Обмен азотистых соединений

Пути превращения аммиачного азота и синтеза аминокислот (прямое аминирование и переаминирование). Процесс превращения аминокислот (дезаминирование, декарбоксилирование). Орнитиновый цикл, рассмотрение и анализ пигментов пиоцианина и флюоресцеина.

Рубрика Биология и естествознание
Вид лекция
Язык русский
Дата добавления 26.09.2018
Размер файла 122,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Обмен азотистых соединений

Вопросы

1. Пути превращения аммиачного азота

2. Пути синтеза аминокислот (прямое аминирование и переаминирование)

3. Пути превращения аминокислот (дезаминирование, декарбоксилирование)

4. Орнитиновый цикл

Литература

1. Пути превращения аммиачного азота

Человек и животные не способны усваивать минеральные соединения азота, не могут синтезировать некоторые аминокислоты. Эти аминокислоты поступают обычно с пищей (кормом).

В отличие от животных, растительные организмы способны синтезировать все необходимые им азотистые соединения из аммиака, который поступил из почвы или образовался в результате восстановления нитратов, распада белков, других реакций. Основной путь превращения аммиачного азота в органические соединения - это синтез аминокислот. Исходным веществом для синтеза органических соединений является аммиак, и в растительных тканях усвоенные из почвы нитраты быстро восстанавливаются до аммиака. Схематически процесс восстановления нитратов до аммиака можно выразить так:

HNO3 + 8 H+ + 8 е NH3 + 3 H2O,

То есть для восстановления молекулы HNO3 до уровня аммиака требуется 8 протонов и 8 электронов. Этот процесс, как и большинство других биохимических процессов, идет ступенчато, через ряд промежуточных соединений и катализируется несколькими ферментами.

В настоящее время процесс восстановления нитратов представляется в следующем виде. На первой стадии нитраты под действием нитратредуктазы восстанавливаются до нитритов. Донором протонов и электронов является НАДФ*Н2 (или НАД*Н2). Это сложная реакция, в ней участвует в качестве промежуточного переносчика водорода флавиновый фермент, для проявления активности которого необходим молибден, а также другие вещества и кофакторы. Схематически действие нитратредуктазы изображается так:

HNO3 + НАДФ*H2 НNО2 + H2O.

Механизм восстановления нитратов под действием нитратредуктазы:

+

НАД*Н2 или НАДФ* Н2 ФАД Мо5+ + 2 е NO3-

НАД или НАДФ ФАД*Н2 МО6+ NO2- +Н2О

Согласно этой схеме, для восстановления нитратов необходимо 2 протона и 2 электрона, которые доставляются восстановленными формами НАД*Н2 или НАДФ* Н2 и передаются на флавиновый фермент. Последний восстанавливается, а НАД или НАДФ переходят в окисленное состояние. На следующем этапе промежуточным переносчиком электронов служит молибден. Две молекулы МО6+ принимают два электрона от ФАД*Н2 и передают их на NO3-. После присоединения электронов NO3- переходит в NO2-, а из протонов и кислорода образуется молекула воды. Затем нитрат восстанавливается до гипонитрита. Эта реакция катализируется нитритредуктазой, которая также представляет собой металлофлавопротеид. Донором протонов и электронов является восстановленный НАД*Н2 (НАДФ* Н2), в реакции также принимают участие флавиновые ферменты, для активации которых необходимы железо, медь и магний:

2 НNО2 + 2 НАД*Н2 Н2N2О2 + 2 Н2О + 2 НАД

На следующем этапе происходит присоединение еще двух атомов водорода и образование гидроксиламина (NH2OH). Фермент, катализирующий эту реакцию, называется гипонитритредуктазой. Он представляет собой флавопротеид, для активирования которого требуется медь, железо, марганец, а донором протонов и электронов является НАД*Н2.

Н2N2О2 + 2 НАД*Н2 2 NН2ОН + 2 НАД.

