Эволюционная концепция биологического уровня организации материи
Биология в контексте интеллектуальной культуры, ее классификационные системы. Структурные уровни биологической организации материи. Возникновение генетики при изучении онтогенетического уровня. Синтетическая теория эволюции биологических структур.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 19.03.2018 |
Размер файла | 1,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
21
Размещено на http://www.allbest.ru/
Эволюционная концепция биологического уровня организации материи
Биология в контексте интеллектуальной культуры. Классификационные системы в биологии
Современная биология - это совокупность наук о живой природе.
Мы выделим три среза естественнонаучной картины мира для живой природы. С точки зрения стратегий познания, к классическому естествознанию следует отнести натуралистскую биологию, к неклассическому физико-химическую биологию, к эволюционной концепции стрел времени - эволюционную биологию.
В качестве центральной темы мы особое внимание уделим биологии человека, опираясь на экобиологию, как науку о ценности живой природы в интеллектуальной культуре личности и общества.
Обсудим, прежде всего, что же такое натуралистская биология как реализация классической стратегии познания природы. Объектом изучения в ней всегда была и остается живая природа в её естественном состоянии. Её методом стало тщательное наблюдение и описание явлений живой природы, а главной задачей их систематизация. Фундаментальный вклад в её решения внес К. Линней, с именем которого связано введение бинарной (в терминах рода и вида) номенклатуры живых объектов, а также принципа иерархического соподчинения таксонов и наименования таксонов - царства, типы, классы, отряды, семейства, роды, виды. Так человек по классификационной системе К. Линнея относится к царству животных, подцарству многоклеточных животных, к типу позвоночных, подтипу черепных, классу млекопитающих, отряду приматов, подотряду человекоподобных высших обезьян, надсемейству человекоподобных приматов, семейству людей, роду - человек, виду - человек разумный (homo sapiens).
Натуралистская биология продолжает играть важнейшую роль и сегодня. Объектом изучения биологов - натуралистов является живая природа в её целостном виде, во всём многообразии и сложности составляющих её объектов и явлений. В наши дни такой подход к живой природе находит отражение в усилении роли не только биоэкологии, но и глобальной экологии, которая ныне занимает чуть ли не господствующее положение не только в биологии, но и во всем естествознании.
Разнообразие живого поражает любое воображение. Мы приведём классификацию крупных систематических групп живых организмов в физико-химической биологии только по типу питания, опираясь на таксоны в виде надцарств в структурном плане отличия живого от неживого клеточным строением.
Прокариотами (лат. pro - вперед, вместе и греч. karyon - ядро) называются организмы, не обладающие оформленным клеточным ядром.
Эукариотами (греч. еu - хорошо и karyon - ядро) называются организмы, клетки которых содержат оформленное ядро, отделённое оболочкой от цитоплазмы.
С экологических позиций взаимосвязи всего живого с живым и обмена веществом и энергией важно охарактеризовать следующие группы организмов.
Типы питания крупных систематических групп живых организмов (по А.Л. Тахтаджяну, 1976, с изменениями).
Надцарства |
Царства |
Подцарства |
Автотрофы |
Гетеротрофы |
|||
фото-трофы |
хемо-трофы |
био-трофы |
сапротрофы |
||||
Прокариоты |
Дробянки |
Бактерии |
+ |
+ |
+ |
+ |
|
Архебактерии |
+ |
+ |
+ |
+ |
|||
Цианобактерии |
+ |
+ |
- |
- |
|||
Эукариоты |
Растения |
Багрянки |
+ |
- |
- |
- |
|
Настоящие водоросли |
+ |
- |
- |
- |
|||
Высшие растения |
+ |
- |
очень редко |
? |
|||
Грибы |
Низшие |
- |
- |
редко |
+ |
||
Высшие |
- |
- |
редко |
+ |
|||
Животные |
Простейшие |
- |
- |
+ |
очень редко |
||
Многоклеточные |
- |
- |
+ |
+ |
Автотрофы - организмы, использующие в качестве источника углерода углекислый газ (растения и некоторые бактерии). Иначе говоря, это организмы, способные создавать органические вещества из неорганических - углекислого газа, воды, минеральных солей.
