Пространственная структура белковой молекулы. Классификация ферментов
Четыре уровня организации белковой молекулы: первичную, вторичную, третичную и четвертичную структуры. Способы изображения трёхмерной структуры белка на примере фермента триозофосфатизомеразы. Пример участия витаминов B2 и PP в обмене веществ.
Рубрика | Биология и естествознание |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 11.11.2022 |
Размер файла | 401,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
НАЦИОНАЛЬНЫЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ФИЗИЧЕСКОЙ КУЛЬТУРЫ, СПОРТА И ЗДОРОВЬЯ ИМЕНИ
П.Ф. ЛЕСГАФТА, САНКТ-ПЕТЕРБУРГ
КОНТРОЛЬНАЯ РАБОТА
Биохимия
Курс: 2 (заочный)
Группа: 2 (футбол)
Факультет: педагогический
Исполнитель: Борисов И.С.
Санкт-Петербург 2009 г.
Пространственная структура белковой молекулы
К белкам относят полипептиды, способные самопроизвольно формировать и удерживать определенную пространственную структуру. Белок может функционировать, т. е. выступать в качестве фермента, структурного или транспортного белка, регулятора, токсина, ингибитора только потому, что он обладает вполне определенным пространственным строением. Датский биохимик К. Линдерштрем-Ланг предложил рассматривать четыре уровня организации белковой молекулы: первичную, вторичную, третичную и четвертичную структуры.
Первичная структура - последовательность аминокислот в полипептидной цепи. Важными особенностями первичной структуры являются консервативные мотивы - сочетания аминокислот, важных для функции белка. Консервативные мотивы сохраняются в процессе эволюции видов, по ним часто удаётся предсказать функцию неизвестного белка.
Вторичная структура - локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями и гидрофобными взаимодействиями. Ниже приведены некоторые распространённые типы вторичной структуры белков:
а) б-спирали - плотные витки вокруг длинной оси молекулы, один виток составляют 3,6 аминокислотных остатка, и шаг спирали составляет 0.54 нм[14] (так что на один аминокислотный остаток приходится 0.15 нм), спираль стабилизирована водородными связями между H и O пептидных групп, отстоящих друг от друга на 4 звена. Спираль построена исключительно из одного типа стереоизомеров аминокислот (L). Хотя она может быть как левозакрученной, так и правозакрученной, в белках преобладает правозакрученная. Спираль нарушают электростатические взаимодействия глутаминовой кислоты, лизина, аргинина. Расположенные близко друг к другу остатки аспарагина, серина, треонина и лейцина могут стерически мешать образованию спирали, остатки пролина вызывает изгиб цепи и также нарушает б-спирали.
б) в-листы (складчатые слои) - несколько зигзагообразных полипептидных цепей, в которых водородные связи образуются между относительно удалёнными друг от друга (0.347 нм на аминокислотный остаток[14]) в первичной структуре аминокислотами или разными цепями белка, а не близко расположенными, как имеет место в б-спирали. Эти цепи обычно направлены N-концами в противоположные стороны (антипараллельная ориентация). Для образования в-листов важны небольшие размеры боковых групп аминокислот, преобладают обычно глицин и аланин.
в) р-спирали;
г) 310-спирали;
д) неупорядоченные фрагменты.
Третичная структура -- пространственное строение полипептидной цепи; взаимное расположение элементов вторичной структуры, стабилизированное различными типами взаимодействий. В стабилизации третичной структуры принимают участие:
а) ковалентные связи (между двумя остатками цистеина -- дисульфидные мостики);
б) ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;
в) водородные связи;
г) гидрофильно-гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула "стремится" свернуться так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.
При взаимодействии аминокислот друг с другом и клеточным окружением получается хорошо определённая трёхмерная структура -- конформация. Нативная пространственная структура - так называемая третичная структура.