азотистый обмен аминокислота орнитиновый

На последнем этапе под действием гидроксиламинредуктазы из гидроксиламина образуется аммиак. Здесь также участвуют флафопротеиды, содержащие магний и марганец, а донором водорода является НАД* Н2:

2ОН + НАД*Н23 + Н2О+ НАД.

Таким образом, общая схема восстановления нитратов представляется в виде:

MO CU, Fe, Mg CU, Fe, Mn Mn, Mg

32 N2О22ОН NН3

Следует отметить, что ферменты нитратвосстанавливающей системы представляют собой так называемые индуцированные ферменты, т.е. они довольно интенсивно образуются в растениях после поступления в растения большого количества нитратов или продуктов их восстановления. Для восстановления нитратов до аммиака необходимы 8 протонов и 8 электронов, которые доставляются восстановленными НАД*Н2 или НАДФ*Н2.

Нитраты довольно быстро восстанавливаются в растениях, и иногда их восстановление заканчивается в корневой системе. Накопление повышенного количества нитратов в надземных органах растений бывает сравнительно редко, лишь при неблагоприятных условиях выращивания растений или при избыточных дозах нитратных удобрений. Для восстановления нитратов необходимы фосфор, магний, молибден и другие элементы. Интенсивность восстановления нитратов связана с двумя основными процессами, в результате которых выделяется энергия, - дыханием и фотосинтезом. Если растения обеспечены достаточным количеством углеводов, нитраты восстанавливаются в основном в корневой системе при участии НАД*Н2 или НАДФ*Н2, образующихся при распаде углеводов через цикл ди- и трикарбоновых кислот. Если же интенсивность фотосинтеза ослаблена и растения испытывают некоторый недостаток углеводов, часть нитратов не успевает восстанавливаться в корнях и поступает в надземные органы, где восстанавливается при участии никотинадениндинуклеотидов, образующихся при фотосинтезе.

2. Пути синтеза аминокислот (прямое аминирование и переаминирование)

Еще сравнительно недавно считали, что биосинтез аминокислот может происходить только в надземных частях растений. Однако последующие исследования показали, что новообразование аминокислот может происходить и в подземных органах растений. При нормальных условиях развития главным путем превращения аммиака в органические соединения азота является образование аминокислот. В результате биосинтеза аминокислот было выяснено, что аммиак чаще всего реагирует с кетокислотами. Эта реакция прямого аминирования кетокислот аммиаком - основной путь синтеза аминокислот в растениях.

Реакция синтеза аминокислот идет в две фазы:

NH

1) R-COCOOH + NH3 R-C + H2O

кетокислота СООН иминокислота

NH

2) R-C + 2 Н R-CНNH2СООН

СООН

иминокислота НАДФ*Н2 НАДФ аминокислота

На 1-й фазе кетокислота, присоединяя аммиак, образует иминокислоту. На 2-й фазе иминокислота восстанавливается и дает аминокислоту. Эта реакция идет под действием какого-либо восстанавливающего агента, например НАДФ*Н2 или НАД*Н2. Следовательно, для первичного синтеза аминокислот необходимы аммиак и кетокислоты. Основными процессами, которые приводят к образованию кетокислот, являются цикл Кребса и реакции анаэробного распада углеводов. Прямое аминирование кетокислот аммиаком - первая и наиболее важная реакция биосинтеза аминокислот. В процессе восстановительного аминирования наиболее активен фермент глутаматдегидрогеназа, который катализирует реакцию синтеза глутаминовой кислоты:

СООНСН2СН2СОСООН + NН3 + 2Н СООНСН2СН2СНNН2СООН + Н2О

-кетоглутаровая глутаминовая кислота кислота

Глутаматдегидрогеназа в качестве активной группы содержит НАД и НАДФ, она может с разной скоростью катализировать восстановительное аминирование -кетоглутаровой, пировиноградной, -кетомасляной, -кетовалериановой, -кетокапроновой и некоторых других кислот. Из растений были выделены и другие ферментные препараты, которые катализируют реакции прямого аминирования кетокислот аммиаком. Все они относятся к дегидрогеназам, и для их действия необходимы НАД*Н2 или НАДФ*Н2.

