Реакции биосистем на химический повреждающий фактор

Иерархия организации живой материи. Термодинамические аспекты токсичности. Специфическая симптоматика отравлений. Фундаментальные свойства живых систем. Классификация токсикантов и химических мутагенов. Современные исследования токсических процессов.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 23.12.2021
Размер файла 521,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство Просвещения Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Московский педагогический государственный университет» (МПГУ)

ИНСТИТУТ БИОЛОГИИ И ХИМИИ

Кафедра биохимии, молекулярной биологии и генетики

Реферат на тему:

«Реакции биосистем на химический повреждающий фактор»

Выполнена магистрантом

2 курса очной формы обучения, обучающимся по направлению

44.04.01 Педагогическое образование, магистерская программа:

Биолого-экологическое образование,

Поляковой М. Н.

Москва - 2021 г.

Оглавление

  • 1. Биологические системы
  • 2. Термодинамика биосистем. Термодинамические аспекты токсичности
  • 3. Фундаментальные свойства живых систем
  • 4. Примеры классификации токсикантов
  • 5. Некоторые современные исследования токсических процессов
  • Список использованной литературы

токсичность химический мутаген термодинамический

1. Биологические системы

Жизнь - высшая форма существования материи. Обычно выделяют следующие уровни её организации: молекулярный, молекулярных систем, субклеточный, клеточный, органный, целостного организма, популяционный, биогеоценологический. Для токсиколога интерес представляет взаимодействие токсиканта с живыми системами на всех уровнях их организации.

Молекулярная организация живого чрезвычайно сложна. В состав организма входят молекулы различного строения. Это и простые вещества (кислород, азот, диоксид углерода, оксид азота, ионы натрия, кали, кальция, железа, магния, меди и т. д.), и соединения сложного состава (аминокислоты, олигосахариды, жирные кислоты, биологически активные гетероциклические соединения), и, наконец, чрезвычайно сложные (молекулы белков, нуклеиновых кислот, липидов, полисахаридов) с молекулярной массой несколько сотен тысяч дальтон. Теоретически любая молекула организма может стать мишенью для воздействия тех или иных токсикантов. Однако поскольку значение разных классов и видов молекул для поддержания гомеостаза организма не одинаково, последствия этого воздействия различны.

Рис.1. Биологические системы. Клетка. ДНК-клетка-ткань-орган-организм.

Молекулярные системы состоят из нескольких молекул, изменяющих в процессе интеграции свои свойства и только в такой интегрированной форме выполняющих определенные функции в организме. Так, ни гем, ни глобин не в состоянии связывать и переносить кислород от легких к тканям. Гемоглобин, как молекулярная система, обладает этим свойством. Многие белковые молекулы проявляют ферментативную активностью лишь в комплексе с более простыми молекулами, коферментами. При токсическом повреждении элемента страдает функция молекулярной системы в целом.

В процессе ассоциации отдельных молекул и молекулярных систем образуются функциональные комплексы, цепи, сети. Характерными примерами такого рода организации являются цепи ферментов гликолиза, системы синтеза жирных кислот, биологического окисления и т. д. В свою очередь эти системы участвуют в формировании более сложных субклеточных комплексов: митохондрий, эндоплазматического ретикулума, ядра клетки и др. Действие токсикантов на молекулярные системы может сопровождаться избирательным повреждением отдельных субклеточных комплексов. В этой связи иногда выделяют группы митохондриальных, лизосомальных, цитоплазматичкеских ядов, мембранотоксикантов, генотоксикантов и т. д.

Особо сложной формой организации материи является клетка. Она представляет собой в известной степени самостоятельную единицу жизни, т. е. обладает всеми свойствами живого организма. Токсический процесс, развивающийся в многоклеточном организме, непременно связан со структурно-функциональными нарушениями клеток хотя бы одного типа.