Белки разделяют на группы согласно их трёхмерной структуре. Большинство белков относятся к глобулярным: общая форма из молекулы более или менее сферическая. Меньшая часть белков относится к фибриллярным: их молекулы (обычно и надмолекулярные комплексы) в работающем состоянии представляют собой сильно вытянутые волокна. К фибриллярным белкам относятся, например, кератин и коллаген. Среди глобулярных и фибриллярных белков выделяют подгруппы. Например, на рисунке 1 глобулярный белок, триозофосфатизомераза, состоит из восьми б-спиралей, расположенных на внешней поверхности структуры и восьми параллельных в-слоёв внутри структуры. Белки с подобным тёхмерным строением называются бв-баррелы (от англ. barrel -- бочка) [1].
Рисунок 1 - Разные способы изображения трёхмерной структуры белка на примере фермента триозофосфатизомеразы.
Слева - «палочковая» модель, с изображением всех атомов и связей между ними; цветами показаны элементы. В середине изображены структурные мотивы, б-спирали и в-листы. Справа изображена контактная поверхность белка, построенная с учетом Ван-дер-Ваальсовых радиусов атомов; цветами показаны особенности активности участков
Четверичная структура - взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру (можно считать её и молекулой, если между разными полипептидными цепями, как это нередко бывает, образуются дисульфидные мостики). В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы могут состоять из десятков молекул, многие из них сравнимы по размеру с рибосомами и в последние годы часто описываются как органоиды (см., напр., протеасома). Нередко в их состав входят молекулы РНК (см., напр., сплайсосома).
Классификация ферментов
Фермемнты или энзиммы (от лат. fermentum, греч. жэмз, ?нжхмпн -- дрожжи, закваска) - обычно белковые молекулы или молекулы РНК (рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах. По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов (КФ, EC -- Enzyme Comission code). Классификация была предложена Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology). Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например, пепсин имеет название ЕС 3.4.23.1. Первое число грубо описывает механизм реакции, катализируемой ферментом:
КФ 1: Оксидоредуктазы, катализирующие окисление или восстановление, сопровождающиеся переносом электронов с одной молекулы (восстановителя -- акцептора протонов или донора электронов) на другую (окислитель -- донора протонов или акцептора электронов). Пример: каталаза, алкогольдегидрогеназа. Реакции, катализируемые оксидоредуктазами, в общем виде выглядят так:
A- + B > A + B-,
где A - восстановитель (донор электронов), а B - окислитель (акцептор электронов).
В биохимических превращениях окислительно-восстановительные реакции иногда выглядят сложнее. Вот, например, одна из реакций гликолиза: Pн + глицеральдегид-3-фосфат + НАД+ > НАД · H + H+ + 1,3-дифосфоглицерат. Здесь в качестве окислителя выступает НАД+, а глицеральдегид-3-фосфат является восстановителем.
КФ 2: Трансферазы, катализирующие перенос химических групп с одной молекулы субстрата на другую. Среди трансфераз особо выделяют киназы, переносящие фосфатную группу, как правило, с молекулы АТФ. Широко распространены в растительных и животных организмах, участвуют в превращениях углеводов, липидов, нуклеиновых и аминокислот. Реакции, катализируемые трансферазами, в общем случае выглядят так:
A--X + B - A + B--X.
Молекула A в здесь выступает в качестве донора группы атомов (X), а молекула B является акцептором группы. Часто в качестве донора в подобных реакциях переноса выступает один из коферментов. Многие из катализируемых трансферазами реакций являются обратимыми.
КФ 3: Гидролазы, катализирующие гидролиз химических связей (ковалентная связь). Пример: эстеразы, пепсин, трипсин, амилаза, липопротеинлипаза. Общий вид реакции, катализируемой гидролазой выглядит следующим образом:
A-B + H2O > A-OH + B-H
КФ 4: Лиазы, катализирующие разрыв химических связей (негидролитический: C--C, C--O, C--N, C--S и других) без гидролиза с образованием двойной связи в одном из продуктов, сопровождающиеся отщеплением или присоединением групп атомов по её месту, а также образованием циклических структур. Примеры: гистидиндекарбоксилаза, фумаратгидратаза.
КФ 5: Изомеразы, катализирующие структурные или геометрические изменения в молекуле субстрата.