Аспарагиновая кислота может образоваться также при прямом присоединении аммиака к фумаровой кислоте. Реакция катализируется ферментом аспаратаммиаклиазой:

СООНСН=СНСООН+ NН3 СООНСН2СНNН2СООН

Аммиак является ядом для растений, и при накоплении большого количества его может наблюдаться отравление тканей растений. Поэтому организмы вынуждены его обезвреживать. Одна из основных реакций, приводящих к связыванию аммиака, - использование его для синтеза аминокислот. Но аммиака, как правило, больше, чем требуется для синтеза аминокислот. Избыточный аммиак обезвреживается при образовании амидов - аспарагина и глутамина. Исходными веществами для биосинтеза глутамина и аспарагина являются соответственно глутаминовая и аспарагиновая кислоты. Синтез глутамина идет при участии АТФ и катализируется ферментом глутаминсинтетазой, которая широко распространена в тканях растений, грибов, бактерий и животных:

СООН СОNН2

СН2 СН2

СН2 + NН3 + АТФ СН2 + АДФ + Н3РО4

СНNН2 СНNН2

СООН СООН

глутаминовая кислота глутамин

Энергия в этой реакции необходима для биосинтеза амидной связи. Биосинтез глутамина - довольно сложный процесс. Он состоит из четырех, а может быть, и более реакций. Детали этого процесса и промежуточные продукты еще не выяснены. Аналогичным путем происходит синтез аспарагина под действием аспарагинсинтетазы:

СООНСН2СНNН2СООН+NН3+АТФ СОNН2СН2СНNН2СООН + АДФ + Н3РО4

аспарагиновая кислота аспарагин

Более просто обезвреживается аммиак в растениях с кислым клеточным соком и высоким содержанием яблочной, щавелевой, лимонной и других кислот (бегония, щавель). У этих растений аммиак обезвреживается главным образом его связыванием в виде аммонийных солей органических кислот:

СООНСНОНСН2СООН + NН3 СООНСНОНСН2СООNН4

яблочная кислота яблочно-кислый аммоний

СООН СООNН4

+ NН3

СООН СООН

щавелевая кислота щавелево-кислый аммоний

Синтез аминокислот путем прямого аминирования кетокислот аммиаком возможен лишь для ограниченного числа аминокислот, у которых в растениях имеются кетоаналоги. Образование большинства других кетокислот происходит либо в результате реакции переаминирования, либо в результате взаимных превращений аминокислот.

Переаминирование. Реакция переаминирования впервые была открыта советским исследователем А.Е. Браунштейном в 1938 году. Он наблюдал перенос аминогрупп от аминокислот на кетокислоты. Позднее было показано, что в растениях наиболее легко подвергаются переаминированию глутаминовая и аспарагиновая кислоты, что подтверждало представления об их центральной роли в процессах обмена веществ. Д.Н. Прянишников писал в 1945 году: «...благодаря легкости образования аспарагиновой и глутаминовой кислот из соответствующих кетокислот и их способности к переаминированию можно сказать, что дикарбоновые моноаминокислоты являются как бы большими воротами на пути, ведущем к синтезу других аминокислот, а следовательно, и белков». К настоящему времени изучено очень большое число реакций переаминирования, приводящих к образованию различных аминокислот. Только в растениях в результате переаминирования может синтезироваться до 30 аминокислот, а всего известно около 100 реакций переаминирования. В процессе обмена веществ наибольшее значение имеют следующие реакции переаминирования:

глутаминовая кислота + щавелево-уксусная кислота -кетоглутаровая кислота + аспарагиновая кислота

глутаминовая кислота + пировиноградная кислота -кетоглутаровая кислота + аланин

аспарагиновая кислота + пировиноградная кислота щавелево-уксусная кислота + аланин

