История развития представлений о биосфере
Биосфера - населенная жизнью оболочка Земли, состав, структура, энергетика которой в существенных чертах обусловлены прошлой или современной деятельностью живых организмов. Вклады ученых первой половины XX века в изучение естественной совокупности видов.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 24.11.2015 |
Размер файла | 115,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
Биосфера -- населенная жизнью оболочка Земли, состав, структура и энергетика которой в существенных чертах обусловлены прошлой или современной деятельностью живых организмов.
История развития представлений о биосфере отражает изменение взглядов на природу Земли, непосредственно окружающую человека.
Возникшая 3,5--4,0 млрд лет назад, современная биосфера включает живые организмы (около 3 млн видов), их остатки, зоны атмосферы, гидросферы и литосферы, населенные и видоизмененные этими организмами.
Всю совокупность организмов на планете В.И. Вернадский назвал живым веществом, рассматривая в качестве его основных характеристик суммарную массу, химический состав и энергию. В состав биосферы кроме живого вещества (растительного, животного и микроорганизмов) входят биогенное вещество (продукты жизнедеятельности живых организмов -- каменный уголь, битумы, нефть), биокосное вещество (продукты распада и переработки горных и осадочных пород живыми организмами -- почвы, кора выветривания, все природные воды, свойства которых зависят от деятельности на Земле живого вещества) и, наконец, косное вещество -- совокупность тех веществ в биосфере, в образовании которых, как считается, живые организмы не участвуют (горные породы магматического, неорганического происхождения, вода, космическая пыль, метеориты).
Следовательно, биосфера -- это та область Земли, которая охвачена влиянием живого вещества. С современных позиций биосферу рассматривают как наиболее крупную, глобальную экосистему, поддерживающую планетарный круговорот веществ.
К настоящему времени первичная биосфера значительно изменена деятельностью человека. Качественно новый этап ее развития -- биотехносфера. Состояние же биосферы, при котором преобразующая человеческая деятельность начинает играть в ней определяющую роль, В. И. Вернадский назвал ноосферой или сферой разума.
1. Общая информация о развитии биосферы
Возраст Земли, определяемый методами изотопной геологии, составляет около 5 млрд лет. Наиболее принятые показатели 4,6-4,7 млрд лет. Приблизительно таков же возраст Солнца и других планет Солнечной системы. По современным представлениям, они образовались из вращающегося газопылевого космического облака. Под влиянием тепла, выделяющегося при гравитационном сжатии и радиоактивном распаде атомов, вещество Земли постепенно дифференцировалось на ядро, мантию и верхние слои. На ранней Земле предполагают активный вулканизм. За счет лав, выплавляющихся из верхней мантии, постепенно сформировалась земная кора, а дегазация лав привела к возникновению первичной атмосферы и жидкой воды на поверхности планеты. В первый миллиард лет существования Земли океан был, по самым грубым оценкам, примерно в 5 раз меньше современного по глубине и объему. Он формировался за счет разрастания и слияния мелких озер на поверхности суши. Ландшафт, подобно современному лунному, представлял вулканические конусы на плоских пространствах.
В настоящее время имеется уже достаточно много неоспоримых доказательств того, что ранняя атмосфера Земли была бескислородной, аналогично другим планетам Солнечной системы. Ультрафиолетовое излучение Солнца свободно достигало поверхности воды и суши из_за отсутствия озонового экрана. Вулканические газы, растворяясь в воде, переходили в первичный океан, имевший в результате сильно кислую реакцию.
Историю Земли делят на три большие отрезка: архей - первые примерно два миллиарда лет ее существования, протерозой - следующие 2 млрд лет ифанерозой, который начался около 570 млн лет назад. Дофанерозойское время называют криптозоем, т. е. эрой скрытой жизни, поскольку древние породы не содержат скелетных отпечатков макроископаемых. Традиционная палеонтологическая летопись начинается лишь с фанерозоя - «эры явной жизни». В более древних слоях присутствуют в основном микроископаемые.
До недавнего времени считалось, что возникновению жизни на Земле предшествовала очень длительная (миллиарды лет) химическая эволюция, включающая спонтанный синтез и полимеризацию органических молекул, объединение их в сложные системы, предшествующие клеткам, постепенное становление обмена веществ и т. п. Возможность и легкость протекания абиогенного синтеза органических мономеров в условиях, моделирующих атмосферу древней Земли, была убедительно доказана еще в 50_х годах во многих лабораториях мира, начиная с известных опытов С. Миллера и Г. Юри. Однако путь от простых органических молекул до простейших живых клеток, обладающих способностью к размножению и аппаратом наследственности, считали очень долгим. К тому же древние породы казались безжизненными. С развитием тонких методов исследования органических молекул, содержащихся в архейских и протерозойских породах, а также остатков микроскопических клеточных структур, это мнение изменилось. Одним из самых удивительных палеонтологических открытий последних десятилетий является регистрация следов жизни даже в самых древних породах земной коры. Следовательно, эволюция от органических соединений до живых клеток протекала в очень сжатые сроки, в самом начале истории Земли. Очень рано появились и фотосинтезирующие организмы. Породы древностью 3,8 млрд лет уже свидетельствуют о наличии на Земле цианобактерий (сине_зеленых водорослей), и следовательно, существовании фотосинтеза и биогенном выделении молекулярного кислорода. На границе архея и протерозоя цианобактерии уже были представлены богатым набором форм, сходных с современными. Наряду с ископаемыми остатками клеток сине_зеленых, в архейских слоях обнаружены следы их масштабной геологической деятельности - породы, сложенные строматолитами. Эти характерные полосчатые и столбчатые окаменелости возникают вследствие функционирования цианобактериальных сообществ, где тесно пространственно объединены фотосинтезирующие сине_зеленые и целый ряд других видов бактерий, деструкторов и хемосинтетиков. Каждая колония, таким образом, представляет отдельную экосистему, в которой сопряжены процессы синтеза и распада органического вещества. Современные строматолиты возникают лишь в крайне экстремальных условиях - в пересоленных или горячих водах, там, где нет более высокоорганизованной жизни
Таким образом, можно предполагать, что уже в середине архея жизнь на Земле была представлена разнообразными типами прокариот, начинающими влиять на ее геологическую историю. В восстановительной среде кислород, выделяемый цианобактериями, сначала расходовался на окисление разнообразных соединений и не накапливался в свободном виде в атмосфере.