В зависимости от источника энергии автотрофы делятся на фотоавтотрофов и хемоавтотрофов. Фототрофы - организмы, использующие для биосинтеза световую энергию (растения, бактерии). Хемотрофы - организмы, использующие для биосинтеза энергию химических реакций окисления неорганических соединений (бактерии).
Гетеротрофы - организмы, использующие в качестве источника углерода органические соединения (животные, грибы и большинство бактерий). По состоянию источника пищи гетеротрофы делятся на биотрофов и сапротрофов. Биотрофы питаются живыми организмами. Сапротрофы используют в качестве пищи органические вещества мертвых тел или выделение (экскременты) животных.
Некоторые живые организмы в зависимости от условий обитания способны и к автотрофному, и к гетеротрофному питанию. Они называются миксотрофами (насекомоядные растения, представители отдела энгленовых водорослей и др.).
Важно также отметить, что как на уровне неживой материи, так и живой материи дисимметрия творит явление, не только в функциональном, но и в структурном плане. Фундаментальным признаком, присущим только живой материи, её неотъемлемым свойством является дисимметрия "право-лево" биомолекул, т.е. отсутствие зеркальной симметрии, называемое молекулярной хиральностью (киральностью). Дисимметрия является одним из важнейших признаков эволюции (развития) объектов и явлений Вселенной в их вещественной основе, включая в этот эволюционный процесс и эволюционную биологию.
Человек, как существо биосоциокультурное, естественно в своей интеллектуальной культуре особое внимание обязан уделить изучению структурных уровнейорганизации живой материи, явно осознавая, что стремление человека к удовлетворению своих потребностей (витальных, социальных, идеальных и самоценных) неотделимо от его знания и отношения с окружающей средой.
Структурные уровни биологической организации материи на Земле
Структурные уровни организации живой материи имеют достаточно сложную, многоуровневую систему. Мы выделим четыре главных структурных уровня биологической организации материи и в соответствие со структурной иерархией живой материи каждое последующее системное образование должно входить в предыдущее (см. схему 55).
Структурные уровни биологической организации материи.
БИОСФЕРА Область активной жизни на Земле, включает нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы. |
Биосферный (биогеоценотический) уровень организации |
|
ЭКОСИСТЕМА Единый природный комплекс, образованный живыми организмами и средой их обитания. |
||
БИОГЕОЦЕНОЗ Определенный участок земной поверхности с определенным составом живых и косных компонентов в динамическом взаимодействии между ними. |
||
БИОЦЕНОЗ Совокупность животных, растений и микроорганизмов, населяющих участок среды (биотоп) с однотипными условиями жизни и характеризующихся определенными отношениями между собой и приспособляемостью к внешней среде. |
||
ВИД Совокупность популяций особей, способных к скрещиванию с образованием плодовитого потомства и обладающих рядом общих признаков. |
Популяционно-видовой кровень организации |
|
ПОПУЛЯЦИЯ Совокупность особей данного вида, длительно занимающая определенное пространство и воспроизводящая себя в течение большого числа поколений. |
||
ОРГАНИЗМЫ Индивиды, особи - дискретные неделимые и целостные единицы жизни на Земле. Характеризуются онтогенезом - индивидуальным развитием организма, совокупностью преобразований организма от зарождения до конца жизни. Все эукариоты (одноклеточные и многоклеточные) обладают так называемыми биологическими часами, т.е. способностью измерять суточные, лунные и сезонные циклы |
Онтогенетический уровень организации |
|
ОРГАНЫ, ТКАНИ Дискретные, "неделимые" и целостные единицы физиологии многоклеточных, образующие, в частности, нервную и эндокринную системы управления и системы саморегуляции, обозначаемые термином гомеостаз. |
||
КЛЕТКИ Фундаментальные частицы в биологии, представляющие собой элементарную живую систему - основу строения и жизнедеятельности всех животных и растений. "Заводы жизни". |
||
БИОПОЛИМЕРЫ Биологические вещества, молекулы которых (макромолекулы) состоят из большого числа повторяющихся звеньев (прежде всего белки и нуклеиновые кислоты (ДНК, РНК), белки-ферменты, гормоны, полисахариды). |
Молекулярно-генетический уровень организации |
|
БИОМОЛЕКУЛЫ Углеводы, липиды, нуклеотиды, аденозинфосфорные кислоты (АТФ), небелковые гормоны, витамины, аминокислоты и т.д. |
||
НЕОРГАНИЧЕСКИЕ ХИМИЧЕСКИЕ СОЕДИНЕНИЯ (ПРЕЖДЕ ВСЕГО ВОДА), БИОЛОГИЧЕСКИ ВАЖНЫЕ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ. |
||
МОЛЕКУЛЫ, АТОМЫ, ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ. |
Все структурные уровни биологической организации материи на Земле естественно взаимосвязаны с геохронологической стрелой (шкалой) времени, из которой возникает биологическая стрела времени, опираясь на концепцию биохимического единства живого, развитую в 1920-х годах благодаря трудам голландских микробиологов А. Кловера и Г. Донкера. К настоящему времени эта концепция обоснована результатами всесторонних исследований, которые исчерпывающе демонстрируют единство всего живого по самым фундаментальным свойствам: схожесть химического состава, свойство хиральности живого, универсальная роль аденозинтрифосфата (АТФ) в качестве аккумулятора и переносчика биологически запасенной энергии; универсальность генетического кода и др.