Реакции переаминирования катализируются аминотрансферазами, которые представляют собой двухкомпонентные ферменты. Их активной группой является фосфорилированное производное пиридоксина (витамин В6) - пиридоксальфосфат (сокращенно ПЛФ). В процессе переаминирования возникает комплексное соединение реагирующей аминокислоты с пиридоксальфосфатом. Затем этот комплекс распадается, и образуются пиридоксаминфосфат (ПМФ) и соответствующая кетокислота. На 2-й стадии реакции ПМФ реагирует с другой кетокислотой, в результате чего синтезируется новая аминокислота, и освобождается свободной пиридоксальфосфат:

ПЛФ + аминокислота I ПМФ + кетокислота I

ПМФ + кетокислота II ПЛФ + аминокислота II

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

пиридоксальфосфат (ПЛФ) пиридоксаминфосфат (ПМФ)

В настоящее время принята теория механизма действия аминотрансфераз, разработанная А.Е. Браунштейном и М.М. Шемякиным. В соответствии с этой теорией механизм реакции переаминирования может быть изображен следующим образом. На 1-й стадии аминокислота I, реагируя с аминотрансферазой, которая представляет собой комплекс пиридоксальфосфата со специфическим белком, образует с выделением воды соединение аминокислоты с ферментом:

аминокислота I аминотрансфераза

В комплексном соединении такого типа понижена электронная плотность у -углеродного атома, соответствующего остатку аминокислоты, вследствие чего водород легко подвергается диссоциации, и это соединение переходит в свою таутомерную форму с соответствующей перегруппировкой двойных связей. Затем эта таутомерная форма комплекса аминокислоты с аминотрансферазой подвергается гидролизу, в результате чего образуется кетокислота I, соответствующая исходной аминокислоте, а аминогруппа переносится на аминотрансферазу:

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

аминокислота I-аминотрансфераза

кетокислота I фосфопиридок-саминная форма аминотрансфе-разы

На следующем этапе происходит взаимодействие фосфопиридоксаминной формы аминотрансферазы с другой кетокислотой II, образование соответствующего комплекса, затем происходит распад этого комплекса с переносом аминогруппы на кетокислоту II и образование аминокислоты II и исходной фосфопиридоксалевой формы аминотрансферазы:

аминотрансфераза-ПМФ+кетокислота II аминотрансфераза-ПЛФ+аминокислота II

В результате реакций переаминирования синтезируются самые разнообразные аминокилоты. С этими реакциями связаны многие процессы обмена веществ в организмах.

3. Пути превращения аминокислот (дезаминирование, декарбоксилирование)

Аминокислоты, образовавшиеся в растениях при восстановительном аминировании, переаминировании или другим путем, подвергаются непрерывному обмену. В основном, они используются для синтеза белков, но могут претерпевать и другие превращения - декарбоксилироваться, использоваться для синтеза азотистых оснований и других соединений, отщеплять аминогруппу, полностью окисляться и служить источником энергии для организмов.

Дезаминирование аминокислот - распад на аммиак и соответствующие кислоты - является основной реакцией превращения азотистых веществ в безазотистые соединения, которые могут подвергаться дальнейшему обмену. Дезаминирование аминокислот может происходить 3 основными путями:

Восстановительное дезаминирование, в котором образуется соответствующая кислота и аммиак:

RCHCOOH RCH2COOH + NH3.

NH2

HAД*Н2 НАД

2. Гидролитическое дезаминирование, приводящее к образованию оксикислоты и аммиака:

RCHCOOH RCHОНCOOH + NH3.

NH2

3. Окислительное дезаминирование, когда образуется кетокислота и аммиак:

RCHCOOH RCОCOOH+ NH3.

NH2

Аминокислоты наиболее часто распадаются в результате окислительного дезаминирования. Реакция идет в две стадии. На первой стадии аминокислота дегидрируется и превращается в соответствующую иминокислоту:

RCHCOOH RCCOOH.

NH2 NH

ФАД ФАД*Н2

На второй стадии к иминокислоте присоединяется вода и отщепляется аммиак:

RCHCOOH RCCOOH+ NH3.

