Общие свойства и биотехнологическое использование бактериальных ПГА
Технологические достижения в стратегиях ферментации и применение новых программ подачи субстрата. Манипуляция биотехнологическими процессами при культивировании различных бактерий, при лимитировании азотом, на средах с глюкозой и пропионовой кислотой.
Рубрика | Биология и естествознание |
Вид | статья |
Язык | русский |
Дата добавления | 07.11.2018 |
Размер файла | 14,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru//
Размещено на http://www.allbest.ru//
Сибирский Федеральный Университет
Общие свойства и биотехнологическое использование бактериальных ПГА
Бессонова Виктория Александровна
Аннотация
Полигидроксиалканоаты (ПГА) - семейство полиэфиров, которые естественно синтезируются микроорганизмами. Производные ПГА могут быть использованы в качестве источников энергии, таких как питательные вещества и биотопливо. Использование ПГА, его олигомеров и мономеров, а также связанных с ними технологий имеют потенциально существенное значение в диапазоне от материалов, энергетики, сельского хозяйства и промышленности в областях медицины.
Ключевые слова: биоматериалы, биоразрушаемый, биосовместимый, полигидроксиалканоаты, полигидроксибутират, полиэфиры.
GENERAL PROPERTIES AND BIOTECHNOLOGICAL APPLICATION OF BACTERIAL PHA
BessonovaViktoriya Aleksandrovna1, Sapego Diana Vitalyevna1
1Siberian Federal University, Institute of Fundamental Biology and Biotechnology
Abstract
Polyhydroxyalkanoates (PHA) - a family of polyesters that are naturally synthesized by microorganisms. PHA derivatives can be used as sources of energy, such as nutrients and biofuels. Using the PHA, its oligomers and monomers, as well as associated technologies are potentially significant in the range of materials, energy, agriculture and industry in the fields of medicine.
ферментация культивирование бактерия
Полигидроксиалканоаты (ПГА) - полимеры гидроксипроизводных жирных кислот микробиологичекого происхождения [1]. Они представляют собой группу универсальных сложных полиэфиров, продуцируемые многими микроорганизмами в качестве внутриклеточных соединений углерода и соединений для хранения энергии при несбалансированном состоянии роста. Наиболее известным представителем ПГА является гомополимер ПГБ [2]. В целом, исходя из длины углеродной цепи оксикислот, образующих полимеры, полигидроксиалканоаты подразделяют на три основные группы: 1) короткоцепочечные (short-chain-length, SCL), состоящие из кислот с длиной углеродной цепи от 3-х до 5-ти углеродных атомов; 2) среднецепочечные (medium-chain-length, MCL), в составе которых от 6 до 14 атомов углерода; 3) длинноцепочечные (long-chain-length, LCL) с содержанием кислот С17 и С18 [3].
С биотехнологической точки зрения полигидроксиалканоаты имеют два важных свойства, дающих им значительное преимущество по сревнению с другими синтетическими продуктами: они биоразрушаемы и биосовместимы. Термин “биоразрушаемый” применяется к любому полимеру, который быстро разрушается до CO2, воды и биомассы; это предполагает, что такие полимеры могут ассимилироваться многими видами микроорганизмов, таким образом предотвращающих их накопление в окружающей среде. Второе свойство - биосовместимость, показывает, что ПГА не вызывает токсического воздействия применительно к широкому кругу хозяев. ПГА иммунологически инертны, и они только медленно деградируют в человеческих тканях. Более того, следы ПГБ были найдены в мембранах клеток млекопитающих, а его предшественник, (R)-3-гидроксибутират, присутствует в крови в диапазоне миллимолярных концентраций. Все эти причины должны были бы оправдать использование ПГБ как биоматериалов для медицинских устройств. Однако их высокая кристалличность, хрупкая природа и тот факт, что они являются достаточно жесткими материалами, которые начинают деградировать при температуре, немного превышающей точку плавления, препятствовали их использованию. MCL-ПГА (являющиеся полукристаллическими термопластическими эластомерами), похоже, представляют собой более удачные биоматериалы для биомедицинских приложений. К сожалению, MCL-ПГА имеют низкие температуры перехода и более низкую кристалличность. Принимая во внимание преимущества и ограничения обоих видов полимеров, были сделаны попытки, основанные на достижениях биохимии, генетики и биотехнологии, получить гибридные SCL-MCL-сополимеры с целью достичь различных или улучшенных физико-химических свойств и более широкого спектра биотехнологических приложений ПГА [4].
Различные сополимеры ПГБ получались следующими процедурами. Манипуляция биотехнологическими процессами при культивировании различных бактерий (A. latus, B. cereus, P. pseudoflava - H. pseudoflava, P. cepacia, M. halodenitrificans, Azotobactersp. и C. necator), при лимитировании азотом, на средах с глюкозой (или сахарозой в случае A. latus) и пропионовой кислотой (или другими пропионогенными источниками углерода) приводила к продукции ПГБ, содержащего случайное количество (R)-3-гидроксивалерата [5]. Эти сополимеры имели пониженную кристалличность и низкую температуру плавления, что приводило к улучшенной гибкости, прочности и более быстрой обработке [6]. Более того, сополимеры SCL-MCL, состоящие в основном из мономеров гидроксибутирата (ГБ) с небольшим количеством мономеров гидроксигексаноата (ГГ), имели свойства, похожие на таковые у полипропилена. Этот сополимер (поли(ГБ-ГГ)) является прочным и гибким материалом [7].