Клетки, объединенные в органы и ткани, приобретают способность к определенной корпоративной активности, основанной на специализации, протекающих в них процессов. В этой специализации причина избирательной чувствительности различных органов к отдельным токсикантам. Эволюция организмов сопровождается дифференциацией и специализацией отдельных тканевых элементов, их функциональной интеграцией. Происходит формирование систем органов (сердечно-сосудистая система, дыхательная система, нервная система, система крови, выделительная система, эндокринная система, иммунная система). Токсическое повреждение органа сказывается на функциональном состоянии всей системы. Функционирование целостного организма невозможно при повреждении образующих его органов (легких, печени, почек, сердца и т. д.) и систем.

Отдельные организмы, в свою очередь, составляют более сложные неформальные надорганизменные образования: популяции, консорциумы, биогеоценозы, в которых они взаимодействуют между собой и с окружающей средой, и только за счет этого единения получают возможность выживать, сохранять и преумножать свою численность. Этим образованиям, как и любому уровню организации живой материи, свойственны особый вид структуры, кооперации, координации. Для них характерны определённые закономерности и тенденции развития. Любая надорганизменная биологическая система характеризуется высокой гетерогенностью чувствительности составляющих её индивидов к токсикантам.

Биосистема состоит из однотипного живого вещества: от макромолекул и клеток до популяционных сообществ и экосистем.

Биосистема -- это сложная сеть биологически соответствующих организаций, от глобальных до субатомных.

В ней существуют следующие уровни организации: генный уровень; клеточный уровень; органы и системы органов; организмы и системы организмов; популяции и популяционные системы; сообщества и экосистемы.

Таким образом, для живой материи характерна иерархия организации, строящаяся в соответствии с определёнными закономерностями, имеющими большое значение для понимания явления токсичности:

1. Каждая более высокая форма материи включает в себя элементы более низкого уровня. Поэтому повреждающее действие химических веществ на молекулярном уровне при определенных условиях отражается на состоянии биосистемы в целом.

2. С повышением уровня организации расширяется многообразие и сложность биологических систем. При этом существенно возрастают возможности их токсического повреждения ксенобиотиками, увеличивается разнообразие проявлений токсического процесса.

3. Каждая новая ступень организации живой материи приобретает качественно новые свойства. Токсическое действие веществ следует оценивать с учетом этих новых свойств, не ограничиваясь характеристикой эффектов, наблюдаемых на более низких ступенях организации живого.

4. Эволюция живой материи идет путем расширяющейся дифференциации и специализации составляющих биологическую систему элементов, с одновременным усилением их кооперации. Существует известная избирательность в действии токсикантов. Любая избирательность токсического действия носит условный характер. Повреждение элемента, так или иначе, сказывается на функциональном состоянии системы в целом.

5. Более высокие уровни организации материи предполагают усиление адаптивных возможностей, но требуют более совершенной системы координации составляющих её частей. В этой связи прослеживается закономерность: по мере усложнения организмов увеличивается число специфически действующих на них высокотоксичных соединений.

2. Термодинамика биосистем. Термодинамические аспекты токсичности

Материя существует в различных состояниях. С позиций классической термодинамики существование материи в форме живых организмов и даже единичных клеток маловероятно. Как известно, для частиц, являющихся элементами системы, находящейся в неравновесном состоянии, свойственно стремление распространяться и перераспределяться в соответствии с законом вероятности и к достижению, таким образом, равновесного состояния. При таком перераспределении энтропия (мера неупорядоченности) системы (S) возрастает, т. е. dS/dt 0.

Клетки, или тем более, многоклеточные организмы, являются высокоорганизованными структурами, в сравнении с окружающей их средой, то есть представляют собой элемент системы с низкой энтропией. Поддержание структуры и функции живых существ, регенерация, рост, репродукция -- все это процессы, проходящие с уменьшением энтропии. Таким образом, в живых системах имеет место иная тенденция: dSb/dt <0.

