Вода в атмосфере
Происхождение водяного пара в воздухе. Процессы его насыщения и конденсации в атмосфере. Значение влажности в метеорологии и механизм ее измерения. Влияние низкой и высокой влажности на организм человека. Методы ее поддержания на оптимальном уровне.
Рубрика | Биология и естествознание |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 26.05.2017 |
Размер файла | 92,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
Целью данной работы является влажность воздуха и её значение.
Вода в атмосфере содержится в виде молекул (пар), капелек и кристалликов, влажность воздуха характеризуется содержанием водяного пара в г/м3 (абсолютная влажность - "а" 4 м3) или упругостью- "с" мм р.с., мб, г п). Количество водяного пара, которое может содержаться в воздухе при данной температуре, - максимальное влагосодержание (или максимальная упругость) водяного пара (Е). Процентное отношение количества водяного пара, содержащегося в воздухе, к тому количеству, которое может содержаться при данной температуре, - относительная влажность (%). Она показывает степень насыщения воздуха водяным паром.
Разность между максимальной (Е) и фактической упругостью водяного пара - дефицит 4 (Д). Температура, при которой находящийся в воздухе водяной пар насытит его и начнется конденсация - точка росы (Т 0). Чем выше температура воздуха, тем больше водяного пара он может содержать, тем выше точка росы.
1. Водяной пар
Водяной пар поступает в атмосферу в результате процесса испарения с поверхности. Испарение зависит от температуры испаряющей поверхности и от относительной влажности воздуха. Насыщенный воздух не может вместить больше пара, если температура его не повысится. При повышении температуры, он удаляется от насыщения, при понижении, наоборот, в нем может начаться конденсация. Так происходит, например, летней ночью при ясной погоде, соприкасаясь с холодной поверхностью, оставляет на ней капельки росы. При отрицательной температуре выпадает иней. В воздухе, охлаждающемся от поверхности или от пришедшего холодного воздуха, образуется туман. Он состоит из мелких капелек или кристалликов, взвешенных в воздухе. В сильно загрязнённом воздухе образуется густой туман с примесью дыма - смог.
Облака образуются при конденсации водяного пара в поднимающемся воздухе вследствие его охлаждения. Высота их образования зависит от температуры относительной влажности воздуха. При достижении им высоты, на которой насыщение станет полным (100 %) начинается конденсация и облакообразование. Если восходящий воздух встретит теплый слой (инверсия), подъём прекращается, воздух не достигает границы конденсации и облака не образуются.
Облака находятся в постоянном движении, опускаясь ниже границы конденсации, они испаряются ("тают"). Облака могут состоять из мелких капелек или кристалликов, чаще всего они смешанные. По форме (по виду) различают облака перистые, слоистые и кучевые. Перистые облака-облака верхнего яруса (выше 6000 м), полупрозрачные, ледяные. Осадки из них нее выпадают. Слоистые облака среднего (от 2000 до 6000 м) и нижнего (ниже 2000 м) ярусов. В основном они и дают осадки, обычно длительные, обложные. Кучевые облака могут образоваться в нижнем ярусе и достигать очень большой высоты. Часто они имеют вид башен и состоят внизу из капелек, вверху-из кристалликов. С ними связаны ливни, град, грозы. Кроме трёх основных форм облаков, возникает много комбинированных. Например, перисто-слоистые, слоисто-кучевые, перисто-кучевые и т.д.
Форма облаков объясняется их происхождением. Облачный покров обычно состоит из разных облаков. Степень покрытия неба облаками - облачность измеряется в баллах. Полная облачность - 10 баллов. В среднем на Земле половина неба закрыта облаками. Наибольшая облачность там, где воздух поднимается, то есть в облаках пониженного давления. Наименьшая облачность соответственно в областях повышенного давления. Над океаном она больше, чем над сушей, так как там больше влаги в воздухе. Абсолютный максимум облачности - над Северной Атлантикой (9 баллов), абсолютный минимум - над Антарктидой и над тропическими пустынями (0,2 балла). Облачный покров задерживает солнечную радиацию, идущую к земной поверхности, отражает и рассеивает её. Одновременно облака задерживаю тепловые излучения земной поверхности в атмосфере. Поэтому влияние облачности на климат велико.
От влажности зависит интенсивность испарения влаги с поверхности кожи человека. А испарение влаги имеет большое значение для поддержания температуры тела постоянной. В космических кораблях поддерживается наиболее благоприятная для человека относительная влажность воздуха (40-60 %).