Биологическая стрела времени опирается на гипотезу о возникновении жизни как естественном этапе саморазвития земной материи и при её рассмотрении необходимо поэтапно рассмотреть эволюцию на молекулярно-генетическом, онтогенетическом, популяционно-видовом и биогеоценотическом уровнях структурной биологической организации земной материи. Определяющей концепцией такого рассмотрения является генетическая гипотеза происхождения живого.
Генетика и эволюция
Генетика возникла при изучении онтогенетического уровня. Генетика (от греч. genetic-происхождение) - наука о законах наследственности и изменчивости организмов и методах управления ими.
Первый шаг в познании закономерностей наследственности сделал выдающийся чешский исследователь Грегор Мендель (1822-1884гг.).Г. Мендель сформулировал законы наследственности на основе гибридологического метода, исследуя гибридизацию разных сортов гороха. Работа Г. Менделя отличалась глубиной и математической точностью. Однако она оставалась неизвестной почти 35 лет - с 1865 до 1900 года.
Переоткрытие законов Менделя в 1900 г. (независимо тремя учёными - Х. Де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии) вызвало стремительное развитие генетики с постепенным проникновением её основ во все структурные уровни живой материи. Оформились основные понятия генетики, приведенные нами в схеме 56.
Основные понятия генетики.
Ген - материальный носитель наследственности, единица наследственной информации, отвечающая за формирование какого-либо элементарного признака, способная к воспроизведению и расположенная в определенном участке хромосомы. |
|
Генотип - совокупность все генов организма, локализованных в его хромосомах. |
|
Геном - совокупность генов, содержащих в ординарном наборе хромосом данной растительной или животной клетки. |
|
Хромосомы - структурные элементы ядра клетки, которые содержат гены; самовоспроизводящиеся структуры в ядрах клеток животных и растений, участвующие в процессе размножения. |
|
Генетический код - определенное сочетание нуклеотидов и последовательность их расположения в молекуле ДНК; единая система "записи" наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. |
|
Генофонд - качественный состав и относительная численность разных форм (аллелей) различных генов в популяциях того или иного вида организмов. |
|
Гамета - половая клетка организма. |
|
Зигота - биологическая клетка, образующаяся в результате слияния двух половых клеток в процессе оплодотворения у животных и растений. |
|
Фенотип - совокупность всех свойств и признаков организма, сформировавшихся в процессе его индивидуального развития; складывается в результате взаимодействия генотипа и окружающей среды. |
Одновременно с формированием основных понятий генетики получили современную трактовку и законы генетики, прежде всего, законы наследования аллельных генов Г. Менделя, а затем и неаллельных генов Т. Моргана, приведенные нами в схеме 57.
Основные законы генетики.