NH

Реакции окислительного дезаминирования катализируются ферментами, которые получили название оксидаз аминокислот.

Декарбоксилирование аминокислот. При декарбоксилировании аминокислот от аминокислоты отщепляется СО2. Если декарбоксилированию подвергается дикарбоновая кислота, то в результате реакции возникает соответствующая монокарбоновая кислота:

СООНСН2СН2СНNН2СООН СООНСН2СН2СН22

глутаминовая кислота -аминомасляная кислота

При декарбоксилировании монокарбоновых аминокислот образуются соответствующие амины:

RCHNH2COOH RCH2NH2

Реакции, приводящие к образованию аминов, катализируются специфичными ферментами - декарбоксилазами аминокислот. Амины могут накапливаться только при некоторых неблагоприятных условиях развития. Обычно они подвергаются дальнейшим превращениям. Основной путь превращения аминов - их окисление. Окисление моноаминов катализируется монооксидазами. Продуктами реакции являются соответствующий альдегид и аммиак:

O

RCH2NH2 RC + NH3 + H2O2

H

Окисление диаминов катализируется диаминооксидазами с образованием аминоальдегидов и аммиака:

O

NH2CH2RCH2NH2 NH2CH2RC + NH3 + H2O2

H

Альдегиды могут окисляться дальше в соответствующие кислоты. Из аминов в растениях синтезируются различные гетероциклические соединения, в частности алкалоиды.

4. Орнитиновый цикл

Из аминокислот, поступающих с белками в пищу, в организме синтезируются белковые вещества различных органов и тканей. В процессе жизнедеятельности клеток и тканей белки распадаются, и образовавшиеся аминокислоты также претерпевают распад. Аминокислоты могут окисляться до конечных продуктов - мочевины, аммонийных солей, углекислого газа, серной и фосфорной кислот и воды.

Конечным продуктом распада простых белков является мочевина. Процесс образования мочевины происходит через орнитиновый цикл:

1) О

NH3 + CO2 + АТФ NH2-C-OPO3H2 + АДФ

карбомилфосфат

2) СН222

2-С-О- PO3H2 + (СН2)2 С=О

О СНNН2 NН + Н3РО4

СООН (СН2)3

СНNН2

СООН

карбомилфосфат

орнитин

цитруллин

3) NН2

СООН NН2 СООН

С=О

СН2

NН + + АТФ АДФ + Н3РО4 + С=N-СН

СНNН2 NН СН2

(СН2)3

СООН

СНNН2 (СН2)3 СООН

СООН СНNН2

СООН

Цитруллин аспарагиновая кислота аргинин-янтарная кислота

4) NН2

Аргинин-янтарная кислота С=NН СООН

NН СН

(СН2)3 + СН

СНNН2 СООН

СООН

аргинин

фумаровая кислота

5) NН222

С=NН (СН2)2

NН + Н2О + С=О

(СН2)3 СНNН2

СНNН2 СООН NН2

СООН

аргинин

орнитин

мочевина

Фумаровая кислота может вновь присоединять молекулу аммиака и превращаться в аспарагиновую кислоту, которая необходима для синтеза аргинин-янтарной кислоты.

Суммарное уравнение биосинтеза мочевины:

СО2 + 2 NН2 + 3 АТФ + 2 Н2О СО(NН2)2 + 3 АДФ + 3 Н3РО4

Литература

1. Казаков Е.Д., Биохимия зерна и хлебопродуктов. [Текст] / Е.Д. Казаков, Г.П Карпиленко - СПб: ГИОРД, 2005.- 512 с.

2. Комов В.П., Биохимия. [Текст] /В,П. Комов. - СПб.: ГИОРД, 2004. - 465с

3. Ленинджер А. Основы биохимии: В 3 т. М.: Мир, 1987. 980 с.

4. Луценко Н.Г. Начала биохимии: Кур лекций / РХТУ им. Менделеева Д.И.. - М.: МАЙК «Наука/Интерпериодика», 2002 - 125 с

5. Рис Э.., Введение в молекулярную биологию: от клеток к атомам: Пер. с англ. [Текст] / Э. Рис, М. Стернберг.- М.: Мир, 2002. - 142с.

