Научная картина мира

Демокрит, как основатель античной атомистики. Основные стихии мира Аристотеля. Особенность принципа относительности механического движения. Анализ первых исследований по электричеству и магнетизму. Сущность изучения квантово-полевой картины Вселенной.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 07.05.2016
Размер файла 22,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Античная картина мира

2. Механическая картина мира

3. Электромагнитная картина мира

4. Квантово-полевая картина мира

Заключение

Список использованной литературы

Введение

Под научной картиной мира классики естествоиспытатели понимают систематизированные, исторически полные образы и модели природы и общества. Огромен и разнообразен окружающий нас мир природы. Но каждый человек должен пытаться познать этот мир и осознать свое место в нем. Чтобы познать мир, мы из частных знаний о явлениях и закономерностях природы пытаемся создать общее - научную картину мира. Содержанием ее являются основные идеи наук о природе, принципы, закономерности, не оторванные друг от друга, а составляющие единство знаний о природе, определяющие стиль научного мышления на данном этапе развития науки и культуры человечества.

В каждый период развития человечества формируется научная картина мира, которая отражает объективный мир с той точностью, адекватностью, которую позволяют достижения науки и практики. Кроме того, картина мира содержит и нечто такое, что на данном этапе наукой еще не доказано, т. е. некоторые гипотезы, предвидения, которые в будущем могут прийти в противоречие с опытом и достижениями науки, так что некоторые места в картине мира придется дополнять.

Научная картина мира уточняется и развивается на протяжении многих веков - проникновение в сущность явлений природы - бесконечный, неограниченный процесс, поскольку материя неисчерпаема. С развитием науки представления людей о природе становятся все более глубокими и адекватными, все более отражающими истинное, реальное состояние окружающего мира.

Мы рассматриваем физические, химические, биологические науки. Общей формой систематизации, которая осуществляет синтез результатов этих наук со знаниями мировоззренческого порядка, является естественнонаучная картина мира.

1. Античная картина мира

Первые картины мира, дошедшие до нас из глубины веков, созданы в период от 600-х до 500-х гг. до н. э. Древние мыслители каждый по-своему искали единое в многообразии явлений окружающего мира.

Родоначальник греческой науки Фалес, основатель философской школы в Милете, полагая началом всего воду, считал, что Вселенная в процессе зарождения возникла из воды.

Другой мыслитель древности - Анаксимандр первоначалом всего сущего считал «апейрон» - некое бесконечное и неопределенное начало. Все состоит из алейрона и из него возникает. Части изменяются, целое же остается неизменным. Апейрон все из себя производит сам. Находясь во вращательном движении, апейрон выделяет противоположности - влажное и сухое, холодное и теплое.

Анаксимен, ученик и последователь Анаксимандра, все формы природы сводил к воздуху. Он считал, что все тела возникают из воздуха через его разрежение и сгущение и превращаются снова в воздух; что небесные тела движутся не над Землей, а вокруг нее; что Солнце - это Земля, которая раскалилась от своего быстрого движения.

Анаксагор - слушатель Анаксимена, как пишет о нем Диоген Лаэртский. В центре внимания Анаксагора проблема качественного превращения тел («Каким образом из не-волоса мог возникнуть волос и из не-мяса-мясо?»),

В системе мира Гераклита роль единой субстанции играет огонь, вечно движущийся, вечно развивающийся. Источником движения Гераклит считал борьбу противоположностей. Мир - это непрерывное развитие, непрерывное изменение, обновление существующего. В этом непрерывном изменении огонь становится водой, вода - землей, и обратно: земля - водой, вода - огнем. Оба противоположных процесса существуют вместе: «путь вверх и вниз - один и тот же».

Другой мыслитель древности Эмпедокл в качестве первоначала мироздания принимал четыре стихии - землю, воду, воздух и огонь, которые считал пассивными, а все процессы в мироздании объяснял борьбой двух антагонистических начал - любви (сила притяжения) и ненависти (сила отталкивания).

Основатель античной атомистики Демокрит полагал, что «начала Вселенной суть атомы и пустота». Атомы Демокрит представлял как неделимые, плотные, непроницаемые, не содержащие в себе никакой пустоты частицы, они могут иметь самую разнообразную форму (шарообразную, угловатую, вогнутую, выпуклую и т.д.). В этом он видел объяснение разнообразия явлений и их противоположностей друг другу.

Мир в целом для атомистов - беспредельная пустота, наполненная многими мирами, число которых бесконечно, потому что они образованы бесчисленным множеством атомов самых различных форм. Земля одинаково удалена от всех точек области космоса, а поэтому неподвижна; вокруг нее движутся звезды.