Развитие жизни шло на фоне геологического развития планеты. В архее за счет химического и физического выветривания и эрозии суши началось формирование первых осадочных пород в океане, происходила их гранитизация и сформировались ядра будущих континентальных платформ. По некоторым предположениям, в начале протерозоя они составляли единый континент, названный Мегагеей, и были окружены единым океаном.
Тектоническая активность Земли, как показывает возраст изверженных пород, непостоянна во времени. Короткие эпохи повышенной активности чередуются с более длительными периодами покоя. Такой цикл занимает до 150-500 млн лет. За историю планеты геологи насчитывают 19 тектоно_магматических эпох, четыре из которых приходятся на фанерозой и 15 - на криптозой. В результате шло возрастание неоднородности земной коры. Повышенный вулканизм, горообразовательные процессы или, наоборот, оседание платформ меняли площади мелководий и условия развития жизни. На Земле то ослабевала, то усиливалась климатическая зональность. Следы древних оледенений известны еще с архейской эры.
Считают, что ранняя жизнь имела сначала локальное распространение и могла существовать лишь на небольших глубинах в океане, примерно от 10 до 50 м. Верхние слои, до 10 м, пронизывались губительными ультрафиолетовыми лучами, а ниже 50 м не хватало света для фотосинтеза. Соли древнего океана отличались повышенным содержанием магния по сравнению с кальцием в соответствии с составом пород первичной земной коры. В связи с этим одни из главных осадочных пород архея - магнийсодержащие доломиты. В океане не возникали сульфатные осадки, так как не было анионов окисленной серы. В древних породах много легко окисляющихся, но не окисленных полностью веществ - графита, лазурита, пирита. В архее в результате деятельности анаэробных железобактерий сформировались значительные толщи магнетита, гематита - руд, содержащих недоокисленное двухвалентное железо. Вместе с тем установлено, что кислород, имеющийся в составе этих пород, фотосинтетического происхождения.
Постепенно увеличивающиеся масштабы фотосинтетической активности цианобактерий привели к появлению и накоплению свободного кислорода в окружающей среде. Переход восстановительной атмосферы в окислительную наметился в начале протерозоя, о чем свидетельствуют изменения химического состава земных пород. Железо стало осаждаться в полностью окисленной, трехвалентной форме. Так возникли, например, железистые кварциты_джеспилиты Криворожского бассейна, Курской магнитной аномалии, озеро Верхнее в США и др. Продуктами выветривания на суше становятся красноцветы, содержащие бурое окисное железо. Исчезают пириты, вместо них в океане начинают появляться сульфаты, и морская вода из хлоридной становится хлоридно_карбонатно_сульфатной.
В истории атмосферного кислорода имеют значение несколько его пороговых величин. На Земле, лишенной фотосинтеза, кислород образуется в атмосфере за счет фотодиссоциации молекул воды. Его содержание, по расчетам Г. Юри, не может превышать 0,001 от современного (точка Юри) и автоматически держится на этом уровне. При таком содержании кислорода может существовать только анаэробная жизнь. Появление молекулярного кислорода за счет фотосинтеза сделало возможным для живых клеток процесс дыхания, который представляет намного более эффективный путь высвобождения энергии, чем анаэробное брожение. С этих позиций важна величина 0,01 содержания кислорода от современного уровня - так называемая точка Пастера. Существует целый ряд микроорганизмов, способных переключать свой энергетический обмен с дыхания на брожение и обратно при колебаниях кислорода ниже или выше точки Пастера. Есть предположения, что в раннем и среднем протерозое подобное переключение долгое время служило регулятором содержания О2, так как при повышении его концентрации кислород начинал интенсивно расходоваться на дыхание. Вместе с тем жизнь получила возможность распространиться почти до поверхности водоемов, так как ультрафиолетовые лучи за счет слабого озонового экрана могли теперь проникать на глубины не более метра.
По расчетам 60_х годов, точка Пастера была перейдена менее 1 млрд лет назад, а точка Беркнера_Маршалла - к концу силура, что обеспечило возможность выхода жизни на сушу. Современные исследования заставляют предполагать более раннее развитие событий. По некоторым данным, переход точки Пастера мог произойти уже 2,5 млрд лет назад, а 10_процентное содержание кислорода было достигнуто уже в период 1,8-2,0 млрд лет от современности.
Таким образом, на протяжении более двух миллиардов лет биосфера формировалась исключительно деятельностью прокариотов. Они полностью изменили геохимическую обстановку на Земле: сформировали кислородную атмосферу, очистили ее от токсических вулканических газов, связали и перевели в карбонатные породы огромное количество СO2, изменили солевой состав океана и сформировали громадные месторождения железных руд, фосфоритов и других ископаемых.
Формирование окислительной атмосферы повлекло за собой бурное развитие эукариотической жизни, энергетика которой основана на процессе дыхания. Очевидно, что эукариотная жизнь тесно связана с аэробной средой, подготовленной для нее прокариотами. Первые аэробные организмы могли возникнуть довольно рано в составе цианобактериальных сообществ, которые, по выражению палеонтологов, были своего рода «кислородными оазисами» в анаэробной среде.
В целом выделявшийся ранними фотосинтезирующими организмами кислород был токсичен и смертельно опасен для анаэробных форм жизни. После его накопления в воде и атмосфере анаэробные прокариотные сообщества оказались оттеснены в глубь грунтов, ко дну водоемов, т. е. в локальные местообитания с недостатком О2.
Во второй половине протерозоя в морях появились разные группы одноклеточных водорослей и простейших. Эукариотический фитопланктон усилил масштабы фотосинтеза. В свою очередь, и цианобактерии оставили в это время огромные залежи строматолитов, что свидетельствует об их высокой фотосинтетической активности. В конце протерозоя в морях создавалось уже так много биологической продукции, что на ее основе возникли древние нефтегазоносные залежи.
Последний этап протерозоя, занимающий около 100 млн лет (венд), демонстрирует взрыв многообразия многоклеточных. Возможно, что многоклеточность появилась и раньше, так как пока еще нет ясности в отношении ряда спорных палеонтологических находок, но только в венде возникает огромное разнообразие водных животных и растений достаточно высокой организации. Крупные местонахождения вендской биоты обнаружены в разных регионах мира: Австралии, Южной Африке, Канаде, Сибири, на побережье Белого моря. Среди животных преобладали кишечнополостные и черви, были формы, напоминающие членистоногих, но в целом большинство из них отличалось своеобразным обликом и не встречалось в более поздних слоях. Среди придонных водорослей было много лентовидных слоевищных форм. Отличительная черта всей вендской биоты - бесскелетность. Животные достигали уже крупных размеров, некоторые - до метра, но имели желеобразные студенистые тела, оставившие отпечатки на мягких грунтах. Хорошая и массовая сохранность отпечатков косвенно свидетельствует об отсутствии трупоядов и крупных хищников в вендских биоценозах.