Это возможно лишь при условии открытости биологической системы, т. е. интенсивного обмена с окружающей средой веществом и энергией и, в частности, активного потребления элементов окружающей среды с низкой энтропией (углеводов, белков, жиров, других клеток и организмов). Эти элементы расщепляются на продукты с более высокой энтропией, и за счет высвобождающейся энергии организм в форме сопряженного процесса понижает свою собственную энтропию. При этом суммарная энтропия системы организм - окружающая среда увеличивается: dS/dt = dSb/dt + dSm/dt> 0, где dSm - изменение энтропии потребленных веществ.

Таким образом развитие высокоорганизованных биологических структур есть процесс, в ходе которого понижается энтропия структуры за счет существенного её увеличения в сопряженных системах. Существование клеток и макроорганизмов связано с постоянным обменом материей и энергией с окружающей средой. Прекращение обмена означает смерть организма, гибель системы. Любой токсикант, так или иначе, нарушает обменные процессы, делает организм (систему) более уязвимым с термодинамических позиций.

Распределение токсичных веществ в организме зависит от трех основных факторов: пространственного, временного и концентрационного.

Рис. 2. Основные характеристики токсического действия

Пространственный фактор определяет пути наружного поступления и распространения яда. Это распространение во многом связано с кровоснабжением органов и тканей, поскольку количество яда, поступающего к данному органу, зависит от его объемного кровотока, отнесенного к единице массы тканей. Наибольшее количество яда в единицу времени поступает обычно в легкие, почки, печень, сердце, мозг. При ингаляционных отравлениях основная часть яда поступает в почки, а при пероральных -- в печень, так как соотношение удельного кровотока печень/почки составляет примерно 1:2. Кроме того, токсический процесс определяется степенью чувствительности к яду рецепторов «избирательной токсичности». Особенно опасны в этом отношении токсичные вещества, вызывающие необратимые поражения клеточных структур (например, при химических ожогах тканей кислотами или щелочами). Менее опасны обратимые поражения (например, при наркозе), вызывающие только функциональные расстройства.

Под временным фактором подразумеваются скорость поступления яда в организм и скорость его выведения из организма, т. е. он отражает связь между временем действия яда и его токсическим эффектом.

Концентрационный фактор, т. е. концентрация яда в биологических средах, в частности в крови, считается основным в клинической токсикологии. Определение этого фактора позволяет различать токсикогенную и соматогенную фазы отравления и оценить эффективность дезинтоксикационной терапии.

Исследование динамики концентрационного фактора помогает обнаружить в токсикогенной фазе отравлений два основных периода: период резорбции, продолжающийся до момента достижения максимальной концентрации токсичного вещества в крови, и период элиминации -- от этого момента до полного очищения крови от яда. С точки зрения токсикодинамики специфическая симптоматика отравлений, отражающая «избирательную токсичность» ядов, наиболее ярко проявляется в токсикогенной фазе, особенно в период резорбции. Для последнего характерно формирование тяжело протекающих патологических синдромов острых отравлений, таких как экзотоксический шок, токсическая кома, желудочно-кишечные расстройства, асфиксия и т. д.

В соматогенной фазе обычно развиваются патологические синдромы, лишенные выраженной токсикологической специфичности. Клинически они трактуются как осложнения острых отравлений: энцефалопатия, пневмония, острая почечная недостаточность (ОПН) или острая печеночно-почечная недостаточность (ОППН), сепсис и т. д.

3. Фундаментальные свойства живых систем

Для всех уровней организации живых систем характерны свойства, отличающие живую материю от неживой. К числу основных, фундаментальных свойств живого относятся:

1. Потребление из окружающей среды и превращение питательных веществ (подсистем) с низкой энтропией (метаболизм). Это необходимо для поддержания структурной целостности биосистемы, её роста и размножения.

2. Обмен веществом и энергией с окружающей средой. Таким путем обеспечивается приток необходимых для жизнедеятельности структурных элементов живого, их превращение, утилизация, выделение продуктов с высокой энтропией и тепловой энергии.

3. Регуляция. Поддержание структурно-функциональной организации биологической системы требует упорядоченности течения обменных процессов. Для этого у высокоорганизованных организмов формируются специальные механизмы регуляции, модулирующие активность отдельных органов и систем, интенсивность протекающих в них процессов. Механизмы регуляции обеспечивают адаптацию системы к изменяющимся условиям среды.