При скрещивании двух организмов, относящихся к разным линиям (двух гомозиготных организмов), отличающихся друг от друга по одной паре альтернативных признаков, всё первое поколение гибридов окажется единообразным и будет нести признак одного из родителей (первый закон Менделя - закон единообразия первого поколения и доминирования одного признака над другим). |
|
При скрещивании двух потомков первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3: 1, по генотипу 1: 2: 1 (второй закон Менделя - закон расщепления). |
|
При скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (третий закон Менделя - закон независимого расщепления). |
|
Схематически гетерозиготная особь обозначается так: , но её можно записать и как Аа. Гомозиготные особи при подобном обозначении выглядят так: или , но их можно записать и как АА и аа. |
|
Большую работу по изучению наследования неаллельных генов, расположенных в паре гомологичных хромосом, выполнили американский учёный Т. Морган (1866-1945 гг.) и его ученики. Учёные установили, что гены, расположенные в одной хромосоме, наследуют совместно, или сцеплено. Сцепленное наследование генов, локализованных в одной хромосоме, называют законом Моргана. |
Морган и его ученики исследовали как сцепленное наследование, так и явление перекреста (возникновение новых гамет в перекресте гомологичных хромосом, которые в процессе мейоза перекрещиваются и обмениваются участками) и показали возможность построения карт хромосом с нанесённым на них порядком расположения генов. В результате возникла возможность сравнивать строение генома, то есть совокупности всех генов гаплоидного набора хромосом у различных видов, что имеет важное значение для генетики, селекции, а также эволюционных исследований.
В частности возникла генетика (хромосомное определение) пола. У человека решающую роль в определении пола играет -хромосома. Если яйцеклетка оплодотворяется сперматозоидом, несущим -хромосому, развивается женский организм, который является гетерозиготным по половому признаку. Если же в яйцеклетку проникает сперматозоид, содержащий -хромосому, развивается мужской организм, который является гомозиготным по половому признаку.
Возникает более ясное определение генотипа, как системы взаимодействующих генов. Взаимодействуют друг с другом как аллельные, так и неаллельные гены, расположенные в различных локусах одних и тех же и разных хромосом.
Чтобы сделать такое взаимодействие "управляемым", генетика особо бурно развивается как на уровне изучения организма, органов, тканей и клеток, так и на молекулярно-генетическом уровне. Так макромолекулы ДНК являются носителями наследственной информации. Вся информация, заключённая в ДНК, называется генетической. Идея о том, что генетическая информация записана на молекулярном уровне и что синтез белков идёт по матричному принципу, впервые была сформулирована ещё в 1920-х годах выдающимся отечественным биологом Н.К. Кольцовым. Модель строения молекулы ДНК предложили Дж. Уотсон и Ф. Крик в 1953 году (см. схему 58). Она полностью подтверждена экспериментально и сыграла исключительно важную роль в развитии молекулярной биологии и генетики.
Структура дезоксирибонуклеиновой кислоты - ДНК.
а) Схема строения нуклеотидов. б) Комплементарное соединение полинуклеотидных цепей ДНК. |
в) Участок двухспиральной молекулы ДНК. |
Молекулы ДНК в основном находятся в ядрах клеток и в небольших количествах в митохондриях и хлоропластах. Наконец, ДНК участвует в качестве матрицы в процессе передачи генетической информации из ядра в цитоплазму к месту синтеза белка. При этом, на одной из её цепей по принципу комплементарности из нуклеотидов окружающей молекулу среды синтезируется и макромолекула РНК.
РНК - так же, как ДНК, представляет собой биополимер, мономерами которого являются нуклеотиды. Азотистые основания трех нуклеотидов те же самые, что входят в состав ДНК (адепин, гуапин, цитозин), четвертое - урацил - присутсвует в молекуле РНК вместо тимина. Нуклеотиды РНК отличаются от нуклеотидов ДНК и по строению входящего в их состав углевода: они включают другую пентозу - рибозу (вместо дезоксирибозы). В цепочку РНК нуклеотиды входят путем образования связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого.
РНК переносят информацию о последовательности аминокислот в белках, т.е. о структуре белков, от хромосом к месту их синтеза, т.е. участвует в синтезе белков. По структуре различают двухцепочные и одноцепочные РНК. Двухцепочные РНК являются хранителями генетической информации у ряда вирусов, т.е. выполняют у них функции хромосом.
Существует несколько видов одноцепочных РНК. Их названия обусловлены выполняемой функцией или местонахождением в клетке.