Органическое вещество биогенного происхождения становится постоянным и обязательным компонентом осадочных пород со второй половины протерозоя.
Новая ступень в развитии органического мира - массовое появление у многоклеточных разнообразных наружных и внутренних скелетов. С этого времени датируется фанерозой - «эра явной жизни», поскольку сохранность скелетных остатков в земных слоях позволяет уже более подробно восстанавливать ход биологической эволюции. В фанерозое резко увеличивается воздействие живых организмов на геохимию океана, атмосферы и осадочных пород. Сама возможность появления скелетов была подготовлена развитием жизни. За счет фотосинтеза Мировой океан терял СO2 и обогащался О2, что изменило подвижность целого ряда ионов. В телах организмов в качестве скелетной основы стали откладываться SiO2, СаСО3, MgCO3, Р, Сu, V и другие минеральные компоненты. Присутствие достаточного количества кислорода облегчило и синтез белка коллагена, необходимого для органических скелетов.
Извлекая ряд веществ из водной среды и накапливая их в своих телах, организмы становятся уже не косвенными, а непосредственными создателями многих осадочных пород, захораниваясь на дне водоемов. Накопление карбонатов стало преимущественно биогенным и известковым, поскольку СаСО3более интенсивно используется для образования скелетов, чем MgCO3. Способность извлекать кальций из воды приобретают очень многие виды. В начале фанерозоя возникли также крупные залежи фосфоритов, созданных ископаемыми с фосфатным скелетом. Химическое осаждение SiO2 также становится биогенным.
В пределах фанерозоя выделяют три эры: палеозой, мезозой и кайнозой, которые, в свою очередь, подразделяют на периоды. Первый период палеозоя - кембрий - характеризуется таким взрывом биологического разнообразия, что он получил название кембрийской революции. Кембрийские породы насыщены многочисленными организмами (рис. 169). За этот период возникли практически все типы ныне существующих животных и целый ряд других, не дошедших до нашего времени. Появились археоциаты и губки, плеченогие, знаменитые трилобиты, разные группы моллюсков, ракушковые рачки, иглокожие и многие другие. Среди простейших возникли радиолярии и фораминиферы. Растения представлены разнообразными водорослями. Роль цианобактерий уменьшилась, так как строматолиты стали мельче и малочисленнее.
В течение ордовика и силура разнообразие организмов в океане нарастало и их геохимические функции становились все более разнообразными. Появились предки позвоночных животных. Рифообразующая роль перешла от строматолитов к коралловым полипам. Основным же событием палеозоя стало завоевание суши растениями и животными.
Возможно, что поверхность материков была заселена прокариотами еще в докембрийское время, если учесть выносливость некоторых форм современных бактерий к жесткому излучению. Однако сложные формы жизни смогли освоить сушу только с формированием полноценного озонового экрана. Этот процесс, очевидно, начался в силурийское время, но основным периодом его развития стал девон. Первые наземные растения - сборная группа псилофитов - характеризуются уже целым рядом примитивных анатомо_морфологических приспособлений к обитанию в воздушной среде: возникают проводящие элементы, покровные ткани, устьица и т. п. По другим чертам своего строения псилофиты еще очень похожи на водоросли. Наземная растительность эволюционировала так быстро, что к концу девона в сырых и приводных местообитаниях возникли леса из плауновых, хвощовых и папоротникообразных (рис. 170). Еще раньше на суше появились мхи. Эта споровая растительность могла существовать только во влажных полузатопляемых биотопах и, захораниваясь в анаэробных условиях, оставила залежи нового типа ископаемых - каменных углей.
В морях девона, наряду с бесчелюстными, уже господствовали разные формы рыб. Одна из групп - кистеперые, приобретшие ряд приспособлений к обитанию в мелких, замусоренных отмирающими растениями водоемах, дала начало первым примитивным земноводным. Еще с силура известны первые наземные членистоногие. В девоне уже существовали мелкие почвенные членистоногие, очевидно, потреблявшие гниющую органику. Однако деструкционный процесс на суше был еще недостаточно эффективным, и биологический круговорот - незамкнутым. Массовое захоронение растительной органики и выход ее из системы биологического круговорота повлекли за собой ускоренное накопление O2 в воздухе. По расчетам М. И. Будыко, содержание атмосферного кислорода в начале фанерозоя составляло около трети от современного. В девоне, и особенно в следующем периоде -карбоне, оно достигло современного и даже превзошло его. Карбоновые леса - вершина развития споровой растительности. Они состояли из древовидных плауновых - лепидодендронов и сигиллярий, гигантских хвощевых - каламитов, мощных и разнообразных папоротниковых.
Только из месторождений Донбасса известно более 400 ископаемых видов. Высокая продукция растений стимулировалась и достаточно большим содержанием СО2 в атмосфере, которое было примерно в 10 раз выше современного. В каменных углях карбона содержится большое количество углерода, изъятого из воздушных запасов СО2 в тот период.
Уже в карбоне возникли растения и животные, способные завоевывать и маловодные пространства суши: первые голосеменные - кордаиты и первые пресмыкающиеся. Воздушную среду освоили первые летающие насекомые. В морях процветали хрящевые и костистые рыбы, головоногие моллюски, кораллы, остракоды и брахиоподы. Конец палеозоя, пермский период, характеризовался резким изменением климатических условий. Интенсивные вулканизм и горообразовательные процессы (завершение Герцинской тектонической эпохи) привели к регрессии моря и высокому стоянию континентов: южного суперконтинента Гондваны и северного - Лавразии. Резко усилилась географическая зональность. В Гондване обнаружены следы обширного оледенения. В Лавразии, в зоне засушливого климата возникают большие площади осадков испарения - гипсов, каменной и калийной соли (месторождения Соликамска), ангидритов, доломитов. В тропических районах, однако, продолжается накопление каменных углей (Кузбасс, Печора, Китай). Споровая растительность приходит в резкий упадок. Масса кислорода в атмосфере сокращается до значений, характерных для начала палеозоя.