4. Раздражимость и реактивность. Различные химические и физические факторы окружающей среды являются своеобразными сигналами или источниками информации, на которые живой организм реагирует в той или иной форме. Структуры, предназначенные для восприятия и переработки соответствующей информации, используют поступающее раздражение, что позволяет организму адекватно на него реагировать.

5. Репродукция. Это свойство обеспечивает поддержание или увеличение численности биологических объектов всех видов и типов. В основе репродукции лежит процесс клеточного деления. В ходе клеточного деления осуществляется перенос ДНК (генетического материала) материнских клеток к дочерним клеткам и за счет этого обеспечивается в последующем репродукция и всех остальных компонентов живого. Сохранение информации о свойствах предшествующих поколений, зашифрованных в молекулах ДНК (генах), передающихся из поколения в поколение - суть наследственности.

6. Изменчивость. В основе изменчивости лежит трансформация, преобразование генетического материала (генотипа), что проявляется изменением структурно-функциональных особенностей организма (фенотипа). В основе изменчивости лежат два явления: половое размножение и мутации. Половое размножение -- это объединение генетического материала половых клеток родителей и образование оплодотворенной яйцеклетки, содержащей двойной набор хромосом. Соотношение генетического материала обоих родителей в дочерней клетке формируется случайным образом. Фенотипические особенности нового организма в этой связи не будут полностью повторять свойства отцовского или материнского организмов, то есть возникает новая, не существовавшая ранее биологическая конструкция.

Под мутацией понимают некое спонтанное или вызванное внешним воздействием изменение генетического материала, которое передается в ходе репродукции дочерним клеткам. Эти модификации фенотипически могут проявляться в различной степени: от практически незаметных изменений признаков, до очевидных, и иметь различные последствия для адаптивных свойств организма.

Мутагенным действием обладают многие химические соединения самого разнообразного строения. Наибольшую мутагенную активность проявляют различные алкилирующие соединения, а также нитрозосоединения, некоторые антибиотики, обладающие противоопухолевой активностью. Такие соединения в целом вызывают преимущественно точковые мутации. Химические мутагены делят на мутагены прямого действия, непосредственно взаимодействующие с генетическим материалом клетки, и мутагены непрямого действия, влияние которых на генетический материал клетки происходит опосредованно, после ряда метаболических превращений. Установлено, что мутагенной активностью обладает несколько тысяч химических соединений. Однако, в отличие от ионизирующего и ультрафиолетового излучений для химических мутагенов характерна специфичность действия, зависящая от природы объекта и стадии развития клетки. При взаимодействии химических мутагенов с компонентами наследственных структур (ДНК и белками) возникают первичные повреждения последних. В дальнейшем эти первичные повреждения ведут к возникновению мутаций.

Широко используют супермутагены, вызывающие до 100% мутаций: ацетилбутан, нитрозометилмочевину, этилметансульфонат, а также этиленимин (ЭИ), диэтилсульфат (ДЭС), диметилсульфат (ДМС), нитрозометилмочевину (НММ), 1,4-бисдиазоацетилбутан (ДАБ), перекись водорода, азотистую кислоту, горчичный газ (иприт) и другие. Все химические мутагены можно классифицировать следующим образом:

ь Ингибиторы азотистых оснований нуклеиновых кислот

ь Аналоги азотистых оснований, включающиеся в нуклеиновую кислоту

ь Алкилирующие агенты

ь Окислители, восстановители и свободные радикалы

ь Акридиновые красители

Фундаментальные свойства живого - тесно связанные, неотделимые друг от друга феномены. Тем не менее, первичные эффекты высокотоксичных соединений порой связаны с избирательным нарушением отдельных фундаментальных свойств живого - метаболизма, пластического обмена, энергетического обмена, регуляции, раздражимости, репродукции. Чем более токсично соединение, тем более выражена эта избирательность. 4. Степени свободы токсического воздействия

С усложнением организации биосистем формируются новые структуры, появляются новые функции, в результате увеличивается разнообразие способов их повреждения химическими веществами. Так, путем образования и совершенствования биологических мембран в процессе эволюции, происходит отграничение формирующихся организмов от окружающей среды. На определенном этапе мембраны представляют собой новое качество, обеспечивающее структурную целостность зарождающейся жизни. Токсиканты, способные в силу особенностей химического строения избирательно взаимодействовать только с компонентами биологических мембран, не действуют на элементы живого, лишенные мембранных структур.