Большую часть цитоплазмы (до 80-90%) составляет рибосомальная РНК (р-РНК), содержащаяся в рибосомах. Молекулы р-РНК относительно невелики и состоят из 3-5 тысяч нуклеотидов. РНК зависит от длины участка ДНК, на котором они были синтезированы.
Молекулы информационной РНК (и-РНК) могут состоять из 300-30000 нуклеотидов.
Транспортные РНК (т-РНК) включают 76-85 нуклеотидов. Выполняют несколько функций. Они доставляют аминокислоты к месту синтеза белка, "узнают" (по принципу комплементарности) триплет и-РНК, соответствующий переносимой кислоте, осуществляют точную ориентацию аминокислоты на рибосоме.
Огромное количество отобранных эволюцией уникальных сочетаний аминокислот воспроизводится путём синтеза нуклеиновых кислот с такой последовательностью азотистых оснований, которая соответствует последовательности аминокислот в белках. Каждой аминокислоте в полипептидной цепочке соответствует комбинация из трёх нуклеотидов - триплет. Так, аминокислоте цистеину соответствует триплет АЦА, валину - ЦАА, лизину - ТТТ и т.д. Таким образом, определённые сочетания нуклеотидов и последовательность их расположения в молекуле ДНК является генетическим кодом, несущим информацию о структуре белка.
Код включает все возможные сочетания трёх (из четырёх) азотистых соединений. Таких сочетаний может быть , в то время как кодируется только 20 аминокислот. Эта избыточность кода имеет большое значение для повышения надёжности передачи генетической информации.
Генетика привела к новым представлениям об эволюции, а также именно на основе генетики были сформулированы основные аксиомы биологии.
Аксиома 1. Все живые организмы должны состоять из фенотипа и программы для его построения (генотипа), передающейся по наследству из поколения в поколение. Наследуется не структура, а описание структуры и инструкция по её изготовлению. Жизнь на основе только одного генотипа или фенотипа невозможна, т.к. при этом нельзя обеспечить ни самовоспроизведения структуры, ни её самоподдержания.
(Д. Нейман, Н. Винер)
Аксиома 2. Генетические программы не возникают заново, а редицируются матричным способом. В качестве матрицы, на которой строится ген будущего поколения используется ген предыдущего поколения. Жизнь - это матричное копирование с последующей самосборкой копий.
(Н.К. Кольцов)
Аксиома 3. В процессе передачи из поколения в поколение генетические программы в результате многих причин изменяются случайно и ненаправленно, и лишь случайно эти изменения оказываются приспособительными. Отбор случайных изменений не только основа эволюции жизни, но и причина её становления, потому что без мутаций отбор не действует. Эта аксиома основана на принципах статистической физики и принципе неопределенности В. Гейзенберга.
Аксиома 4. В процессе формирования фенотипа случайные изменения генетических программ многократно усиливаются, что делает возможным их селекцию со стороны факторов внешней среды. Из-за усиления в фенотипах случайных изменений эволюция живой природы принципиально непредсказуема.
(Н.В. Тимофеев-Ресовский)
Последняя аксиома биологии указывает и на достаточно трудный путь антропологического исследования родословной человека и право на существование различных теорий происхождения жизни. Более того, проблема происхождения и предназначения человека на Земле и в Космосе может быть решена в рамках целостной культуры и картины мироздания (бытия), включая мифологическую, религиозную, философскую и естественнонаучную картины мира. При этом естественно необходимо учитывать фрактальную структуру "стрел времени", рассмотренную в лекции №7, посвященной панораме современного естествознания.
Синтетическая теория эволюции биологических структур материи. Макро- и микроэволюция
Принцип дополнительности эволюционных идей с креационизмом, отмеченный нами ранее в лекции №7, характерен и для принципа развития Ж.Б. Ламарка, который постулировал следующие положения: организмы изменчивы; виды (и другие таксономические категории) условны и постепенно преобразуются в новые виды; общая тенденция исторических изменений организмов - постепенное совершенствование их организации (градация), движущей силой которой является изначальное (заложенное Творцом) стремление природы к прогрессу. Для ламаркизма характерны два дополняющих друг друга признака: телеологизм - как присущее организмам стремление к совершенствованию, организмоцентризм - признание организма в качестве элементарной единицы эволюции.