На границе палеозойской и мезозойской эр, в конце перми и начале триаса произошло, на фоне смены флор, глубокое обновление морской и наземной фаун. Среди растений господствуют голосеменные - цикадовые, гинкговые и хвойные. Вымирают многие группы земноводных и ранних пресмыкающихся, в морях исчезают трилобиты.
В мезозое начался распад Гондваны на отдельные континенты и расхождение их друг от друга. Середина мезозоя (юра) характеризуется снова расширением мелководий, ровным теплым климатом и ослаблением географической зональности. Юрские леса были по составу значительно разнообразнее карбоновых, менее влаголюбивы и произрастали не только в болотах и по краям водоемов, но и внутри континентов. По долинам и поймам рек они также оставляли залежи каменных углей. Среди позвоночных на суше господствуют рептилии, освоившие также воздушную и вторично водную среду. Возникают различные группы динозавров, птерозавры, ихтиозавры и многие другие формы.
В мезозое резко сокращается отложение карбонатных пород, одной из причин его считают дальнейшее уменьшение СО2в атмосфере и океане в связи с расходом на фотосинтез. Меняется и сам характер карбонатных отложений - они представлены в основном биогенным мелом и мергелями с повышенным содержанием Са. В начале мезозоя возникает новая группа одноклеточных водорослей - диатомовые с кремниевыми панцирями и за их счет начинают формироваться тонкие кремниевые илы и новые породы - диатомиты. Их толщи достигают в Мировом океане местами 1600 м при скорости накопления 7_30 см за 1000 лет. Интенсивность фотосинтеза и масштабы захоронения органики очень велики, расходы кислорода на окисление горных пород в межтектонический период незначительны, поэтому к середине мезозоя происходит резкое увеличение массы кислорода в воздухе. По расчетам М. И. Будыко, она превышает современную.
Развитие растительности привело к появлению новой прогрессивной группы - покрытосеменных. Это произошло в меловой период, к концу которого они, быстро распространяясь по всем материкам, значительно потеснили флору голосеменных. Параллельно с цветковыми растениями бурно эволюционируют различные группы насекомых_опылителей и потребителей тканей покрытосеменных. Цветковые растения отличаются ускоренными темпами роста и развития, разнообразием синтезируемых соединений. Будучи независимыми от воды в процессах оплодотворения, они характеризуются тем не менее более высоким потреблением влаги на процессы транспирации, более интенсивным вовлечением в круговорот элементов зольного питания и особенно азота. С появлением растительности покрытосеменных круговорот воды на планете на 80-90 % стал определяться их активностью. Под их влиянием начали формироваться близкие к современным почвы с поверхностным аэробным разложением растительных остатков. Значительно замедлились процессы угленакопления.
В течение всего мелового периода господствовали пресмыкающиеся, многие из которых достигали гигантских размеров. Существовали также зубатые птицы, возникли плацентарные млекопитающие, ведущие свое происхождение еще от примитивных триасовых предков. К концу периода распространились птицы, близкие к современным. В морях процветали костистые рыбы, аммониты и белемниты, фораминиферы.
Конец мелового периода характеризовался началом новой тектонической эпохи и глобальным похолоданием. Смена флор повлекла за собой и смену фаун, усилившуюся в результате влияния глобальных тектонических и климатических процессов. На границе мезозойской и кайнозойской эр произошло одно из наиболее грандиозных вымираний. С лица Земли исчезли динозавры и большинство других рептилий. В морях вымерли аммониты и белемниты, рудисты, ряд планктонных одноклеточных и многие другие группы. Началась интенсивная адаптивная радиация наиболее прогрессивных групп позвоночных - млекопитающих и птиц. В наземных экосистемах большую роль стали играть насекомые.
Наступившая кайнозойская эра характеризовалась возрастанием аэробных условий в биосфере не за счет увеличения массы кислорода, а за счет изменения почвенных режимов. Увеличилась полнота биологических круговоротов. Влажные леса палеогена еще оставили значительные накопления каменных и бурых углей. Одновременно с этим расцвет активной растительности покрытосеменных понизил содержание СО2 в атмосфере до современного уровня, в результате чего снизилась и общая эффективность фотосинтеза. В неогене нарастающий аэробиозис почв и водоемов прекратил процессы образования угля и нефти. В современную эпоху происходит только торфообразование в болотистых почвах.
В течение кайнозоя произошли резкие смены климатов. В результате эволюции покрытосеменных в периоды иссушения в середине эры возникли травянистые растительные формации и новые типы ландшафтов - открытые степи и прерии. В конце усилилась климатическая зональность и наступил ледниковый период с распространением льдов на значительной части Северного и Южного полушарий. Последняя волна ледников отступила всего около 12 тыс. лет назад.
2. Вклады отечественных ученых первой половины XX века в развитие биосферы
биосфера земля естественный
Теория Ч. Дарвина дала большой толчок развитию аутэкологического направления - изучение естественной совокупности видов, непрерывно перестраивающихся применительно к изменению условий среды, со второй половины середины XIX и до середины XX века было господствующим.
Одновременно стали проводиться исследования по надорганизменным биологическим системам. Этому способствовало формирование концепции биоценозов, как многовидовых сообществ. В 1877 г. немецкий гидробиолог К. Мебиус (1825-1908) на основе изучения устричных банок в Северном море разработал учение о биоценозе, как сообществе организмов, которые через среду обитания теснейшим образом связаны друг с другом. Именно его труд "Устрицы и устричное хозяйство" положил начало биоценологическим - экосистемным, исследованиям и в дальнейшем обогатилось методами учета количественных соотношений организмов. Термин "биоценоз" широко используется современными учеными. Учение о растительных сообществах, благодаря С.И. Коржинскому (1861-1900) и И.К. Пачоскому (1864-1942) выделилось в фитосоциологию, или фитоценологию, позднее в геоботанику. Исключительно велики заслуги В.В. Докучаева (1846-1903). Он создал учение о природных зонах и учение о почве, как особом биокосном теле (системе). Показал, что почва - это неотъемлемый компонент практически всех экосистем суши нашей планеты. Теоретические разработки В.В. Докучаева ("Учение о зонах природы") положили начало развитию геоботаники и ландшафтной экологии. Идея В.В. Докучаева о необходимости изучения не отдельных компонентов биоценозов, а связей, существующих между телами, явлениями и средой (водой, землей), между мертвой и живой природой, между растениями, животными и минеральным "царством", т.е. закономерностей функционирования природных комплексов, получила развитие в "Учении о лесе" Георгия Федоровича Морозова (1867-1920). Г.Ф. Морозов дал первое научное определение леса, как географического фактора - глобального аккумулятора солнечной энергии, влияющего на климат, почвы, на уровень кислородного и углеродного баланса планеты и регионов.