Высшие организмы, характеризующиеся большой массой и высокой степенью организации, имеют специальные анатомо-физиологические образования, обеспечивающие обмен веществом и энергией со средой (например, сердечно-сосудистая система, выделительная система и т. д.). Естественно, что вещество, избирательно взаимодействующее со структурно-морфологическими элементами этих систем, не будет оказывать токсического действия на организмы, лишенные их.

С увеличением сложности организации живого эволюционно формируются регуляторные системы и системы, обеспечивающие межклеточное взаимодействие в организме (нервная система, эндокринная система). Эти элементы живого организма также становятся мишенями избирательного воздействия ксенобиотиков. Однако, зрительные галлюцинации, под влиянием психодислептиков (ДЛК, псилоцин, пиперидилгликоляты и др.) могут возникнуть только у существа с высоко организованной нервной системой, развитым зрительным анализатором.

Итак, суммируя сказанное: по мере совершенствования организации живой материи возрастает многообразие её форм, появляются всё новые структурные элементы, вспомогательные системы, обеспечивающие жизнедеятельность; одновременно увеличивается количество способов, с помощью которых возможно повреждение биологических систем токсикантами; спектр веществ, способных оказывать неблагоприятное действие на организм высших животных и человека, значительно богаче, чем токсикантов, действующих на растения и примитивные одноклеточные и многоклеточные организмы.

Если токсический эффект изучают на уровне клетки (как правило в опытах in vitro), то судят прежде всего о цитотоксичности вещества. Цитотоксичность выявляется при непосредственном действии соединения на структурные элементы клетки. На практике к изучению цитотоксичности прибегают при использовании культур клеток для оценки свойств новых веществ в опытах in vitro и исследования механизмов их токсического действия; для выявления токсикантов в объектах окружающей среды (биотестирование) и т. д.

Токсический процесс на клеточном уровне проявляется:

? обратимыми структурно-функциональными изменениями клетки (изменение формы, сродства к красителям, количества органелл и т. д.);

? преждевременной гибелью клетки (некроз, апоптоз);

? мутациями (генотоксичность).

Если в процессе изучения токсических свойств веществ исследуют их повреждающее действие на отдельные органы и системы, выносится суждение об органной токсичности соединений. В результате таких исследований регистрируют проявления гепатотоксичности, гематотоксичности, нефротоксичности и т. д., то есть способности вещества, действуя на организм, вызывать поражение того или иного органа (системы).

Рис. 3. Токсический процесс на клеточном уровне.

Рис. 4. Изменение формы опухолевых клеток

Органотоксичность оценивают и исследуют, прежде всего, в процессе изучения свойств (биологической активности, вредного действия) новых химических веществ; в процессе диагностики заболеваний, вызванных химическими веществами.

Токсический процесс со стороны органа или системы проявляется:

? функциональными реакциями (миоз, спазм гортани, одышка, кратковременное падение артериального давления, учащение сердечного ритма, нейтрофильный лейкоцитоз и т. д.);

?заболеваниями органа (как установлено, различные вещества, при соответствующих условиях, способны инициировать самые разные виды патологических процессов);

? неопластическими процессами.

Токсическое действие веществ, регистрируемое на популяционном и биогеоценологическом уровне, может быть обозначено как экотоксическое.