Аристотель - древнегреческий философ и ученый. Всеобъемлющий ум, мудрость и авторитет Аристотеля содействовали тому, что его учение так долго господствовало в науке. Его труды насчитывают много томов, их можно считать энциклопедией научных знаний того времени: в них встречаются рассуждения, относящиеся к физике, космогонии, биологии, метеорологии, математике, политике, этике, риторике и др.

Мир Аристотеля состоит из пяти стихий - земли, воды, воздуха, огня и эфира. Материя в его понимании - это то, «из чего вещь состоит», и то, «из чего вещь возникает». Материя у Аристотеля делима до бесконечности, он не признает пустоты. Все многообразие веществ на земле Аристотель конструирует из таких активных качеств, как холодное и теплое, и таких пассивных, как сухое и влажное. Земля - сочетание холодного с сухим, огонь - теплого с сухим, воздух - теплого с влажным, вода - холодного с влажным.

2. Механическая картина мира

Первый сокрушительный удар по системе мира Аристотеля нанес выдающийся польский ученый Николай Коперник. В мае 1543 г. увидело свет его сочинение «О вращениях небесных сфер». В обращении к читателю, напечатанном на титульном листе, автор указывал, что в книге рассмотрены движения звезд и планет, «представленные на основании как древних, так и современных наблюдений; развитые на новых и удивительных теориях».

В системе мира Коперника Земля вращается вокруг своей оси и вместе с другими планетами вокруг Солнца. Сфере звезд Коперник приписал покой. Так Земля перестала быть центром мироздания, стала обычной планетой Солнечной системы.

Тяготы и гонения выпали на долю других ученых, добровольно взявших на себя защиту и утверждение в науке учения Коперника. Одним из таких мучеников науки был Джордано Бруно. Он не только пропагандировал учение Коперника, которое низвергло Землю с центра Вселенной, он учил, что центра Вселенной нет вообще.

Следующий решающий шаг в борьбе за систему Коперника был сделан Галилео Галилеем. В 1610 г. вышел «Звездный вестник», в котором Галилей оповещал о своих открытиях, сделанных с помощью изобретенной в 1609 г. подзорной трубы: на Луне существуют горы и глубокие кратеры, вокруг Юпитера движутся спутники точно так же, как Луна вокруг Земли, Млечный Путь - это группы звезд и отдельные звезды, Венера имеет фазы, как и Луна.

Законы, по которым движутся планеты, были открыты Иоганом Кеплером. Все расчеты, приведшие к открытию этих законов, были изложены в двух книгах «Новая астрономия» (1609) и «Гармония мира» (1619). Это открытие обессмертило его имя.

От законов Кеплера и законов, установленных Галилеем (законы равноускоренного движения) принцип относительности механического движения), началось развитие науки механики, законы которой стали основой объяснения явлений окружающего мира,- началось создание механической картины мира. Среди ее создателей нельзя не вспомнить Декарта.

Рене Декарт - философ, математик, физик, анатом - национальная гордость Франции. Он первый после Аристотеля взялся за создание единой картины мира, способной охватить все его частности. В опубликованных им в 1644 г. «Началах философии» планетная система изображалась как огромное скопление материальных вихрей, вращающихся вокруг Солнца и движущих при этом планеты.

Декарт развил представление о движении как форме существования материальных тел. Отождествляя тело и занятое им в пространстве место, Декарт считал, что для отделения тела от среды необходимо, чтобы существовала разница скоростей движения тела и среды, которая его окружает. Граница тела с пространством становится реальной, когда тело движется, движение определяет размеры и форму тела!

Противоположного мнения на этот счет придерживался другой создатель механической картины мира - Исаак Ньютон. Понимание действия закона пришло к Ньютону в процессе систематизации разнородных фактов: яблоко притягивается к Земле, воды океанов - к Луне, планеты - к Солнцу, значит, все тела притягиваются друг к другу вследствие наличия у них массы. Метод Ньютона - метод индукции - как форма умозаключения, обеспечивающая возможность перехода от единичных фактов к общим положениям, стал широко применяться во всем естествознании. Вселенная Ньютона состоит из движущихся тел и пустоты. Пространство в ней только вместилище тел., а время -длительность процессов. Пространство и время Ньютона не связаны между собой и с движением материальных объектов. По Ньютону, Вселенная бесконечна в пространстве и времени и неизменна со дня сотворения и на веки веков.