6. Уайт А., Фендлер Ф., Смит Э., Хилл Р., Леман И. Основы биохимии. В 3 т. - М.: Мир, 1981.

7. Щербаков В.Г., Биохимия. [Текст] / В.Г. Щербаков, В.Г. Лобанов, Т.Н. Прудникова, А.Д. Минакова - СПб.: ГИОРД, 2003. - 440 с.

8. Эллиот В., Эллиот Д. Биохимия и молекулярная биология. М.: НИИ биомед. химии РАМН, 1999. - 372 с

Размещено на Allbest.ru


Подобные документы

  • Промежуточный обмен аминокислот в тканях. Общие пути обмена аминокислот. Обезвреживание аммиака в организме. Орнитиновый цикл мочевинообразования. Типы азотистого обмена. Общие пути превращения аминокислот включают реакции дезаминирования.

    реферат [7,6 K], добавлен 18.04.2004

  • Обмен нуклеопротеинов - сложных белков, небелковым компонентом которых являются нуклеиновые кислоты – ДНК или РНК. Катаболизм пиримидиновых азотистых оснований. Роль аминокислот в синтезе мононуклеотидов. Ферменты, катализирующие реакции реутилизации.

    презентация [895,5 K], добавлен 22.01.2016

  • Исследование и характеристика особенностей синегнойной палочки (Pseudomonas aeruginosa) – условно-патогенного микроорганизма. Определение токсиннейтрализующей активности моноклональных антител. Рассмотрение и анализ пигментов пиоцианина и флюоресцеина.

    дипломная работа [1,8 M], добавлен 01.02.2018

  • Определение, функции основных аминокислот, их физико-химические свойства и критерии классификации. Оптическая активность, конфигурация и конформация аминокислот. Растворимость и кислотно-основные свойства аминокислот. Заменимые и незаменимые аминокислоты.

    реферат [2,3 M], добавлен 05.12.2013

  • Содержание, локализация и транспорт аминокислот. Метаболизм дикарбоновых аминокислот и глутамина. Компартментализация метаболизма аминокислот. Глицин и пути его обмена, серосодержащие аминокислоты. Ароматические аминокислоты нервной ткани и их метаболизм.

    курсовая работа [1,7 M], добавлен 26.08.2009

  • Пищевые белки как основной источник аминокислот для человека. Группы аминокислот, которые встречаются в белках организма. Переваривание белков в желудке и кишечнике. Обезвреживание продуктов гниения путем соединения с серной и глюкуроновой кислотами.

    презентация [2,5 M], добавлен 28.12.2013

  • Исследование физиологической роли аминокислот - конечных продуктов гидролиза белков. Классификация аминокислот по числу аминных и карбоксильных групп на: моноаминомонокарбоновые; диаминомонокарбоновые; моноаминодикарбновые новые и диаминодикарбоновые.

    контрольная работа [199,0 K], добавлен 13.03.2013

  • Последствия длительного азотного голодания у растений. Процесс превращения молекулы азота в аммиачную форму. Окисление атомом кислорода аминокислоты L-аргинина в присутствии специфического фермента (NO-синтазы). Применение окиси азота в медицине.

    реферат [23,1 K], добавлен 10.08.2015

  • История открытия и изучения белков. Строение молекулы белка, ее пространственная организация и свойства, роль в строении и жизнеобеспечении клетки. Совокупность реакций биологического синтеза. Всасывание аминокислот. Влияние кортизола на обмен белка.

    контрольная работа [471,6 K], добавлен 28.04.2014

  • Рассмотрение свойств (триплетность, непрерывность, неперекрываемость, универсальность) генетического кода. Изучение состава белоксинтезирующей системы. Описание процессов активирования аминокислот и их трансляции как этапов синтеза полипептидной цепи.

    реферат [464,4 K], добавлен 02.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.