КФ 6: Лигазы, катализирующие образование химических связей (лигирование) между субстратами за счет гидролиза АТФ. Пример: ДНК-полимераза. При этом обычно происходит отщепление (гидролиз) небольшой химической группы от одной из молекул.
Рассчитать энергетический эффект окисления пальмитиновой кислоты до углекислого газа и воды.
C16H32O2+23О2=16CO2+16H2O
?H°=16*H°fCO2+16*H°fH2O-H°fC16H32O2
?H°=16*(-393,5)+16*(-285,8)-(- 4607,0)
?H°=-6261,8 кДж
Распад нуклеиновых кислот.
Нуклеимновые кисломты (от лат. nucleus -- ядро) -- высокомолекулярные органические соединения, биополимеры (полинуклеотиды), образованные остатками нуклеотидов. Нуклеиновые кислоты -- ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.
Полимерные молекулы нуклеиновых кислот расщепляются в тканях преимущественно гидролитическим путем при участии специфических ферментов, относящихся к нуклеазам. Различают эндонуклеазы, разрывающие внутренние межнуклеотидные связи в молекулах ДНК и РНК, вызывающие деполимеризацию нуклеиновых кислот с образованием олигонуклеотидов, и экзонуклеазы, катализирующие гидролитическое отщепление концевых мононуклеотидов от ДНК и РНК или олигонуклеотидов. Помимо гидролитических нуклеаз, имеются ферменты, катализирующие распад нуклеиновых кислот, например, посредством трансферазной реакции. Они катализируют перенос остатка фосфорной кислоты от 5'-го углеродного атома рибозы одного мононуклеотида ко 2'-му углеродному атому соседнего мононуклеотида, сопровождающийся разрывом межнуклеотидной связи и образованием фосфодиэфирной связи между 2'-м и 3'-м углеродными атомами рибозы одного и того же мононуклеотида. К настоящему времени открыты группы нуклеаз, катализирующие распад ДНК и РНК. Дезоксирибонуклеазы I катализируют разрыв внутренних фосфодиэфир-ных связей в одной из двух цепей молекулы ДНК между 3'-м углеродным атомом дезоксирибозы и остатком фосфата с образованием низкомолекулярных олигодезоксирибонуклеотидов:
ДНК + (n-1) Н2O -> n-Олигодезоксирибонуклеотиды.
Среди продуктов реакции открыты также моно- и динуклеотиды. Типичными представителями этих ферментов являются ДНКазы поджелудочной железы. Одна из них (ДНКаза I) была получена в чистом виде, расшифрована последовательность всех ее 257 аминокислотных остатков. Фермент наиболее активен при рН 6,8-8,0, активируется двухвалентными ионами Mg2+и Мn2+ и ингибируется конечными продуктами ферментативной реакции - олигонуклеотидами.
Дезоксирибонуклеазы II вызывают деполимеризацию молекулы ДНК в результате парных разрывов фосфодиэфирных связей обеих цепей ДНК с образованием более крупных олигодезоксирибонуклеотидов. Представителем их является ДНКаза II, выделенная из селезенки, имеющая мол. массу 38000 и состоящая из 343 аминокислотных остатков. В составе этой ДНКазы открыт глюкозамин. Фермент также активируется ионами металлов, ингибируется анионами; его оптимум рН между 5,5 и 5,8.
Помимо этих ферментов, открыты (преимущественно у микроорганизмов) еще экзодезоксирибонуклеазы, гидролизующие фосфодиэфирные связи молекулы ДНК с отщеплением концевых 5'-дезоксирибонуклеотидов. Например, из E. coli выделено четыре таких фермента, обозначаемых экзодезоксирибонуклеазами I, II, III и IV.