Особенно широко исследования надорганизменного уровня стали развиваться с начала XX века. Повсеместно стали создаваться разные научные общества и школы: ботаников, фитоценологов, гидробиологов, зоологов, и т.д., выпускаться журналы. 1916 г. - Ф. Клементс показал адаптивность биоценозов и адаптивный смысл этого, 1925 г. - А. Тинеманн ввел понятие "продукция", 1927 г. - Ч. Элтон выделил своеобразие биоценотических процессов, ввел понятие экологическая ниша, сформулировал правило экологических пирамид. К 30-ым годам XX столетия были созданы разные классификации растительности на основе морфологических, эколого-морфологических и динамических характеристик фитоценозов ( К.Раункиер - Дания, Г. ДиРюе - Швеция, И. Браун-Бланке - Швейцария); изучались структура, продуктивность сообществ, получены представления об экологических индикаторах (В.В. Алехин, Б.А. Келлер, А.П. Шенников).
В учебнике по экологии Ч. Элтона впервые отчетливо выделено направление популяционной экологии. Большой вклад в эту область внесли Е.Н. Синская (экологический и географический полиморфизм видов растений), И.Г. Серебряков (новая классификация жизненных форм растений), Л.Г. Раменский (закон индивидуальности видов и теория экологического континуума экологической), М.С. Гиляров (почва - переходная среда в завоевании членистоногими суши), С.С. Шварц (эволюционная экология палеэкология), и др.
В 1926 г. была опубликована книга В.И. Вернадского "Биосфера" в которой впервые показана планетарная роль биосферы, как совокупности всех видов живых организмов. В 30-40-е годы составлены новые по экологии животных (К. Фредерикс - 1930 г., Ф. Болденгеймер - 1938). В это же время вышло много монографий и учебных пособий по географии растений, экологии животных и растений.
Седьмой этап отражает новый подход к исследованиям природных систем - в основу его положено изучение процессов материально-энергетического обмена, формирование общей экологии, как самостоятельной науки. Г. Гаузе в начале 40-х годов прошлого столетия провозгласил принцип конкурентного исключения, указав на важность трофических связей, как основного пути для потоков энергии через природные системы. Вслед за Гаузе, в 1935 г. английский ботаник А. Тенсли ввел понятие экосистемы, и этот год принято считать годом рождения общей экологии как науки, объектом которой являются не только отдельные виды и популяции видов, но и экосистемы, в которых биоценозы рассматриваются с биотопами, как единое целое.
В общей экологии с этого времени четко выделились два направления - аутэкология и синэкология. В фитоценологии всеобщее признание получила парадигма дискретности растительного покрова, что объясняется стремлением к классификационным работам.
Почти одновременно с А.Тенсли, В.Н. Сукачев в 1942 г., следуя Г.Ф. Морозову, разработал систему понятий о лесном биогеоценозе, как о природной системе, однородной по всем параметрам (растительному покрову, миру животных и микроорганизмов, по поверхностной горной породе, гидрологическим, почвенным, микроклиматическим условиям, по типу взаимодействий, обмена веществом и энергией между его компонентами и между ними и другими явлениями природы).
Биогеоценоз В.Н. Сукачева - практически полный аналог экосистемы А. Тенсли. Главное в его понятии - общая идея о единстве живой и неживой природы, общности круговорота веществ и превращениях энергии, которые можно выразить через объективные количественные характеристики. В том же 1942 г. американским ученым Р. Линдеманном были изложены основные методы расчета энергетического баланса экологических систем. С этого времени экосистемные исследования являются одними из основных направлений в экологии, а количественные определения функций экосистем и их компонентов (запасы и фракционная структура растительной массы, пулы углерода и др. химических элементов, параметры трофических цепей, и др.) являются одним из основных методов, дающими возможность прогнозировать и моделировать биологические процессы. Последнее, в свою очередь, вылилось в теоретическую, или количественную, экологию, которая становится все более востребованной (изучение динамики экосистем, их продуктивности, моделирование экологических процессов исключительно важны для экологических прогнозов, разработки природоохранных мер, профилактики эпидемических ситуаций и пр.). Работа по международным экологическим программам МАБ и ЧиБ (Человек и биосфера).
В современной биосфере одним из наиболее значимых факторов, определяющих ее состояние, стала деятельность человека. Возникающие в связи с этим проблемы выходят за рамки экологии как биологической науки, приобретают направленный социальный и политический характер (движения "зеленых", борьба за охрану природы, постановка экологических вопросов в повестки дня политических организаций, и пр.). Решение их должно включать все естественные науки вкупе с хозяйственно-экономическими, социальными, политическими аспектами, что входит в задачи социальной экологии, в которой особое положение занимает экология человека (медико-биологический и социальный подходы).
Крупный российский ученый-теоретик, наш современник Н.Ф. Реймерс (1931-1993) общую экологию представил, как вершину естествознания - мегаэкологию, вокруг которой концентрируются другие научные дисциплины, связанные с актуальными проблемами цивилизации и угрозой экологического кризиса. Другой российский ученый -Н.Н. Моисеев (1917-2000), специалист в области системного анализа, моделирования и прогнозирования, математик с мировым именем считает, что дальнейшее развитие цивилизации должно происходить через коэвалюцию (совместную эволюцию) человеческого общества и биосферы - к ноосфере.
Особую и важнейшую роль в становлении и развитии экологии сыграл Владимир Иванович Вернадский - создатель учения о биосфере, намного опередивший свое время. Открытие биосферы В.И. Вернадским в начале ХХ столетия принадлежит к величайшим научным открытиям человечества, соизмеримым с теорией видообразования, законом сохранения энергии, общей теорией относительности, открытием наследственного кода у живых организмов и теорией расширяющейся Вселенной. В.И. Вернадский доказал, что жизнь на земле - явление планетарное и космическое, что биосфера - это хорошо отрегулированная за много сотен миллионов лет эволюции общепланетарная вещественно-энергетическая (биогеохимическая) система, обеспечивающая биологический круговорот химических элементов и эволюцию всех живых организмов, включая и человека. Не только составом атмосферы и гидросферы обязаны мы работе биосферы, но и сама земная кора - это продукт биосферы.