Большое значение имеет знание влажности в метеорологии для предсказания погоды. Хотя количество водяного пара в атмосфере сравнительно невелико (около 1 %), роль его в атмосферных явлениях значительна. Конденсация водяного пара приводит к образованию облаков и последующему выпадению осадков. При этом выделяется большое количество теплоты, и наоборот, испарение воды сопровождается поглощением теплоты.
В ткацком, кондитерском и других производствах для нормального течения процесса необходима определённая влажность.
Хранение произведений искусство и книги требуют поддержания влажности воздуха на необходимом уровне. Поэтому в музеях на стенах вы можете видеть психрометры.
Таблица. Оптимальные нормы микроклимата для помещений с ВДТ и ВЭВМ
Период года |
Категория робот |
Температура воздуха Гр. С не более |
Относительная влажность воздуха, % |
Скорость движения воздуха, м/с |
|
Холодный |
ЛЕГКАЯ-19 |
22-24 |
40-60 |
0,1 |
|
ЛЕГКАЯ-16 |
21-23 |
40-60 |
0,1 |
||
Тёплый |
ЛЕГКАЯ-19 |
23-25 |
40-60 |
0,1 |
|
ЛЕГКАЯ-16 |
22-24 |
40-60 |
0,2 |
Примечание: к категории 1а относятся работы, производимые сидя и не требующие физического напряжения, при которых расход энергии составляет до 120 ккал /ч; категория 16 относятся работы, производимые сидя, стоя, или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением, при котором расход энергии составляет от 120 до 150 ккал /ч.
Приложение (обязательное); оптимальные и допустимые параметры температуры и относительной влажностью воздуха в помещениях с ВДТ и ПЭВМ во всех учебных и дошкольных учреждениях.
ОПТИМАЛЬНЫЕ ПАРАМЕТРЫ |
ДОПУСТИМЫЕ ПАРАМЕТРЫ |
|||
Температура град. С. |
Относительная влажность % |
Температура град. С. |
Относительная влажность % |
|
19 |
62 |
18 |
39 |
|
20 |
58 |
22 |
31 |
|
21 |
55 |
Примечание: скорость движения воздуха - не более 0,1 м/с.
Так как в течение учебного года ученикам приходится больше времени проводить в школе, то не маловажную роль играет состояние влажности в учебных кабинетах. Исходя из этого, мы решили узнать, отвечает ли санитарным нормам условия наших кабинетов. Измерения проводились в предметных кабинетах и в компьютерном классе.
2. Средства измерения и нормы
Измерить влажность можно при помощи специальных приборов: гигрометров или психрометров. Первый гигрометр создал Орас де Соссюр в 1783 г. Основу данного механизма составляла стальная пружинящая полоса, концы которой стянуты конским волосом. При высокой влажности волос удлинялся, при низкой сокращался. Колебания передавались на стрелку градуированного циферблата, визуализируя значение влажности воздуха. Техника не стоит на месте, и сегодня без труда можно приобрести всевозможные гигрометры, работа которых основана на различных принципах действия: весовые, пленочные, конденсационные, электролитические, керамические и пр.
Воздух с относительной влажностью до 55 % принято называть сухим, от 56 % до 70 % - умеренно сухим, от 71 % до 85 % - умеренно влажным, от 85 % и выше - сильно влажным.
Здоровый человек чувствует себя комфортно в диапазоне влажности от 30 до 60 %. Отклонения от этих показателей даже при качественной вентиляции помещения могут привести как просто к плохому самочувствию и быстрой утомляемости, так и к серьезному ухудшению состояния здоровья, в том числе и к ухудшению памяти и восприятия.
2.1 От чего зависит влажность
В первую очередь влажность зависит от географического расположения и климата. Так, например, вблизи морей и океанов относительная влажность воздуха в среднем равна 70-80 %, в глубине континентов она снижается (в пустынях - всего 4-5 %). Дождливый климат способствует поддержанию высокой влажности в географической регионе, сухой - наоборот.
Но не менее важным является и техногенный фактор. В больших городах влажность обычно низкая. Однако внутри помещений она может значительно изменяться, исходя из специфики их назначения (прачечная, кухня, бассейн и пр.), а также от типа применяемых строительных и отделочных материалов.
Особенно следить за состоянием воздуха в жилых и рабочих помещениях нужно зимой, когда холодная атмосфера не может удержать в себе достаточного количества влаги, а ту, что имеется, норовят высушить радиаторы отопления.