Рестриктазы - ферменты ДНКазного типа действия - катализируют распад чужеродной (в основном фаговой) ДНК в строго определенных участках молекулы, имеющих структуру палиндромов. Из E. coli выделены и охарактеризованы две такие рестриктазы, обозначаемые EcoRI и EcoRII соответственно. Рестриктазы оказывают строго специфическое действие, поэтому они используются для расшифровки последовательности нуклео-тидных остатков в ДНК фагов и вирусов. Кроме того, это уникальное свойство рестриктаз находит все большее практическое применение в генетической инженерии при «вырезании» определенных фрагментов ДНК и «встраивании» их в геном бактериальной ДНК (получение рекомби-нантных ДНК). В результате клетке передается ряд не свойственных ей прежде наследственных признаков. Теоретическое и главным образом практическое значение подобных исследований трудно переоценить. Свидетельством огромного интереса к проблемам генетической инженерии является создание и успешное выполнение в институтах Российской АН и лабораторий ряда стран совместной комплексной программы - проекта «Рестриктазы».
Многие сотни рестриктаз выделены в очищенном состоянии и уже являются коммерческими препаратами.
Из ферментов, катализирующих гидролитический распад РНК, наиболее изучены рибонуклеазы I. Они гидролизуют фосфодиэфирные связи внутри молекулы РНК. Выделенная из поджелудочной железы многих животных РНКаза состоит из 124 аминокислотных остатков во всех случаях, хотя ферменты несколько различаются последовательностью аминокислотных остатков; выяснена также третичная структура ряда РНКаз (см. главу 4). Получен в гомогенном состоянии из плесневого гриба рода Aspergillus фермент гуанилрибонуклеаза, катализирующая эндонуклеолитическое расщепление РНК.
Из ферментов, осуществляющих распад ДНК и РНК не по гидролитическому пути, следует назвать полинуклеотид-фосфорилазу и группу ДНК-гликозидаз. В настоящее время подробно изучены физико-химические свойства и биологическая роль микробной полинуклеотид-фосфорилазы в лаборатории С.С. Дебова; в той же лаборатории фермент открыт в животных тканях.
Механизм действия фермента сводится к переносу нуклеотидных остатков с РНК на неорганический фосфат, при этом образуется рибо-нуклеотиддифосфат (РДФ):
Предполагают, что in vivo фермент катализирует распад клеточных РНК, преимущественно мРНК, до нуклеозиддифосфатов, участвуя тем самым в регуляции концентрации клеточного неорганического фосфата. Следует указать еще на одну не менее важную уникальную функцию полинуклеотид-фосфорилазы - способность фермента катализировать в опытах in vitro синтез из свободных нуклеозиддифосфатов (НДФ) поли-рибонуклеотидов с заданной последовательностью. Этот фермент сыграл выдающуюся роль в расшифровке кода белкового синтеза в лабораториях лауреатов Нобелевской премии С. Очоа и М. Ниренберга.
Открыта группа ДНК-гликозидаз, участвующих в реакциях отщепления модифицированных пуриновых и пиримидиновых оснований (например, урацила, образующегося при дезаминировании остатка цитозина в одной из цепей ДНК).
Таким образом, ДНК-гликозидазы выполняют важную функцию в процессах репарации (восстановление структуры) молекулы ДНК.
В результате последовательного действия разнообразных клеточных экзо- и эндонуклеаз нуклеиновые кислоты подвергаются распаду до стадии рибо- и дезоксирибонуклеозид-3'- и 5'-фосфатов. Дальнейший распад образовавшихся продуктов связан с ферментативными превращениями моно-нуклеотидов , нуклеозидов и далее свободных азотистых оснований. На I этапе гидролиза действуют 3'- и 5'-нуклеотидазы, катализирующие гидролитический распад мононуклеотидов до свободных нуклеозидов с отщеплением неорганического фосфата соответственно от С-3' или С-5' атомов углеводного остатка. На II этапе происходит перенос остатка рибозы от нуклеозида на свободную фосфорную кислоту с образованием рибозо-1-фосфата и свободного азотистого основания.
Участие витаминов B2 и PP в обмене веществ
Витамин B2 (рибофлавин):
6,7-Диметил-9-(D-1-рибитил)-изоаллоксазин
Рибофлавимн (лактофлавин, витамин B2) -- один из наиболее важных водорастворимых витаминов, кофермент многих биохимических процессов. Рибофлавин является биологически активным веществом, играющим важную роль в поддержании здоровья человека. Биологическая роль рибофлавина определяется вхождением его производных флавинмононуклеотида (FMN) и флавинадениндинуклеотида (FAD) в состав большого числа важнейших оксилительно-востановительных ферментов в качестве коферментов.