Чарльз Дарвин, обобщив отдельные эволюционные идеи, создал стройную развернутую теорию эволюции. Движущими силами эволюции он считал наследственную изменчивость и естественный отбор, а в качестве элементарной единицы эволюции организм каждого вида, т.е. фактически отдельных особей. Выживающие особи дают начало следующему поколению, и таким образом "удачные" положительные изменения передаются следующим поколениям. Очень часто теорию естественного отбора Чарльза Дарвина противопоставляют креационизму. Однако обратимся к эстетике мышления Чарльза Дарвина: "Мир покоится на закономерностях и в своих проявлениях представляется, как продукт разума - это указание на его Творца".
Нам бы хотелось отметить, что под биологической эволюцией понимают необратимый статистический процесс исторического развития живой природы, начиная с момента абиогенного возникновения первых живых организмов на Земле до настоящего времени. Он включает в себя как адаптационный, так и бифуркационный механизм эволюции. При более пристальном изучении биологической эволюции становится виден её "приводной ремень", а именно тот факт, что развитие не происходит прямолинейно от худшего к лучшему. Данный "приводной ремень" является мутацией - произвольным изменением наследственного материала, ведущим только к тому, чтобы потомки могли развить те задатки, которых еще не имели их родители. Этот "приводной ремень" и лежит в основе синтетической теории эволюции, которая объединяет теорию естественного отбора Ч. Дарвина прежде всего с генетикой, а также и с экологией, и в значительной степени противопоставляет себя религиозным трактовкам креационизма.
биология материя интеллектуальная культура
Остановимся на основных положениях синтетической теории биологической эволюции (СТЭ).
1. Материалом для эволюции служат, как правило, очень мелкие, однако дискретные изменения наследственности - мутации. Мутационная изменчивость поставляет материал для естественного отбора и носит случайный характер.
2. Ведущим движущим фактором эволюции является естественный отбор, основанный на селекции случайных и мелких мутаций. Поэтому иногда теорию отбора называют "селектогенез".
3. Наименьшая эволюционная единица - популяция, а не особь.
4. Эволюция в основном носит дивергентный характер, то есть один вид может стать может стать предком нескольких дочерних видов, но каждый вид имеет единственный предковый вид, единственную предковую популяцию.
5. Эволюция носит постепенный и длительный характер. Видообразование мыслится как поэтапная смена одной временной популяции чередой последующих временных популяций.
6. Вид состоит из множества соподчиненных морфологически, физиологически и генетически отличных, но репродуктивно не изолированных единиц - подвидов, популяций.
7. Обмен генами возможен лишь внутри вида. Если мутация имеет положительную селективную ценность на территории всего ареала вида, то она может распространятся по всем его подвидам и популяциям. Отсюда следует краткое определение вида как генетически целостной и замкнутой системы.
8. Поскольку критерием вида является его репродуктивная обособленность, то естественно, что этот критерий неприменим к формам без полового процесса, например к агамным и партеногенетическим организмам. Таким образом, СТЭ оставила вне видового статуса огромное множество прокариот, не имеющих полового процесса, а также некоторые специализированные формы высших эукариот, вторично утративших половой процесс.
9. Макроэволюция, или эволюция на уровне выше вида, идет лишь путем микроэволюции, под которой понимают видообразование. Согласно СТЭ, не существует закономерностей макроэволюции, отличных от микроэволюционных, хотя есть явления (параллелизм, конвергенция, аналогия, гомология), которые легче исследовать на макроэволюционном уровне.
10. Каждая систематическая единица (вид, род и т.д.) должна иметь единственный корень. Это обязательное условие для самого права на существование рассматриваемой группы. Ведь эволюционная систематика строит свою классификацию, исходя из их родства. А согласно четвертому постулату СТЭ, родственны только те группы, которые идут от одной эволюционной ветви. Если же у вида вдруг обнаруживаются в предках две разные ветви, его следует разделить.
11. Исходя из всех упомянутых постулатов, ясно, что эволюция непредсказуема: она не направлена к некоей конечной цели.
Представим в схематическом виде основные факторы и направления эволюционного биологического процесса (см. схему 57).
Основные факторы и направления эволюционного процесса СТЭ.