3. Электромагнитная картина мира

Эта модель природы возникла в конце XIX в. Идеи, которые легли в ее основу, начали формироваться в физике задолго до ее утверждения. В то время еще господствовал механистический способ мышления. Но он уже не был в состоянии объяснить новые эмпирические факты, полученные в различных «не механических» областях исследования. Наверное, не случайно первооткрыватели закона сохранения энергии, позволившего объединить многие, разрозненные на первый взгляд факты из области физики, химии, биологии, космологии, являются не физиками, а специалистами других областей знания или человеческой деятельности: врач Роберт Майер, владелец пивоваренного завода Джеймс Джоуль, врач-физиолог Герман Гельмгольц. Закон сохранения энергии сыграл большую роль в открытиях, связанных с электрическими и магнитными явлениями. «Беря на себя задачу отыскать законы электричества, мы видим, что не обладаем никаким другим доступным вспомогательным средством исследования, кроме как единственно и исключительно принципом сохранения энергии»,- говорил Макс Планк.

Первые исследования по электричеству и магнетизму начались еще задолго до открытия закона сохранения и превращения энергии.

Так, в своих исследованиях Фарадей руководствовался идеей превратимости сил природы. «Превратить магнетизм в электричество» - это была его заветная мечта. Когда она овладела Фарадеем? После того, как он узнал об открытиях Эрстеда и Ампера, или гораздо раньше, когда мальчик в залатанной курточке пробирался среди экипажей лондонскими улицами, прижимая к груди пачку аккуратно переплетенных книг и думая о профессоре Деви, публичные лекции которого ему удалось прослушать? Когда большая мечта овладевает достойным, не отступающим перед трудностями человеком, тогда и совершаются открытия, причисляемые к открытиям века. Попробуйте представить себе: каждый день выполнять по нескольку опытов, каждый опыт скрупулезно описывать и анализировать. И это в течение десяти лет. Вот сколько времени и сил понадобилось, чтобы превратить магнетизм в электричество. Но ни один день не потрачен напрасно. Ни для человечества, ни для себя. С открытием Фарадея в жизнь вошли не только генераторы тока и электромоторы, с ним, прежде всего в науку вошло представление об электромагнитном поле как о материальной среде, как о непрерывной материи, заполняющей пространство.

Дальнейшее развитие представлений о поле связано с Максвеллом. Благодаря его работам (начало XX в.) в науке утвердилась электромагнитная картина мира. Согласно этой картине весь мир заполнен электромагнитным эфиром, пустоты в нем нет. Электрическое, магнитное и электромагнитное поля трактовались как состояния эфира, который был их носителем. Поскольку эфир был средой для распространения света, то его называли еще «светоносным» эфиром. античный атомистика мир механический

В 1900 г. В. Вин поставил вопрос об электромагнитном обосновании механики. В науку прочно входит представление о непрерывности материи. Окончательно оно победило, когда А. Майкельсон своими опытами доказал, что светоносного эфира нет, свет - электромагнитное поле - сам является видом материи, для его распространения нет необходимости в какой-либо особой среде - эфире.

Представления об электромагнитном поле были настолько популярными, что А. Эйнштейн, будучи еще шестнадцатилетним юношей, подолгу размышлял о его свойствах, в частности о том, каким представлялось бы электромагнитное поле для наблюдателя, который «летит» вдогонку за ним со скоростью света, т. е. 300 000 км/с.

С утверждением в науке теории относительности изменились представления о пространстве и времени, о массе движущихся тел, об их взаимодействии. В механике Ньютона и механической картине мира пространство и время считались «абсолютными», не связанными с материальными объектами и не зависимыми друг от друга. Материальные объекты существовали в пустоте, взаимодействия между ними передавались мгновенно. Действительно, ни в формулу закона всемирного тяготения, ни в формулу закона Кулона время не входит.

Эйнштейн показал органическую взаимосвязь пространства и времени, относительность пространственных и временных соотношений в материальном мире. По Эйнштейну, распределение материи во Вселенной изменится, если перейти от одного периода времени к другому, от одной области пространства к другой. Пространство и время определяются распределением и движением масс материи. В связи с этим на смену представлениям о бесконечной неизменной Вселенной Ньютона приходят другие представления о Вселенной.

В теории относительности фигурирует четырехмерное пространство (четвертой координатой является время), искривление которого позволило Эйнштейну полностью объяснить все явления, связанные с тяготением. Это искривление производят тела. В зависимости от плотности вещества геометрия такого пространства может быть приближенно евклидовой (именно в таком пространстве находилась Вселенная Ньютона), или приближенно геометрией Лобачевского, или приближенно геометрией Римана.