Генетическая инженерия также оказала влияние получение сополимеров SCL-MCL-ПГА. Экспрессия генов ПГА в Escherichiacoli или в других микроорганизмах, не являющихся природными продуцентами, внесла свой вклад в увеличение выхода полимеров и изменение их состава по срвнению с ПГА дикого типа. Другие генетические подходы, которые также приводили к накоплению штаммов - сверхпродуцентов ПГА, основывались на выделении мутантов, у которых были удалены: во-первых, гены, кодирующие ферменты в-окисления; во-вторых, гены, кодирующие ферменты, относящиеся к глиоксилатному шунту; в-третьих, различные гены, кодирующие деполимеразы SCL-ПГА и MCL-ПГА. Дополнительно, трансформация этих мутантов генами, относящимися к кластеру ПГА, позволила синтезировать большое число различных полимеров с новыми свойствами и интересными характеристиками. Сополимеры ПГА, содержащие (R)-3-гидроксигексановую, (R)-3-гидроксиоктановую и (R)-3-гидроксидекановую кислоты, были синтезированы рекомбинантными мутантами E. coli (fadB-), экспрессирующими гены phaC1 и phaC2 из Pseudomonasaeruginosa и Burkholderiacaryophylli, соответственно. Более того, когда E. coli трансформировали генетической конструкцией, несущей ген hbcT из Clostridiumkluyveri (кодирующий 4-гидроксибутирил-CoA-трансферазу) и ген phaC из C. necator, различные полимеры накапливались даже при отсутствии генов phaA (кодирует в-кетотиолазу при синтезе ацетоацетил -CoA из ацетил-CoA) и phaB (кодирует NADPH-оксидоредуктазу). Другие авторы показали, что экспрессия гена, кодирующего редуктазу 3-кетоалкановых кислот, ассоциированных с белком-переносчиком (fabG), увеличивает продукцию сополимера ПГА в рекомбинантном штамме E. coli JM 109.
Технологические достижения в стратегиях ферментации и применение новых программ подачи субстрата также внесли свой вклад в оптимизацию выхода сополимеров у различных микроорганизмов и в получение других сополимеров с новыми или модифицированными структурами, и достаточно различающимися физико-химическими свойствами (от хрупких и кристаллических до гибких и резиноподобных полимеров [4].
Размещено на Allbest.ru
Подобные документы
Формы и размеры бактериальных организмов и их краткая характеристика. Строение бактериальной клетки, движение бактерий. Спорообразование и его биологическая роль, размножение бактерий. Передача признаков с помощью процессов трансдукции и трансформации.
лекция [25,5 K], добавлен 25.03.2013Сообщается о методе, который заключается в многоступенчатой адаптации бактерий к дейтерию путём рассева их на средах, содержащих возрастающие концентрации 2Н2O и с последующей селекцией отдельных колоний, выросших на этих средах.
статья [556,6 K], добавлен 23.10.2006История изучения бактерий, изучение их физиологии и метаболизма, открытие болезнетворных свойств. Общие принципы определения возбудителя болезни (постулаты Коха). Формы, строение и свойства бактерий, их размеры, распространение, питание и размножение.
презентация [661,8 K], добавлен 16.09.2011Питание бактерий. Способы поступления питательных веществ в клетку. Классификация бактерий по типам питания, источникам энергии и электронам. Пропионовокислое брожение, его основные участники, их характеристика, использование в народном хозяйстве.
контрольная работа [28,8 K], добавлен 29.11.2010Общие бактериальные болезни насекомых, энтомопатогенные бактерии. Негативное влияние бактерий на здоровье человека. Характеристика и механизм действия бактерий Bacillus thuringiensis. Бактериальные препараты: применение и методы повышения эффективности.
курсовая работа [48,4 K], добавлен 02.12.2010Генетическая система бактерий. Полимеразная цепная реакция. Применение генетических методов в диагностике инфекционных заболеваний. Метод молекулярной гибридизации. Особенности генетики вирусов. Системы репарации бактерий. Взаимодействие вирусных геномов.
презентация [2,6 M], добавлен 13.09.2015Светящиеся бактерии - мелкие живые излучатели, их классификация и физиологические свойства. Спектр и интенсивность эмиссии света. Люминесцентная система бактерий, контроль за ее синтезом и активностью. Культивирование и использование светящихся бактерий.
реферат [983,8 K], добавлен 22.12.2013ДНК - материальная основа наследственности бактерий. Изменчивость бактерий (модификации, мутации, генетические рекомбинации). Генетика вирусов. Механизмы образования лекарственной устойчивости бактерий. Получение и использование вакцины и сыворотки.
реферат [509,3 K], добавлен 28.01.2010Подцарства прокариоты: настоящие бактерии, архебактерии, оксифотобактерии. Аэробы и анаэробы. Роль бактерий в жизни человека. Хищники, поедающие представителей других видов прокариот. Разведение рода анабена на рисовых полях для обогащения почвы азотом.
презентация [254,8 K], добавлен 09.10.2013Влияние пробиотиков на здоровье человека. Иммуностимулирующие, антимутагеные свойства пропионовокислых бактерий. Влияние йода на биохимические свойства бактерий-пробиотиков. Качественная характеристика йодированных препаратов, биохимические показатели.
статья [15,7 K], добавлен 24.08.2013