Флавиновые ферменты принимают участие в окислении жирных, янтарной и других кислот; инактивируют и окисляют высокотоксичные альдегиды, расщепляют в организме чужеродные D-изомеры аминокислот, образующиеся в результате жизнедеятельности бактерий; участвуют в синтезе коферментных форм витамина B6 и фолацина; поддерживают в восстановленном состоянии глутатион и гемоглобин. В ферментах коферменты функционируют как промежуточные переносчики электронов и протонов, отщепляемых от окисляемого субстрата. Витамин B2 необходим для образования эритроцитов, антител, для регуляции роста и репродуктивных функций в организме. Он также необходим для здоровой кожи, ногтей, роста волос и в целом для здоровья всего организма, включая функцию щитовидной железы. Внешними проявлениями недостаточности рибофлавина у человека являются поражения слизистой оболочки губ с вертикальными трещинами и слущиванием эпителия (хейлоз), изъязвления в углах рта (ангулярный стоматит), отёк и покраснение языка (глоссит), себорейный дерматит на носогубной складке, крыльях носа, ушах, веках. Часто развиваются также изменения со стороны органов зрения: светобоязнь, васкуляризация роговой оболочки, конъюнктивит, кератит и в некоторых случаях -- катаракта. В ряде случаев при авитаминозе имеют место анемия и нервные расстройства, проявляющиеся в мышечной слабости, жгучих болях в ногах и др. Основные причины недостатка рибофлавина у человека -- недостаточное потребление молока и молочных продуктов, являющихся главными источниками этого витамина; хронические заболевания желудочно-кишечного тракта, приём медикаментов, являющихся антагонистами рибофлавина. Человеческий организм не накапливает рибофлавин, и любой избыток выводится вместе с мочой. При избытке рибофлавина моча окрашивается в ярко-жёлтый цвет.
Никотимновая кислотам (англ. Nicotinic acid, синонимы: ниацин, витамин B3, витамин PP; CAS-код 59-67-6, брутто-формула C6H5NO2) -- лекарственное средство, витамин, участвующий во многих окислительных реакциях живых клеток.
Витаминное и гиполипидемическое средство. В организме никотиновая кислота превращается в никотинамид, который связывается с коэнзимами кодегидрогеназы I и II (НАД и НАДФ), переносящими водород, участвует в метаболизме жиров, протеинов, аминокислот, пуринов, тканевом дыхании, гликогенолизе, синтетических процессах. Восполняет дефицит витамина РР (витамина В3), является специфическим противопеллагрическим средством (авитаминоз витамина РР). Нормализирует концентрацию липопротеинов крови; в больших дозах (3-4 г/сут) снижает концентрацию общего холестерина, ЛПНП, ТГ, уменьшает индекс холестерин/фосфолипиды, повышает содержание ЛПВП, обладающих антиатерогенным эффектом. Расширяет мелкие сосуды (в том числе головного мозга), улучшает микроциркуляцию, оказывает слабое антикоагулянтное действие (повышает фибринолитическую активность крови). Гипохолестеринемический эффект отмечается через несколько дней, снижение ТГ -- через несколько часов после приема. Абсорбция из ЖКТ (преимущественно в пилорическом отделе желудка и антральном отделе 12-перстной кишки) -- быстрая, замедляется при мальабсорбции. В организме трансформируется в никотинамид. Cmax после перорального приема -- 45 мин. Метаболизируется в печени. Основные метаболиты -- N-метил-2-пиридон-3-карбоксамид и N-метил-2-пиридон-5-карбоксамид не обладают фармакологической активностью. Может синтезироваться в кишечнике бактериальной флорой из поступившего с пищей триптофана (из 60 мг триптофана образуется 1 мг никотиновой кислоты) при участии пиридоксина (витамина B6) и рибофлавина (витамина B2). T1/2 -- 45 мин. Выводится почками в виде метаболитов, при приеме высоких доз -- преимущественно в неизмененном виде. белковая молекула триозофосфатизомераза витамин
Активное воздействие витамина PP на обменные процессы обусловлено его вхождением в состав ниацинамидадениндинуклеотида (НАД) и ниацинамидадениндинуклеотида фосфата (НАДФ), являющихся кофакторами ряда ферментов. В частности, ниацинамид входит в состав кодегидраз, являющихся переносчиками водорода к флавопротеиновым ферментам, и тем самым регулирует окислительно-восстановительные процессы в организме.