Основные факторы и направления СТЭ |
Их определения и характерные процессы |
|
Наследственная изменчивость. |
Двусторонность наследственности, т.е. свойства организмов повторять в ряду поколений сходные типы обмена веществ и индивидуального развития в целом, и изменчивости, т.е. изменения и превращения организмов под действием внешней среды. |
|
Борьба за сущесвование. |
В результате борьбы за существование природа осуществляет отбор признаков, способствующих приспособлению вида к изменяющимся условиям существования. |
|
Естественный отбор. Основными формами естественного отбора являются: |
Единственный эволюционный процесс, который действует в пределах популяции, задавая в результате мутации, миграции особей, изоляции и случайного дрейфа генов, эволюционные преобразования, происходящие в генофондах популяций. |
|
Движущий отбор; |
Движущий отбор прогрессивное и направленное изменение признака или свойства, переставшего соответствовать новым условиям среды. |
|
Стабилизирующий отбор; |
Стабилизируюший отбор с преимуществом в размножении особей со средним выражением признака происходит при постоянных условиях среды. |
|
Дизруптивный отбор |
Дизруптивный отбор благоприятствует сохранению крайних форм и элиминирует промежуточные. Это приводит к разделению популяции на две или несколько групп. |
|
Главных направленй эволюционного процесса по А.Н. Северцову может быть три: Ароморфоз; |
Ароморфоз или морфологический прогресс - возникновение новых жизненных форм, в результате повышения уровня организации, обеспечивающего повышение жизнеспособности, расширения среды обитания и т.д. |
|
Идиоадаптация; |
Идиоадаптация - возникновение частных приспособлений, обеспечивающих существование организмов в конкретных условиях внешней среды. |
|
Общая дегенерация или морфологический регресс. |
Общая дегенерация - упрощение организации, чаще всего в результате редукции каких-либо органов и частей тела. Сужая "сферу жизнедеятельности", регресс ведет к резкой специализации, способности существовать в узком диапазоне условий среды. |
Взаимодействие синтетической теории эволюции прежде всего с генетикой повлияло на выдвижение в качестве основного методологического принципа - гипотезы генобиоза происхождения жизни, т.е. первичности молекулярной системы со свойствами генетического кода. Первоначально в качестве такой системы рассматривали ДНК, но после открытия архебактерий с одноцепочной РНК, первичными стали системы с одноцепочной РНК. При этом РНК оказывается близкой по структуре и к методологическому принципу голобиоза, в котором первичными считались структуры, способные к элементарному обмену веществ при участии ферментных белков, в частности, коацерванты в концепции абиогенного происхождения жизни академика А.И. Опарина.
Многоликость и многогранность основных факторов и направлений эволюционного процесса СТЭ приводит к главной идее, что в эволюции важно не совершенство, а умение принимать свои недостатки и делать из них неоспоримые достоинства. И для нас, людей, эта мысль тоже может быть полезной. Тем более, что список недостатков человека как биологического существа довольно обширен в сравнении с другими представителями живого мира, и даже в генетическом плане в сравнении с обезьянами. Биологи Университета Мичигана, изучающие эволюцию сравнили 14 тысяч генов человека и обезьяны. В результате был сделан вывод, что у шимпанзе с помощью перманентного отбора настолько значительно совершенствовались 233 гена, что ни одна мутация не смогла бы их улучшить, а у человека лишь 154 таких совершенных гена. Неблагоприятные признаки шимпанзе на протяжении эволюции отбраковались эффективней, чем у человека.
Однако у человека есть одно несомненное преимущество - это феномен сознания и фантастический по своим интеллектуально-информационным возможностям мозг. Как отмечает академик Н.П. Бехтерева: "Всю свою жизнь я посвятила изучению самого совершенного органа - человеческого мозга. И пришла к выводу, что возникновение такого невозможно без творца. Эволюция мозга, как её рисовали антропологи, практически нереальна. Недаром они сейчас отказываются от многих своих данных".
Итак, тайн, загадок и даже странностей эволюции достаточно много. И главное, что наука не должна стать средством гибельного отторжения человека от природы и потери веры в то, что в его концептуальном фонде познания природы и в генофонде все элементы значимы и важны.