Экотоксичность на уровне популяции проявляется:

? ростом заболеваемости, смертности, числа врожденных дефектов развития, уменьшением рождаемости; ? нарушением демографических характеристик популяции (соотношение возрастов, полов и т. д.); ? падением средней продолжительности жизни членов популяции, их культурной деградацией.

Особый интерес для врача представляют формы токсического процесса, выявляемые на уровне целостного организма. Они также множественны, и могут быть классифицированы следующим образом:

? Интоксикации ? болезни химической этиологии;

? Транзиторные токсические реакции - быстро проходящие, не угрожающие здоровью состояния, сопровождающиеся временным нарушением дееспособности (например, раздражение слизистых оболочек);

? Аллобиотические состояния - наступающее при воздействии химического фактора изменение чувствительности организма к инфекционным, химическим, лучевым, другим физическим воздействиям и психогенным нагрузкам (иммуносупрессия, аллергизация, толерантность к веществу, астения и т. д.);

? Специальные токсические процессы - беспороговые, имеющие продолжительный скрытый период процессы, развивающиеся у части экспонированной популяции, при действии химических веществ, как правило, в сочетании с дополнительными факторами (например, канцерогенез).

В качестве ядов (токсикантов) могут выступать практически любые соединения различного строения, если, действуя на биологические системы не механическим путем, они вызывают их повреждение или гибель. В настоящее время науке известны миллионы химических веществ, многие из которых широко используются человеком в быту, медицине, на производстве, в сельском хозяйстве и т. д.

4. Примеры классификации токсикантов

1. По происхождению

1.1. Токсиканты естественного происхождения

1.1.1. Биологического происхождения

? Бактериальные токсины

? Растительные яды

? Яды животного происхождения

1.1.2. Небиологического происхождения

? Неорганические соединения

? Органические соединения

1.2. Синтетические токсиканты (огромное количество веществ с различным строением).

2. По способу использования человеком

2.1. Ингредиенты химического синтеза и специальных видов производств

2.2. Пестициды

2.3. Лекарства и косметика

2.4. Пищевые добавки

2.5. Топлива и масла

2.6. Растворители, красители, клеи

2.7. Побочные продукты химического синтеза, примеси и отходы

3. По условиям воздействия

3.1. Профессиональные (производственные) токсиканты

3.2. Бытовые токсиканты

3.3. Вредные привычки и пристрастия (табак, алкоголь, наркотические средства, лекарства и т. д.)

3.4. Загрязнители окружающей среды (воздуха, воды, почвы, продовольствия)

3.5. Поражающие факторы при специальных условиях воздействия

- аварийно-катастрофального происхождения

- боевые отравляющие вещества и диверсионные агенты.

Для живой материи характерна иерархия организации, строящаяся в соответствии с определёнными закономерностями, имеющими большое значение для понимания явления токсичности:

1. Каждая более высокая форма материи включает в себя элементы более низкого уровня. Поэтому повреждающее действие химических веществ на молекулярном уровне при определенных условиях отражается на состоянии биосистемы в целом.

2. С повышением уровня организации расширяется многообразие и сложность биологических систем. При этом существенно возрастают возможности их токсического повреждения ксенобиотиками, увеличивается разнообразие проявлений токсического процесса.

3. Каждая новая ступень организации живой материи приобретает качественно новые свойства. Токсическое действие веществ следует оценивать с учетом этих новых свойств, не ограничиваясь характеристикой эффектов, наблюдаемых на более низких ступенях организации живого.

4. Эволюция живой материи идет путем расширяющейся дифференциации и специализации составляющих биологическую систему элементов, с одновременным усилением их кооперации. Существует известная избирательность в действии токсикантов. Любая избирательность токсического действия носит условный характер. Повреждение элемента, так или иначе, сказывается на функциональном состоянии системы в целом.

5. Более высокие уровни организации материи предполагают усиление адаптивных возможностей, но требуют более совершенной системы координации составляющих её частей. В этой связи прослеживается закономерность: по мере усложнения организмов увеличивается число специфически действующих на них высокотоксичных соединений.