Может показаться странным утверждение о том, что В.И. Вернадский открыл биосферу. Что ее открывать? Это не микроб какой-то. Биосфера огромна, и с ней постоянно имеет дело каждый из нас. Мы живем, мы постоянно обитаем в ней. Да, мы обитаем в ней, но очень мало задумываемся о том, что этот наш хрупкий дом уникален во Вселенной, что механизмы, его поддерживающие, очень тонкие, и могут легко сломаться не только от падения большого метеорита на Землю, но и от нашего неразумного поведения.
«Спички детям не игрушка», - говорят родители и прячут подальше спички от детей, чтобы они не сделали пожар и не сожгли дом, а вместе с домом и самих себя. Современное человечество в биосфере очень напоминает этих глупеньких шаловливых детей, которым в руки попали «спички» - мощные механизмы, прогрессивные технологии. Спрятать бы подальше от шалунов эти «спички», - да некому этого сделать. Нет родителей дома, дети предоставлены самим себе.
2.1 Вклад В.И. Вернадского
Учение В.И. Вернадского о биосфере представляет собой обобщение естественнонаучных знаний, оно вобрало в себя эволюционные взгляды Ч. Дарвина, периодический закон Д.И. Менделеева, теорию единства пространства и времени А. Энштейна, идеи о неразрывной связи живой и неживой природы многих отечественных и зарубежных ученых.
В работах В.И. Вернадского рассматриваются компоненты биосферы, ее границы, функции живого вещества, эволюция биосферы.
Ученый впервые показал, что живая и неживая природа Земли тесно взаимодействуют и составляют единую систему.
Структура биосферы. В биосфере можно выделить следующие основные компоненты: живое вещество, косное (неживое) вещество, неживое биогенное вещество, биокосное вещество.
Живым веществом В.И. Вернадский назвал совокупность живых организмов, населяющих нашу планету. Это главная сила, преобразующая поверхность планеты, основа формирования и существования самой биосферы. Во все геологические эпохи живое вещество, преобразуя и аккумулируя солнечную энергию, влияло на химический состав земной коры, было мощной геохимической силой, формирующей лик Земли.
Живое вещество имеет количественные характеристики, его можно изучать, используя математические законы.
Количество живого вещества в биосфере (биомасса) - величина постоянная или мало изменяющаяся с течением времени. Во все геологические эпохи на Земле количество живого вещества было практически одинаковым. Ученый подчеркивал, что современное живое вещество генетически родственно живому веществу прошлых геологических эпох.
Под косным веществом В.И. Вернадский понимал такие вещества биосферы, в создании которых живые организмы не участвуют. Это, например, газы, твердые частицы и водяные пары, выбрасываемые вулканами, гейзерами.
Кроме живого и косного веществ, в состав биосферы входят:
-неживое биогенное вещество, которое образовано живым веществом современной и прошлых геологических эпох (ископаемые остатки организмов, нефть, уголь, газы атмосферы, озерный ил - сапропель, осадочные породы, например, известняки);
-биокосное вещество, которое создавалось одновременно и живыми организмами и косным веществом (например, почва, вода обитаемых водоемов, глинистые минералы).
Границы биосферы совпадают с границами распространения живых организмов в оболочках Земли, что определяется наличием условий существования жизни (благоприятный температурный режим, уровень радиации, достаточное количество воды, минеральных веществ, кислорода, углекислого газа). Биосфера охватывает всю поверхность суши, а также океаны, моря и ту часть недр Земли, где находятся породы, созданные в процессе жизнедеятельности живых организмов. Иначе говоря, биосфера - это часть литосферы, атмосферы, гидросферы, заселенная живым веществом.
Для существования живых организмов необходимы следующие условия: достаточное количество воды, минеральных веществ, кислород, углекислый газ, оптимальный температурный режим, уровень радиации и др.
Верхняя граница биосферы определяется озоновым экраном, представляющим собой тонкий слой (2-4 мм) газа озона. Роль озонового слоя в биосфере велика: он задерживает губительные для живого ультрафиолетовые лучи солнечного света. Этот слой расположен на высотах 16 - 20 км.
Нижняя граница биосферы неровная. К примеру, в литосфере живые организмы или продукты их жизнедеятельности можно встретить на глубине 3,5-7,5 км, а в Мировом океане организмы - на глубине 10 - 11 км.
Нижняя граница на суше связана с областями "былых биосфер" - так В.И. Вернадский назвал сохранившиеся остатки биосфер прошлых геологических эпох (накопления осадочных пород, углей, горючих сланцев и др.). "Былые биосферы" служат доказательством длительной эволюции биосферы Земли.
Ученый отмечал, что живое вещество распределено в биосфере неравномерно. Основная его масса сконцентрирована в приповерхностном слое суши толщиной 50-100 м и в приповерхностной толще воды (10-20 м). Здесь находится более 90% биомассы Земли. Но и в приповерхностном слое имеются пространства, густо заселенные живыми организмами (тропики и субтропики, теплые моря), и менее заселенные территории (пустыни, высокогорья, арктические и антарктические области). Для остальных территорий биосферы характерно, по словам В.И. Вернадского, "разрежение живого вещества".
Тем не менее, в пределах биосферы нет абсолютно безжизненных пространств. Даже в самых суровых условиях обитания можно найти бактерии и другие микроорганизмы. В.И. Вернадский высказал идею о "всюдности жизни", живое вещество способно "растекаться" по поверхности планеты; оно с огромной скоростью захватывает все незанятые участки биосферы, что обусловливает "давление жизни" на неживую природу.
Функции живого вещества. Одна из основных заслуг В.И. Вернадского состоит в том, что он впервые обратил внимание на роль живых организмов как мощного геологического фактора, на то, что живое вещество выполняет в биосфере различные биогеохимические функции. Благодаря этому обеспечиваются круговорот веществ и превращение энергии и, в итоге, целостность, постоянство биосферы, ее устойчивое существование. Важнейшими функциями являются энергетическая, газовая, окислительно-восстановительная, концентрационная.
Энергетическая функция заключается в накоплении и преобразовании растениями энергии Солнца (бактерии-хемоавтотрофы преобразуют энергию химических связей) и передаче ее по пищевым цепям: от продуцентов - к консументам и, далее, - к редуцентам. При этом энергия постепенно рассеивается, но часть ее вместе с остатками организмов переходит в ископаемое состояние, "консервируется" в земной коре, образуя запасы нефти, угля и др.