Немаловажным фактором также является наличие вентиляции в офисе, квартире, доме или любом другом помещении. Чем интенсивнее воздухообмен, тем быстрее высушивается воздух (особенно в холодное время года). Также интенсивно утилизируют влагу кондиционеры, в которых не предусмотрена функция поддержания влажности.
Для того чтобы однозначно определить, нужно ли подсушивать или увлажнять воздух в каждом конкретном случае, необходимо опираться на показания гигрометра.
2.2 Низкая влажность воздуха
Как известно, человек по большей части состоит из жидкости. Слишком сухой воздух может высушивать кожу и быстрее обезвоживать организм. В первую очередь страдают слизистые оболочки, контактирующие с открытым воздухом, они покрываются микротрещинами и пересыхают, открывая прямую дорогу в организм вредоносным бактериям и вирусам.
Влажность влияет на потоотделение и тепловой обмен, а также на плотность кислорода в атмосфере. При относительной влажности воздуха менее 10 % даже здоровые люди испытывают ощущение сухости в носоглотке, "резь" в глазах, может даже начаться носовое кровотечение. Особенно опасен сухой воздух для больных бронхиальной астмой, у них наблюдается общее ухудшение самочувствия, возможны приступы.
Тем не менее, сухой воздух позволяет легче переносить низкие и высокие температуры. Так, например, при малой относительной влажности летняя жара переносится легче, чем та же температура, но в районах с высокой влажностью. То же самое и с отрицательными температурами. Сильные морозы при низкой влажности приносят гораздо меньший дискомфорт, чем небольшой "минус" в условиях влажного воздуха.
2.3 Высокая влажность воздуха
Особенно сильно реагируют на высокую влажность больные гипертонической болезнью, атеросклерозом, люди с различными сердечно-сосудистыми заболеваниями. При сильно влажном воздухе (80…95 %) возможны обострения и приступы.
При температуре окружающей среды +25°C и выше и одновременно влажном воздухе нарушается отдача тепла с поверхности кожи, и организм может перегреться. Первые признаки избыточного тепла: ощущение духоты и тяжести, ухудшение самочувствия, пониженная работоспособность. Постоянное пребывание человека в помещениях с высокой влажностью приводит к снижению сопротивляемости организма к инфекционным и простудным заболеваниям, а также к более серьезным последствиям: заболеванию почек, туберкулезу, ревматизму и т.д.
От высокой влажности страдает не только организм человека, но и интерьер помещений. В сырых местах развиваются грибок и плесень, выделяющие большое количество спор в атмосферу помещения, заражая воздух, которым мы дышим. Опасность высокой влажности - в медленной скорости реакций. На протяжении многих лет можно не замечать причины ухудшения здоровья, самочувствия и появления различных болезней. Первейшей и наиболее эффективной мерой борьбы с повышенной влажностью является правильная вентиляция квартиры.
3. Методы поддержания влажности на оптимальном уровне
Сегодня мокрые полотенца и ведра с водой под батареями системы отопления остались в прошлом. На смену "дедовским" методам пришло высокотехнологичное климатическое оборудование.
Если вентиляция в офисе, квартире, доме или другом помещении слишком высушивает воздух, необходимо использовать специальные увлажнители: изотермические или адиабатические.
Если же, наоборот, воздух слишком влажный, например, на кухне, в ванной, прачечной или бассейне, прибегают к использованию осушителей, работа которых основана на одном из следующих принципов: абсорбция, конденсация или ассимиляция.
На сегодняшний день, помимо вышеперечисленной техники для поддержания влажности воздуха на приемлемом уровне, можно использовать и кондиционеры с функциями автоматического контроля, увлажнения и осушения воздуха. водяной пар атмосфера влажность
4. Задачи и примеры
Значение f(D)dD есть элемент вероятности, равный площади прямоугольника с основанием dD и абсциссами D1, D2, называемыми квантилями. Так как F(+Ґ)=1, то справедливо равенство:
,
т.е. площадь под кривой f(D) согласно правилу нормирования равна единице и отражает вероятность всех возможных событий.
В практике электрических измерений одним из наиболее распространенных законов распределения случайных погрешностей является нормальный закон (Гаусса).
Математическое выражение нормального закона имеет вид:
,
где f(D) - плотность вероятности случайной погрешности:
D = аi - A;
s - среднее квадратическое отклонение. Среднее квадратическое отклонение может быть выражено через случайные отклонения результатов наблюдений Di (см. формулу (4.1)):
.