5. Некоторые современные исследования токсических процессов

Жолдакова З.И. и Синицына О. О. в своей значительной работе на основании понятий «дезорганизация» и «адаптация» изучили изменение количественного критерия токсического эффекта - пороговой дозы (ПД) - в течение эксперимента при энтеральном поступлении 222 химических веществ.

Ими было показано, что первое проявление эффекта может возникать уже на 5-е или 10-е либо 15-20-е сутки интоксикации. В кратковременных и хронических опытах установлено, что динамику развития токсического процесса на пороговом уровне эффекта во времени можно отразить в виде 4 моделей:

· нарастания эффекта (снижение пороговых доз) - 14% веществ;

· отсутствия изменений ПД - 46% веществ;

· видимого ослабления эффекта (повышение ПД) - 10% веществ;

· волнообразного характера изменения ПД (периодическое повышение и снижение) - 30% веществ.

Проведен анализ этих различий с учетом стадий дезорганизации и адаптации. Даны рекомендации по уточнению условий проведения токсикологического эксперимента в зависимости от динамики развития токсического процесса на пороговом уровне.

Глаголева и Родионова провели исследование, цель которого - на модели свинцовой и медной нагрузки у лабораторных животных оценить влияние разработанных комплексных пищевых биосистем (состоящих из пищевых волокон) на депонирование и экскрецию тяжелых металлов.

Авторами разработаны комплексные пищевые биополимерные системы (КПБС) с учетом принципов комбинаторики животного и растительного сырья. Анализ результатов исследований сорбционных, физико-химических, функционально-технологических и органолептических свойств КПБС и компонентов, входящих в их состав, позволяет предположить наличие энтеросорбирующих свойств.

Проведенные исследования подтвердили наличие энтеросорбирующих свойств исследуемых пищевых биосистем в отношении ионов Pb2+ и Cu2+ в условиях invivo. Полученные положительные результаты позволяют сделать вывод об эффективности использования пищевых биосистем при эфферентной терапии.

В многочисленных дискуссиях о судьбе природных объектов в условиях химического загрязнения среды часто обсуждается проблема возможной адаптации биологических систем к действию токсических факторов. В случае экологических систем надорганизменного ранга можно говорить о двух уровнях адаптации:

* Приспособительные реакции в организмах, выраженные в разнообразных коррекциях биохимических, физиологических и иных процессов, обеспечивающих их нормальное функционирование.

* Процессы надорганизменного характера, типичные для природных систем, подверженных длительному влиянию неблагоприятных факторов. В этом случае имеет место поддержание популяцией некоторого нормального уровня функционирования за счет толерантности ее особей, их фертильности, различия в плодовитости и т. д., а также наличия генетической изменчивости, достаточной для того, чтобы приспособиться к изменившимся условиям среды.

Изучение воздействия токсикантов на живой организм для подбора эффективных антидотов обычно проводят в режиме in vivo или, по крайней мере, in vitro, что является весьма трудоемким и затратным. Кроме того, такие исследования далеко не всегда возможны исходя из этических соображений. Проведение экспериментов на живых существах в подавляющем большинстве стран весьма жестко законодательно регламентировано. Для исключения или, по крайней мере, резкого уменьшения количества экспериментов in vivo целесообразно использование аппарата математического моделирования.

Исходя из этого в работе Ажмухамедова И.М. и Жарких Л. И. описаны основные этапы математического моделирования процесса межмолекулярного взаимодействия молекул клеточной мембраны с токсикантами и антидотами к ним. Основная идея работы заключается в изучении процесса образования устойчивых связей молекул токсикантов и антидотов с молекулами компонентов клеточной мембраны путем выявления активных центров данного взаимодействия. Для этого построены специальные алгоритмы описания структуры конгломерата двух молекул, анализа и оценки образования водородной связи между ними. При этом комплексно используются аппараты системного анализа, квантово-химических расчетов и модульного программирования для расчета свойств отдельных молекул и конгломерата в целом. Вся полученная информация сохраняется в специально спроектированных базах данных. Для более наглядного представления результатов предложена оригинальная схема отображения сигнатур блокированных активных центров клеточной мембраны для рассматриваемых антидотов. Изложенная в статье методика компьютерного моделирования позволяет вести целенаправленный поиск антидотов к заданному токсиканту, путем создания, ранжированного по степени эффективности антидотов списка.