В 1922 г. советский ученый А. А. Фридман показал, что теория тяготения Эйнштейна позволяет построить еще две равноправные модели Вселенной. Одна из них - закрытая модель, подобная поверхности шара, другая модель открытая.

4. Квантово-полевая картина мира

Основу современной физической картины мира составляют квантовая механика, фундаментальные идеи о квантовании физических величин и корпускулярно-волновой дуализм.

В 1897 г. был открыт электрон, его заряд оказался элементарным, т.е. самым наименьшим, существующим в природе в свободном состоянии. Заряд любого тела равен целому числу элементарных зарядов, следовательно, электрический заряд дискретен.

В 1900 г. М. Планк предложил квантовую гипотезу (лат. quantitus - количество): электромагнитное излучение испускается отдельными порциями - квантами, величина которых пропорционально частоте излучения. Им была введена новая фундаментальная физическая константа (квант действия) - постоянная Планка.

В 1905 г. А. Эйнштейн на основе квантовой гипотезы Планка выдвигает предложение, что свет, электромагнитное излучение оптического диапазона, не только излучается, но распространяется и поглощается квантами.

В 1911 г. Э. Резерфорд предложил планетарную модель строения атома: в атоме имеется положительное ядро, в котором сосредоточена практически вся масса атома; число положительных зарядов ядра атома соответствует числу электронов, вращающихся вокруг ядра по круговым орбитам, и порядковому номеру элемента в таблице Д.И. Менделеева.

В 1913г. Н. Бор сформулировал два постулата, отражающих суть его теории атома. Первый постулат: существуют стационарные состояния атома, находясь в которых он не излучает и не поглощает энергии, а электроны внешней электронной орбиты находятся на ближайшем от ядра атома расстоянии. Постулат второй: при переходе электрона с одной стационарной орбиты на другую происходит излучение или поглощение кванта энергии, равного разности энергий этих стационарных состояний.

В 1924 г. Луи де Бройль высказал гипотезу о соответствии каждой частице определенной длины волны, т. е. каждой частице материи присущи и свойства волны (непрерывность), и дискретность (квантовость). Эти представления нашли подтверждение в работах Э. Шредингера и В. Гейзенберга (1925-1927 гг.), а вскоре М. Борн показал тождественность волновой механики Шредингера и квантовой механики Гейзенберга.

В свете представленной квантово-полевой картины мира основные понятия получили новые обоснования.

На уровне микромира деление материи на вещество и поле условно; материя обладает корпускулярными и волновыми свойствами, но проявляет их в зависимости от условий; дискретность и непрерывность материи находятся в диалектическом единстве.

В мире микрообъектов движение не имеет определенной траектории, поскольку микрообъект, обладая волновыми и корпускулярными свойствами, не может иметь одновременно вполне определенных значений координаты и скорости (импульса).

В квантово-полевой картине мира окончательно утверждаются представления об относительности пространства и времени, они перестают быть независимыми друг от друга и, согласно теории относительности, сливаются в единое четырехмерное пространство-время.

Согласно данной физической картине мира различают четыре вида фундаментальных взаимодействий в природе: сильное, электромагнитное, слабое и гравитационное. Свойство элементарных частиц, которых в настоящее время насчитывается свыше 300, определяются в основном первыми тремя видами взаимодействий.

Заключение

Итак, с развитием науки представления людей о природе становятся все более глубокими и адекватными, все более отражающими истинное, реальное состояние окружающего мира. Первые картины мира, дошедшие до нас из глубины веков, созданы в период от 600-х до 500-х гг. до н. э. Древние мыслители каждый по-своему искали единое в многообразии явлений окружающего мира. Так мир Аристотеля состоит из пяти стихий - земли, воды, воздуха, огня и эфира. Материя в его понимании - это то, «из чего вещь состоит», и то, «из чего вещь возникает». Материя у Аристотеля делима до бесконечности, он не признает пустоты. Все многообразие веществ на земле.

Электромагнитная картина мира отличается от механической картины. Но все же между ними много общего. Так, если в механической картине мира окончательными элементами, моделирующими физическую реальность, были неизменные, не имеющие структуры частицы - их можно назвать материальными точками), движение которых предопределялось начальными условиями и законами механики, то в электромагнитной картине мира роль таких частиц выполняют точечные электрические заряды и электромагнитные характеристики каждой точки эфира, но «поведение» тех и других также предопределено начальными условиями и строгими физическими законами, т. е. в электромагнитной картине мира физические процессы также считаются однозначно детерминированными. Единственное, что противопоставляет эти картины мира,- это представление о материи: в механической картине мира она дискретна, в электромагнитной - непрерывна. Частицы, играющие роль кирпичиков мироздания, взаимодействуют посредством окружающего их электромагнитного поля, имеющего непрерывный характер.