Характер кривых, описанных этим уравнением для двух значений s, показан на рис. 4.4. Из этих кривых видно, что чем меньше s, тем чаще встречаются малые случайные погрешности, т.е. тем точнее выполнены измерения. В практике измерений встречаются и другие законы распределения, которые могут быть установлены на основании статистической обработки опытных данных. Некоторые из наиболее часто встречающихся законов распределения приведены в ГОСТ 8.011-84 "Показатели точности измерений и формы представления результатов измерений".
Основными характеристиками законов распределения являются математическое ожидание и дисперсия.
Математическое ожидание случайной величины - это такое ее значение, вокруг которого группируются результаты отдельных наблюдений. Математическое ожидание дискретной случайной величины М [X] определяется как сумма произведений всех возможных значений случайной величины на вероятность этих значений:
.
Для непрерывных случайных величин приходится прибегать к интегрированию, для чего необходимо знать зависимость плотности вероятности от х, т. е. f(х), где х=D. Тогда:
.
Это выражение означает, что математическое ожидание равно сумме бесконечно большого числа произведений всех возможных значений случайной величины х на бесконечно малые площади f(х)dх, где f(х) -ординаты для каждого х,a dх - элементарные отрезки оси абсцисс.
Если наблюдается нормальное распределение случайных погрешностей, то математическое ожидание случайной погрешности равно нулю (рис. 4.4). Если же рассматривать нормальное распределение результатов, то математическое ожидание будет соответствовать истинному значению измеряемой величины, которое мы обозначаем через A.
Систематическая погрешность при этом представляет собой отклонение математического ожидания результатов наблюдений от истинного значения А измеряемой величины:
Dс = М [X]- A,
а случайная погрешность - разность между результатом единичного наблюдения и математическим ожиданием:
.
Дисперсия ряда наблюдений характеризует степень рассеивания (разброса) результатов отдельных наблюдений вокруг математического ожидания:
D [X]=Dx=M [(ai - mx)2].
Чем меньше дисперсия, тем меньше разброс отдельных результатов, тем точнее выполнены измерения. Однако дисперсия выражается в единицах в квадрате измеряемой величины. Поэтому в качестве характеристики точности ряда наблюдений наиболее часто применяют среднее квадратическое отклонение (СКО), равное корню квадратному из дисперсии:
.
Рассмотренное нормальное распределение случайных величин, в том числе и случайных погрешностей, является теоретическим, поэтому описанное нормальное распределение следует рассматривать как "идеальное", т. е. как теоретическую основу для изучения случайных погрешностей и их влияния на результат измерений.
Далее излагаются способы применения этого распределения на практике с той или иной степенью приближения. Рассматривается также еще одно распределение (распределение Стьюдента), применяемое при небольших количествах наблюдений.
Оценки погрешностей результатов прямых измерений. Пусть было проведено п прямых измерений одной и той же величины. В общем случае в каждом из актов измерений погрешность будет разной:
Di = ai - A,
где Di - погрешность i-го измерения; ai - результат i-го измерения.
Поскольку истинное значение измеряемой величины A неизвестно, непосредственно случайную абсолютную погрешность вычислить нельзя. При практических расчетах приходится вместо A использовать его оценку. Обычно принимают, что истинное значение равно среднему арифметическому значению ряда измерений:
. (4.2)
где аi - результаты отдельных измерений; п - число измерений.
Теперь аналогично выражению (4.1) можно определить отклонение результата каждого измерения от среднего значения :
(4.3)
где vi - отклонение результата единичного измерения от среднего значения. Следует помнить, что сумма отклонений результата измерений от среднего значения равна нулю, а сумма их квадратов минимальна, т. е.:
и min.
Эти свойства используются при обработке результатов измерений для контроля правильности вычислений.
Затем вычисляют оценку значения средней квадратической погрешности для данного ряда измерений:
. (4.4)
Согласно теории вероятностей при достаточно большом числе измерений, имеющих независимые случайные погрешности, оценка S сходится по вероятности к s. Таким образом,
. (4.5)
Ввиду того что среднее арифметическое значение также является случайной величиной, имеет смысл понятие среднеквадратического отклонения среднего арифметического значения. Эту величину обозначим символом sср. Можно показать, что для независимых погрешностей:
. (4.6)
Значение sср характеризует степень разброса . Как указывалось выше, выступает оценкой истинного значения измеряемой величины, т.е. является конечным результатом выполняемых измерений. Поэтому sср называют также средней квадратической погрешностью результата измерений.