Список использованной литературы:

1. Ажмухамедов И.М., Жарких Л.И. Моделирование процесса межмолекулярного взаимодействия для подбора антидотов, нейтрализующих токсическое воздействие на компоненты клеточной мембраны. Моделирование, оптимизация и информационные технологии. 2020; 8(1). 1.

2. Бадюгин И.С. Экстремальная токсикология / Практическое руководство - 2016.- 415 с.

3. Бадюгин И.С., Каратай Ш.С., Константинова. Т.К. Экстремальная токсикология. Практическое руководство/ Под ред. Акад. РАМН Е.А. Лужникова. - М.: Изд. Группа «ГЭОТАР-Медиа», 2016. - 415 с.

4. Голиков С.Н., Военная токсикология, радиобиология и защита от оружия массового поражения / Голиков С.Н., Артамонов В.И.; под ред. И.С. Бадюгина. - М.: Воен. издат., 2002. - 336 с.

5. Лужников Е.А., Гольдфарб Ю.С., Мусселиус С.Г. Детоксикационная терапия: руководство. - СПб.: Лань, 2017.- 360 с.

6. Никифорова Т.Е. Безопасность продовольственного сырья и продуктов питания [Текст] / Т.Е. Никифорова. - Иваново, 2007. - 132 с.

7. Синицына О.О., Красовский Г.Н., Жолдакова З.И. Критерии порогового действия веществ, загрязняющих различные объекты окружающей среды. Вестник Российской академии медицинских наук. 2003; 3: 17-23.

Размещено на Allbest.ru


Подобные документы

  • Признаки живой материи, которые отличают ее от неживой. Ферменты, их применение в пищевых технологиях. Отличие ферментов от небиологических катализаторов. Органы и ткани животных. Углеводы, получаемые из растительного сырья. Полисахариды второго порядка.

    контрольная работа [35,1 K], добавлен 26.11.2012

  • Ритмичность всех процессов живых организмов и надорганизменнных систем, подчинение периодическим ритмам, отражающим реакции биосистем на ритмы природы и всей Вселенной. Синхронизация биохимических процессов в организме, классификация и природа биоритмов.

    реферат [138,6 K], добавлен 23.05.2010

  • Развитие неживой и живой природы. Структура и ее роль в организации живых систем. Современный взгляд на структурную организацию материи. Проблемы самоорганизации, изучаемые в синергетике, законы построения организации и возникновения упорядоченности.

    контрольная работа [38,2 K], добавлен 31.01.2010

  • Аспекты разнообразия живых систем. Открытые, закрытые, организменные и надорганизменные живые системы. Первые древнейшие доклеточные протобионты. Адаптивный смысл структурной агрегации монобионтов. Развитие живых систем как функция структурной агрегации.

    курсовая работа [730,6 K], добавлен 21.07.2009

  • Главная особенность организации живых материй. Процесс эволюции живых и неживых систем. Законы, лежащие в основе возникновения всех форм жизни по Дарвину. Молекулярно-генетический уровень живых организмов. Прогрессия размножения, естестенный отбор.

    реферат [15,0 K], добавлен 24.04.2015

  • Уровни организации живой материи. Положения клеточной теории. Органоиды клетки, их строение и функции. Жизненный цикл клетки. Размножение и его формы. Наследственность и изменчивость как фундаментальные свойства живого. Закон моногибридного скрещивания.

    шпаргалка [73,2 K], добавлен 03.07.2012

  • Электромагнитные взаимодействия как определяющий уровень организации материи. Сущность живого, его основные признаки. Структурные уровни организации живой материи. Предмет биологии, ее структура и этапы развития. Основные гипотезы происхождения жизни.

    лекция [28,4 K], добавлен 18.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.