

Второе направление связано с применением в органической химии учения об электронном строении атомов, развитого в физике ХХ в. Это учение позволило понять природу химической связи атомов, выяснить сущность их взаимного влияния, объяснить причину проявления веществом тех или иных химических свойств.

ЗАКЛЮЧЕНИЕ

Разработав теорию и подтвердив правильность ее синтезом новых соединений, А. М. Вутлеров не считал теорию абсолютной и неизменной. Он утверждено, что она должна развиваться, и предвидел, что это развитие пойдет путем разрешения противоречий между знаниями и возникающими новыми фактами.

Теория химического строен, как и предвидел А. М. Вутлеров, не осталась неизменно дальнейшее ее развитие шло главным образом в двух взаимосвязанных направлениях.

Первое из них было а самим А. М. Вутлеровым. Он считал, что наука в будущей сможет устанавливать не только порядок соединения атомов в молекуле, но и их пространственное расположение. Учение о

пространственном строении молекул, называемое стереохимией (греч.-- пространственный), вошло в науку в 80-х годах прошлого столетия. Оно позволило объяснять и предсказывать новые факты, не вмещавшиеся в рамки прежних представлений.

Второе направление связано с применением в органической химии учения об электронном строении атомов, развитого в физике ХХ в. Это учение позволило понять природу химической связи атомов, выяснить сущность их взаимного влияния, объяснить причину проявления веществом тех или иных химических свойств.

ЛИТЕРАТУРА

Цветков Леонид Александрович. Органическая химия. Учебник для учащихся 10-11 классов общеобразовательных учебных заведений.


Подобные документы

  • Грань между органическими и неорганическими веществами. Синтезы веществ, ранее вырабатывавшихся только живыми организмами. Изучение химии органических веществ. Идеи атомистики. Сущность теории химического строения. Учение об электронном строении атомов.

    реферат [836,2 K], добавлен 27.09.2008

  • Химическое строение - последовательность соединения атомов в молекуле, порядок их взаимосвязи и взаимного влияния. Связь атомов, входящих в состав органических соединений; зависимость свойств веществ от вида атомов, их количества и порядка чередования.

    презентация [71,8 K], добавлен 12.12.2010

  • Главные положения классической теории химического строения молекулы. Характеристики, определяющие ее реакционную способность. Гомологический рад алканов. Номенклатура и изометрия углеводородов. Классификация кислородосодержащих органических соединений.

    презентация [2,8 M], добавлен 25.01.2017

  • Исследование теории химического строения А.М. Бутлерова. Характеристика изомерии органических веществ. Особенности углерод-углеродных связей. Электронная структура сопряженных диенов. Методы получения аренов. Классификация карбонильных соединений.

    курс лекций [151,4 K], добавлен 11.09.2017

  • Классификация органических соединений по углеродному скелету и по функциональным группам. Взаимосвязь химического строения органических молекул с их реакционным центром. Влияние электронно-пространственного строения на механизмы химических превращений.

    курс лекций [1,2 M], добавлен 19.12.2013

  • Электронная модель молекулы. Теория отталкивания электронных пар валентной оболочки. Реакционная способность молекул. Классификация химических реакций. Степени свободы молекулы, их вращательное движение. Описание симметрии колебаний, их взаимодействие.

    презентация [230,6 K], добавлен 15.10.2013

  • Основные операции при работе в лаборатории органической химии. Важнейшие физические константы. Методы установления строения органических соединений. Основы строения, свойства и идентификация органических соединений. Синтезы органических соединений.

    методичка [2,1 M], добавлен 24.06.2015

  • Краткий исторический обзор развития органической химии. Первые теоретические воззрения. Теория строения А.М. Бутлерова. Способы изображения органических молекул. Типы углеродного скелета. Изомерия, гомология, изология. Классы органических соединений.

    контрольная работа [216,8 K], добавлен 05.08.2013

  • Теории химического строения (структурная и электронная). Квантово-механическое описание химической связи. Комплексы переходных и непереходных элементов. Основные постулаты классической теории химического строения. Структура конденсированных фаз.

    презентация [97,1 K], добавлен 15.10.2013

  • Жизнь как непрерывный физико-химический процесс. Общая характеристика природных соединений. Классификация низкомолекулярных природных соединений. Основные критерии классификации органических соединений. Виды и свойства связей, взаимное влияние атомов.

    презентация [594,7 K], добавлен 03.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.