Литература
1. Наследников Ю.М. Концепции современного естествознания/ Ю.М. Наследников, А.Я. Шполянский, А.П. Кудря, А.Г. Стибаев. - Ростов-на-Дону: ДГТУ 2008-350с. [Электронный ресурс № ГР 15393, 2010]. Режим доступа: http://de. dstu.edu.ru/., с.234-251, 263-267
2. Наследников Ю.М. Концепции современного естествознания: Учеб. - метод. пособие/ Ю.М. Наследников, А.Я. Шполянский, А.П. Кудря, А.Г. Стибаев. - Ростов-на-Дону: ДГТУ, 2007, с.72-77
3. Горбачев В.В. Концепции современного естествознания. Интернет-тестирование базовых знаний: Учебное пособие/ В.В. Горбачев, Н.П. Калашников, Н.М. Кожевников - СПб.: Издательство "Лань", 2010, с.86-88, 92-94, 152-153
4. Кожевников Н.М. Концепции современного естествознания: Учебное пособие, 4-е изд., испр. / Н.М. Кожевников. - СПб.: Издательство "Лань", 2009, с.243-267, 290-301
5. Под. ред. Л.А. Михайлова. Концепции современного естествознания: Учебник для вузов. - СПб.: Питер, 2009, с. 208-222, 250-257
Размещено на Allbest.ru
Подобные документы
Электромагнитные взаимодействия как определяющий уровень организации материи. Сущность живого, его основные признаки. Структурные уровни организации живой материи. Предмет биологии, ее структура и этапы развития. Основные гипотезы происхождения жизни.
лекция [28,4 K], добавлен 18.01.2012Развитие неживой и живой природы. Структура и ее роль в организации живых систем. Современный взгляд на структурную организацию материи. Проблемы самоорганизации, изучаемые в синергетике, законы построения организации и возникновения упорядоченности.
контрольная работа [38,2 K], добавлен 31.01.2010Три уровня строения материи: микро-, макро- и мегамир. Материя как объективная реальность. Две основные формы движущейся материи: в пространстве и во времени. Атомистическая гипотеза строения материи Демокрита. Теория и модель атома Нильса Бора.
реферат [33,6 K], добавлен 25.03.2009Биология как комплекс наук, которые непосредственно связаны с изучением живого. Уровни развития биологических знаний. Сущность жизни, особенности ее понимания в биологии. Возникновение теории происхождения видов. Современные проблемы теории селектогенеза.
реферат [48,8 K], добавлен 27.12.2016Разработка комплексного подхода к процессам эволюции на базе современных достижений генетики популяций, молекулярной биологии, эволюции биосферы. Естественный отбор. Борьба видов за существование. Сохранение и накопление случайных мелких мутаций.
презентация [1,0 M], добавлен 11.03.2017Главная особенность организации живых материй. Процесс эволюции живых и неживых систем. Законы, лежащие в основе возникновения всех форм жизни по Дарвину. Молекулярно-генетический уровень живых организмов. Прогрессия размножения, естестенный отбор.
реферат [15,0 K], добавлен 24.04.2015Уровни организации живой материи. Клеточная мембрана, поверхностный аппарат клетки, ее части и их назначение. Химический состав клетки (белки, их структура и функции). Обмен веществ в клетке, фотосинтез, хемосинтез. Мейоз и митоз – основные различия.
контрольная работа [58,3 K], добавлен 19.05.2010Общие контуры и основные принципы построения современной естественно-научной картины мира. Синтетическая теория эволюции (синтез генетики и дарвинизма). Постулат о способности материи к саморазвитию в философии. Общий смысл комплекса синергетических идей.
реферат [23,8 K], добавлен 26.07.2010Эволюционные идеи в античности, Средневековье, эпохи Возрождения и Нового времени. Теория Чарльза Дарвина. Синтетическая теория эволюции. Нейтральная теория молекулярной эволюции. Основные эмбриологические доказательства биологической эволюции.
реферат [26,6 K], добавлен 25.03.2013Естественнонаучные и социальные представления о видах, структуре и свойствах материи. Вещество как вид материи, обладающей массой. Физическое поле и физический вакуум. Концепция атомизма, дискретность и непрерывность как неотъемлемые свойства материи.
реферат [19,6 K], добавлен 29.07.2010