На практике значением s, вычисляемым по формуле (4.5), пользуются в том случае, если необходимо дать характеристику точности применяемого метода измерения: если метод точен, то разброс результатов отдельных измерений мал, т.е. мало значение s. Значение же sср, вычисляемое по (4.6), используется для характеристики точности результата измерений некоторой величины, т.е. результата, полученного посредством математической обработки итогов целого ряда отдельных прямых измерений.
При оценке результатов измерений иногда пользуются понятием максимальной или предельной допустимой погрешности, значение которой определяют в долях s или S. В настоящее время существуют разные критерии установления максимальной погрешности, т. е. границы поля допуска ±D, в которые случайные погрешности должны уложиться. Общепринятым пока является определение максимальной погрешности D = 3s (или 3S). В последнее время на основании информационной теории измерений профессор П.В. Новицкий рекомендует пользоваться значением D = 2s.
Введем теперь важные понятия доверительной вероятности и доверительного интервала. Как указывалось выше, среднее арифметическое значение , полученное в результате некоторого ряда измерений, является оценкой истинного значения А и, как правило, не совпадает с ним, а отличается на значение погрешности. Пусть Рд есть вероятность того, что отличается от А не более чем на D, т.е.
Р(-D< А<+D)=Рд.
Вероятность Рдназывается доверительной вероятностью, а интервал значений измеряемой величины от -D до +D - доверительным интервалом.
Приведенные выше неравенства означают, что с вероятностью Рд доверительный интервал от -D до +D заключает в себе истинное значение А. Таким образом, чтобы характеризовать случайную погрешность достаточно полно, надо располагать двумя числами - доверительной вероятностью и соответствующим ей доверительным интервалом. Если закон распределения вероятностей погрешностей известен, то по заданной доверительной вероятности можно определить доверительный интервал. В частности, при достаточно большом числе измерений часто бывает оправданным использование нормального закона, в то время как при небольшом числе измерений (п <20), результаты которых принадлежат нормальному распределению, следует пользоваться распределением Стьюдента. Это распределение имеет плотность вероятностей, практически совпадающую с нормальной при большихп, но значительно отличающуюся от нормальной при малых п.
В табл. 4.1 приведены так называемые квантили распределения Стьюдента Ѕt(n)ЅРд для числа измерений п = 2-20 и доверительных вероятностей Р = 0,5-0,999.
Укажем, однако, что обычно таблицы распределения Стьюдента приводятся не для значений п и Рд, а для значений:
m = n-1 и a =1 - Рд,
что следует учитывать при пользовании ими. Чтобы определить доверительный интервал, надо для данных п и Рд найти квантиль Ѕt(n)ЅРд и вычислить величины:
Ан = - sсрЧ Ѕt(n)ЅРд,
Ав = + sсрЧ Ѕt(n)ЅРд,
которые будут являться нижней и верхней границами доверительного интервала.
После нахождения доверительных интервалов для заданной доверительной вероятности согласно выше приведенной методике делают запись результата измерения в виде ; D = Dн ё Dв; Рд,
где - оценка истинного значения результата измерения в единицах измеряемой величины; D - погрешность измерения;
Dв = +sсрЧ Ѕt(n)ЅРд,
Dн = -sсрЧ Ѕt(n)ЅРд
- верхняя и нижняя границы погрешности измерения; Рд - доверительная вероятность [14].
Вывод
Влажность газов, жидкостей и твердых материалов - один из важных показателей в технологических процессах. Влажность газов, например, необходимо измерять в сушильных установках, при очистке газов, в газосборниках, при кондиционировании воздуха и т.д. Измерение содержания воды в нефти, спиртах, ацетоне проводят в процессах нефтепереработки и нефтехимии, в пульпах - в производстве серной кислоты и минеральных удобрений. Измерение влажности твердых сыпучих материалов занимает важное место в производстве красок, минеральных удобрений, строительных материалов; влажность волокнистых материалов определяет качество продукции при производстве бумаги и картона. В данной курсовой работе мною были рассмотрены методы и средства измерения влажности, приборы для измерения влажности, а также регуляторы влажности, позволяющие контролировать влажность в помещении на необходимом уровне.
Список литературы
1. Письмо Федеральной таможенной службы от 31 января 2006 г. N 01-06/2946 "О приказе Роспотребнадзора от 21.11.2005 N 776 "О санитарно-эпидемиологической экспертизе видов деятельности (работ, услуг), продукции, проектной документации".