Основу современной физической картины мира составляют квантовая механика, фундаментальные идеи о квантовании физических величин и корпускулярно-волновой дуализм.

В квантово-полевой картине мира окончательно утверждаются представления об относительности пространства и времени, они перестают быть независимыми друг от друга и, согласно теории относительности, сливаются в единое четырехмерное пространство-время.

Согласно данной физической картине мира различают четыре вида фундаментальных взаимодействий в природе: сильное, электромагнитное, слабое и гравитационное. Свойство элементарных частиц, которых в настоящее время насчитывается свыше 300, определяются в основном первыми тремя видами взаимодействий.

Список использованной литературы

1. Воронов В.К. и др. Основы современного естествознания. М.: Высш. Шк., 2013. - 247с.

2. Горохов В.Г. Концепция современного естествознания и техники. М.: Инфра-М, 2014. - 608с.

3. Данилова В.С., Кожевников Н.Н. Основные концепции естествознания. М.: Аспект Пресс, 2014. - 256с.

4. Дубнищева Т.Я. Концепция современного естествознания. М.: МГУ, 2014. - 832с.

5. Канке В.А. Концепции современного ествознания. М.:Лотос, 2013. -368с.

Размещено на Allbest.ru


Подобные документы

  • Научные картины мира и научные революции в истории естествознания. Изучение физической картины мира в ее развитии. Явления электричества и магнетизма. Квантово-релятивистская физическая картина мира, законы электродинамики. Общая теория относительности.

    реферат [30,1 K], добавлен 11.02.2011

  • Понятие картины мира, ее сущность и особенности, история изучения. Сущность принципа глобального эволюционизма, его влияние на изменение представлений о картине мира в XIX веке. Синергетика как теория самоорганизации, ее роль в современном представлении.

    контрольная работа [21,5 K], добавлен 09.02.2009

  • Под картиной мира понимается целостная система представлений о мире, его общих свойствах и закономерностях. Различают общенаучную, естественно-научную, социально-историческую, специальную, механическую, электромагнитную и квантово-полевую картины мира.

    реферат [109,7 K], добавлен 18.01.2009

  • Философская рациональность Аристотеля. Механистическая картина мира. Теория эволюции Дарвина. Сдвиг интереса от физики в сторону биологии. Квантовая механика. Теория относительности. Синергетика. Энтропия.

    реферат [16,1 K], добавлен 26.01.2007

  • Естествознание в Европе и в России. Механическая картина мира (классическая и универсальная). Электромагнитная картина мира. Развитие теории электромагнитного поля Д. Максвелла. Квантово-полевая картина мира. Дифференцированное изучение природы.

    контрольная работа [23,8 K], добавлен 16.06.2012

  • Характеристика современной естественно-научной картины мира. Междисциплинарные концепции как важнейшие элементы структуры научной картины мира. Принципы построения и организации современного научного знания. Открытия XX века в области естествознания.

    контрольная работа [21,9 K], добавлен 18.08.2009

  • Раскрытие понятия научной картины мира как системы представлений человека о свойствах и закономерностях окружающей действительности. Анализ синергетической парадигмы как системы научных исследований, изучающей природные процессы на основе самоорганизации.

    контрольная работа [31,4 K], добавлен 04.05.2011

  • Понятие "научная картина мира". Физика как ведущая дисциплина в классической научной картине мира. Историческая смена физических картин мира. Современная картина мира. Главный предмет синергетики. Исторические формы проблемы происхождения жизни.

    контрольная работа [24,6 K], добавлен 04.02.2010

  • Формирование ноосферной картины мира. В.И. Вернадский – выдающийся представитель русского космизма. Основные положения ноосферной картины мира. Анализ условий становления ноосферы. Стадии биосферы, основные факторы, приводящие к переходу к ноосфере.

    реферат [31,6 K], добавлен 13.05.2015

  • Научная революция и работы Коперника, Кеплера, Галилея и Декарта. Механика Ньютона, атомы микромира и лапласовский детерминизм, теории газов. Электромагнитная картина мира в работах Фарадея, Максвелла и Лоренца. Теория относительности Эйнштейна.

    реферат [599,1 K], добавлен 25.03.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.