В осуществлении газовой функции ведущая роль принадлежит зеленым растениям, которые в процессе фотосинтеза поглощают углекислый газ и выделяют в атмосферу кислород. В то же время, большинство живых организмов (и растения в том числе) в процессе дыхания используют кислород, выделяя в атмосферу углекислый газ. Таким образом, участвуя в обменных процессах, живое вещество поддерживает на определенном уровне газовый состав атмосферы.
Окислительно-восстановительная функция тесно связана с энергетической. Существуют микроорганизмы, которые в процессе жизнедеятельности окисляют или восстанавливают различные соединения, получая при этом энергию для жизненных процессов. Велико их значение для образования многих полезных ископаемых. Например, деятельность железобактерий по окислению железа привела к образованию таких осадочных пород как железные руды; серобактерии, восстанавливая сульфаты, образовали месторождения серы.
Концентрационная функция заключается в способности живых организмов накапливать различные химические элементы. Например, осоки и хвощи содержат много кремния, морская капуста и щавель - йод и кальций. В скелетах позвоночных животных содержится большое количество фосфора, кальция, магния. Осуществление данной функции способствовало образованию залежей известняка, мела, торфа, угля, нефти.
Эволюция биосферы. В.И. Вернадский в своих работах подчеркивал, что история возникновения и эволюция биосферы - это история возникновения жизни на Земле. Развитие биосферы идет вместе с эволюцией органического мира - изменяется состав ее компонентов, расширяются границы и т. д.
Живое вещество эволюционирует в сторону усложнения уровня организации, уменьшения прямой зависимости от среды обитания, усовершенствования способов ориентации и передвижения в пространстве.
Перенеся идеи физики о неразрывности пространства и времени на явления природы, В.И. Вернадский объяснил направленность эволюции биосферы: она ограничена пространством, что определяется телом планеты, и направлена в сторону прогрессивного развития, так как необходимо приобрести свойства, которые позволят это ограниченное пространство использовать по возможности максимально.
Особое внимание в своих трудах ученый уделял возрастающему влиянию человека на ход эволюции биосферы. Вернадский подчеркивал, что человек разумный - невиданная по своим масштабам геохимическая сила, которая увеличивает свое влияние по мере развития научной мысли. Еще в 20-х годах прошлого века ученый сумел предугадать многие тенденции воздействия человека на природу. Его теоретические положения о биосфере и месте в ней человека - блестящий пример научного обобщения.
2.2 Вклад В.В Докучаева
Докучаев, Василий Васильевич (17 февраля 1846 - 26 октября 1903) - русский ученый-естествоиспытатель, основатель современного научного почвоведения и комплексного исследования природы. Родился в семье сельского священника в с. Милюкове Сычевского уезда Смоленской губернии. В 1867 окончил с отличием Смоленскую духовную семинарию и поступил на физико-математический факультет (естественное отделение) Петербургского университета, где преподавали Д. И. Менделеев, А. М. Бутлеров, П. Л. Чебышев, А. Н. Бекетов и некоторое время И. И. Мечников. Под руководством профессора П. А. Пузыревского он выполнил 2 работы - «О голубом дистене Онежского озера» (1871) и «О наносных образованиях по речке Качне Сычевского уезда Смоленской губернии» (1872). В 1872 окончил Петербургский университет со степенью кандидата и на средства Общества естествоиспытателей, действительным членом которого он состоял, отправился в научную экспедицию для изучения «наносной формации» Смоленской губернии. В 1872 занял должность консерватора (хранителя) при геологическом кабинете Петербургского университета. В 1873 был избран действительным член Петербургского минералогического общества. В 1874 опубликовал работу по вопросам осушения болот, которая явилась значительным вкладом в научное болотоведение.
В процессе работы по исследованию почв Докучаев проявлял интерес к практическим вопросам сельского хозяйства. В 1880 он выступил на общем собрании Вольного экономического общества с докладом, в котором отмечал тяжелое положение сельского хозяйства в России и наметил некоторые мероприятия по изучению условий сельского хозяйства и популяризации достижений агрономической науки. В частности, Докучаев выдвинул проект организации в Петербурге Почвенного музея с химико-агрономической лабораторией. Однако его предложение не встретило поддержки. В 1882 Докучаев был избран кандидатом на должность старшего геолога Геологического комитета. В 1883 был опубликовав классический труд Д. «Русский чернозём. Отчёт Вольно экономическом обществу», в котором он не только подвел итоги своих многолетних исследований чернозёмов, но и сформулировал основные положения созданного им современного научного почвоведения.
С 1885, совместно с А. В. Советовым, начал публиковать специальные почвенные и ботанические работы в непериодическом издании «Материалы по изучению русских почв». В одном из выпусков (1886) Докучаев дал первую в мире подлинно научную классификацию почв, основанную на генетическом принципе. В 1888 г. организовал при Вольном экономическом обществе постоянную Почвенную комиссию, задачей которой было изучение почв России. В состав комиссии, председателем которой был избран Докучаев, вошли А. Н. Бекетов, В. И. Вернадский, А. И. Воейков, А. А. Измаильский, Ф. Ю. Левинсон-Лессинг, Н. М. Сибирцев, А. В. Советов, А. Н. Энгельгардт и др. В 1913 комиссия была преобразована в Докучаевский почвенный комитет. В 1888 Докучаев по предложению Полтавского земства исследовал почвы, растительность и геологические условия Полтавской губернии. Работа продолжалась до 1894. Труды экспедиции были изданы в 16 тт. и дали материалы для разработки ряда теоретических и практических вопросов сельскохозяйственного почвоведения, а также геоморфологии и физической географии. Кроме того, участники экспедиции во главе с Д. составили почвенную карту Полтавской губернии. В 1892 Докучаев организовал в Полтаве губернский Естественно-исторический музей.
2.3 Вклад М.С. Гилярова
Меркурий Сергеевич Гилямров (1912--1985) советский зоолог, энтомолог, основоположник отечественной почвенной зоологии, биолог-эволюционист, академик АН СССР (1974).
Меркурий Сергеевич окончил Киевский государственный университет (1933), где учился под руководством зоолога, специалиста в области сравнительной анатомии позвоночных профессора М. М. Воскобойникова. Рецензентом дипломной работы был выдающийся эволюционист, профессор (впоследствии академик) И. И. Шмальгаузен.