Список использованной литературы
Березов Т.Т., Коровкин Б.Ф. Биологическая химия. - М.: Медицина, 2002
Биохимия / Под ред. Меньшикова В.В., Волкова Н.И. - М.: Физкультура и спорт, 1986
Волков Н.И. Биохимия мышечной деятельности. - М.: Олимпийский спорт, 2001
Яковлев Н.Н. Биохимия спорта. - М.: Физкультура и спорт, 1974
Размещено на Allbest.ru
Подобные документы
Изучение строения гена эукариот, последовательности аминокислот в белковой молекуле. Анализ реакции матричного синтеза, процесса самоудвоения молекулы ДНК, синтеза белка на матрице и-РНК. Обзор химических реакций, происходящих в клетках живых организмов.
презентация [666,1 K], добавлен 26.03.2012Понятие и структура белков, аминокислоты как их мономеры. Классификация и разновидности аминокислот, характер пептидной связи. Уровни организации белковой молекулы. Химические и физические свойства белков, методы их анализа и выполняемые функции.
презентация [5,0 M], добавлен 14.04.2014История открытия и изучения белков. Строение молекулы белка, ее пространственная организация и свойства, роль в строении и жизнеобеспечении клетки. Совокупность реакций биологического синтеза. Всасывание аминокислот. Влияние кортизола на обмен белка.
контрольная работа [471,6 K], добавлен 28.04.2014Специфичность и ее значение, взаимодействие антигена и антитела. Основные элементы иммунной системы организма, селекция антител, структура белковой молекулы. Теория "клональной селекции", возникновение разнообразия лимфоцитов или их предшественников.
реферат [21,8 K], добавлен 05.06.2010Биохимия – наука о молекулярных основах жизни, ее задачи и направления, разделы. Значение клинической биохимии, виды исследований и основные достижения. Молекулярные основы канцерогенеза и механизмы иммунитета. Специфические особенности белков, их состав.
презентация [4,3 M], добавлен 22.11.2014Характеристика ферментов, органических катализаторов белковой природы, которые ускоряют реакции, необходимые для функционирования живых организмов. Условия действия, получение и применение ферментов. Болезни, связанные с нарушением выработки ферментов.
презентация [2,6 M], добавлен 19.10.2013Химический состав, природа и структура белков. Механизм действия ферментов, виды их активирования и ингибирования. Современная классификация и номенклатура ферментов и витаминов. Механизм биологического окисления, главная цепь дыхательных ферментов.
шпаргалка [893,3 K], добавлен 20.06.2013Структура молекулы тайтина. Структура и функции молекул С-белка, Х-белка и Н-белка. Белки семейства тайтина в норме, при адаптации и патологии. Амилоидозы. Современные представления о строении, формировании амилоидных фибрилл. Патологические проявления.
дипломная работа [975,8 K], добавлен 15.12.2008Структура и поведение ДНК, ее компоненты и соединяющие их химические связи. Альтернативные формы двойной спирали ДНК. Размер молекул и разнообразие форм. Денатурация и ренатурация ДНК. Гибридные спирали ДНК-РНК. Конформация белка, уровни его структуры.
реферат [36,7 K], добавлен 26.07.2009Понятие молекулярной цепи, ее моделирование. Анализ деформации молекулы, получение функционала для упругой энергии вторичной структуры РНК. Характеристика свободного состояния молекулы. Разработка программных средств для нахождения координат нуклеотидов.
дипломная работа [3,1 M], добавлен 14.03.2012