2. Межгосударственный стандарт ГОСТ 12815-80 "Фланцы арматуры, соединительных частей и трубопроводов на Р_у от 0,1 до 20,0 МПа (от 1 до 200 кгс/см 2). Типы. Присоединительные размеры и размеры уплотнительных поверхностей" (утв. постановлением Госстандарта СССР от 20 мая 1980 г.
3. Куликовский К.Л., Купер В.Я. Методы и средства измерений. - М.: Энергоатомиздат, 1986.
4. Лифиц И.М. Основы стандартизации, метрологии, сертификации: Учебное пособие. - М.: ООО Юрайт, 2006.
5. Никитин В.А., Бойко С.В. Н-62 Методы и средства измерений, испытаний и контроля: Учебное пособие - 2-е изд. перераб. и доп. - Оренбург ГОУ ОГУ, 2008.
6. Основные направления и механизм энергоресурсосбережения в жилищно-коммунальном хозяйстве, г. Москва, 2008 г.
7. РД 50-411-83 Расход жидкостей и газов. Методика выполнения измерений с помощью специальных сужающих устройств. ВНИИФТРИ, Казанский филиал.
8. РМГ 29-99 ГСИ. Рекомендации по межгосударственной стандартизации. Метрология. Основные термины и определения - М.: Издательство стандартов, 2007.
9. Сергеев А.Г., Крохин В.В. Метрология: Учебное пособие для вузов. - М.: Логос, 2007.
10. Интернет ресурсы.
Размещено на Allbest.ru
Подобные документы
Вода как основа жизни на нашей планете. Информационная память воды — свойства воды воспринимать и передавать негативную или позитивную информацию. Значение воды для организма человека. Вода как своеобразный индикатор старения организма человека.
презентация [7,2 M], добавлен 27.10.2012Физические свойства воды и почвы. Влияние света и влажности на живые организмы. Основные уровни действия абиотических факторов. Роль продолжительности и интенсивности воздействия света - фотопериода в регуляции активности живых организмов и их развития.
презентация [2,8 M], добавлен 02.09.2014Исследование биологического действия "горячих частиц". Характеристика микроскопических пылевых частиц с высоким уровнем радиоактивности в атмосфере. Характер распределения излучателя в ткани. Анализ путей попадания "горячих частиц" в организм человека.
презентация [685,4 K], добавлен 10.02.2014Приоритетные загрязнители окружающей среды и их влияние на почвенную биоту. Влияние пестицидов на микроорганизмы. Биоиндикация: понятие, методы и особенности. Определение влажности почвы. Учет микроорганизмов на различных средах. Среда Эшби и Гетчинсона.
курсовая работа [7,6 M], добавлен 12.11.2014Развитие взглядов на происхождение человека. Центр происхождения человека. Доказательства происхождения человека от животных. Влияние окружающей среды на появление человека. Эволюция гоминид. Биологический, социальный и трудовой факторы эволюции.
реферат [37,7 K], добавлен 26.04.2006Общий механизм действия наркотических веществ на организм. Психическая и физическая зависимость от наркотиков. Употребление наркотиков и токсичных веществ, их виды. Стадии развития наркомании. Механизм действия никотина, влияние табакокурения на организм.
курсовая работа [36,4 K], добавлен 03.04.2014Вклад В. Вернадского в развитие науки о биосфере. Структура биосферы (живое, биогенное, косное и биокосное вещество) и ее границы. Степень сосредоточения массы живого вещества в атмосфере, гидросфере и литосфере, преобладающие виды живых организмов.
презентация [5,3 M], добавлен 07.11.2011Распространенность и значение воды в природе, а также в организме человека. Болезни, вызванные ее недостатком. Состав воды и ситуации ее повышенного потребления. Загрязненная вода как результат деятельности человека, основные способы ее очистки.
контрольная работа [810,9 K], добавлен 15.09.2022Значение влажности среды при выращивании ферментов на сыпучих средах. Влияние степени аэрирования культур микроскопических грибов. Воздействие состава среды и длительности культивирования на биосинтез липазы. Способы обработки и выращивания культуры.
презентация [734,7 K], добавлен 19.03.2015"Происхождение видов" Ч. Дарвина, животное происхождение человека. Основные задачи труда о происхождении человека, ее концептуальные аспекты. Сходство человека с млекопитающими, сравнение способностей и способов выражения эмоций у человека и животных.
реферат [26,2 K], добавлен 07.10.2010