Работал в сельскохозяйственных учреждениях на Украине. С 1936 -- в Москве. В 1938--1944 руководил Отделом защиты растений Всесоюзного института каучуконосов.
М. С. Гиляров основал советскую почвенную зоологию, рождением которой считается 1939 год, когда в журнале «Почвоведение» были опубликованы две его статьи: «Почвенная фауна и жизнь почвы» и «Влияние почвенных условий на фауну почвенных вредителей».
В 1944--1955 старший научный сотрудник, с 1955 заведующий лабораторией почвенной зоологии института эволюционной морфологии и экологии АН СССР; одновременно (1949--1978) профессор Московского педагогического института им. В. И. Ленина.
В 1947 году стал доктором биологических наук. Был главным редактором «Журнала общей биологии».
Опубликовал около 500 научных работ. Основные труды по разработке мер борьбы с почвенными вредителями, роли животных в почвообразовании, эволюции насекомых и др. членистоногих, закономерностям естественного отбора, зоологическим методам диагностики почв, биогеоценологии. Под его руководством большой коллектив авторов создал единственный в мире «Определитель обитающих в почве личинок насекомых» и «Определитель почвообитающих клещей».
2.4 Вклад В.Н. Беклемишева
Российский зоолог, основатель научной школы паразитологов. Одной из первых работ В.Н. Беклемишева было построение естественной системы организмов. «История становления и развития методологических воззрений Беклемишева была очень непростой. Высказав в 1928 г. нетривиальные идеи, которые не вписывались в положения классической эволюционной биологии и доминировавшие в то время в советской биологии теоретические концепции, Владимир Николаевич вряд ли мог рассчитывать на понимание и признание своих воззрений. С течением времени с его методологическими взглядами произошла определённая вынужденная инверсия, поскольку неприятие его идей усугублялось социально-политическими установками конца 20-х годов, имевшими место в советской науке: господством диалектического материализма во всех сферах научных исследований, буквальным следованием классическим положениям селектогенеза, истолкованного скорее по Геккелю, чем по Дарвину. Изложив свои идеи в Методологии систематики (1928), так и оставшейся на долгие годы в рукописи, Беклемишеву пришлось сделать их своего рода эзотерикой для избранных, и переключиться на практическую деятельность, используя по возможности свои теоретические положения, но совершенно в ином контексте, не акцентируя на них внимания. В начале 30-х годов Беклемишев был подвергнут жёсткой критике за проповедь идеализма. Это было одной из причин его перехода в Тропический институт, где он с успехом занялся аляриологией. Он не пытался издать свою книгу, поскольку не хотел искажать её суть. В дальнейшем, в своих многочисленных работах Беклемишев нигде не погрешил использованием марксистской терминологии, ограничивая себя конкретными фактами, не требовавшими философских объяснений. Если бы Беклемишеву не надо было замалчивать свои взгляды на основы биологического познания, если бы он смог своевременно ввести их в научный оборот и развивать далее, возможно, биология сегодня имела бы свой прочный теоретический фундамент. Уже в ранних работах конца 20-х годов прошлого века, предшествующих написанию Методологии систематики, Беклемишев четко определил, что такое методология применительно к биологическому исследованию, сформулировав и её содержание, и её биологический смысл. Оригинальным и новаторским оказался его подход ко многим общепринятым положениям и понятиям общей биологии. Прежде всего Беклемишев расширил сферу объектов биологической систематики, включив в неё динамические процессы. По его мнению, процессами, или потоками изменений, представляются все явления мира. Трактовка критерия индивидуальности как специфики присущего организму морфопроцесса (процесса осуществления формы) привела его к оригинальной и неожиданной трактовке критерия жизни. Его понимание времени как процесса длительности было близко к пониманию феномена времени выдающимся философом XX столетия A. Бергсоном. Беклемишев был одним из первых биологов, который ввел в биологическое исследование временной параметр в новом понимании - время-изменение». Музрукова Е.Б., Методология биологического познания в концепции В.Н. Беклемишева, в Сб.: Грани познания: наука, философия, культура в XXI веке в 2-х книгах, Книга 2 / Отв. ред. Н.К. Удумян, М., Наука, 2007 г., с. 104-105. «В методологической концепции Беклемишева индивидуальность живого организма - это форма, при помощи которой можно понять организацию в явлениях (явлениях становления и развития этого организма). При этом он совершенно по-новому трактовал само понятие организм. В биологии основным принципом науки Нового времени, отличающей её от античной философии, был принцип инвариантности законов природы, сводящей определенные явления к чему-то неизменному. Применительно к организму это можно назвать индивидуальностью, целостностью, общностью и т.д. Беклемишев определил организм как систему, в которой взаимодействие частей обеспечивает ритмическое повторение определенного цикла изменений. Эта динамическая составляющая, присущая живому, и обеспечивает, по мнению Беклемишева, его специфику. Всякий организм есть в сущности морфопроцесс и характеризуется он определёнными стадиями в изменении всех свойств и определенным взаимоотношением этих изменений во времени. Моментальные формы, которые принимает одну за другой тело, с одной стороны, и характер их чередования, форма этого процесса с другой, - вот что подлежит описанию и на основании чего строится система. Заметим, что это определение Беклемишева совпадает с понятием структурированного процесса становления, присущего эмбриогенезу, идея которого была выдвинута Г. Дришем в 1913 г. Она созвучна и концепции А.Г. Гурвича о неравновесных молекулярных констелляциях. Характерные черты морфопроцесса - ритмичность и замкнутость. Чем более замкнут морфопроцесс, тем более он независим от внешней среды, и, следовательно, тем более индивидуален. Динамический процесс, его течение во времени, которое Беклемишев понимал по Бергсону (время-изменение), стали основными понятиями при обосновании им сущности биологической индивидуальности. Способность живого к саморегуляции постоянно поддерживает природную форму организма. Эта способность выступает резко только в динамических системах, в которых постоянство обусловлено не тождеством положения, а тождеством траекторий, где типичная форма непрерывно осуществляется активным путём. Замкнутость процесса определяет степень его индивидуальности. Совершенный организм, по Беклемишеву, замкнут вполне. Поэтому Биосфера, в которой отмирание и гибель частей идет непрерывно, организм несовершенный. Критерием индивидуальности для Беклемишева был не способ образования обособленности и самостоятельность частей, а лишь устойчивость морфопроцесса, по его выражению, функциональная гармония частей. Устойчивость выражает способ организации морфопроцесса, которая и является основой индивидуальности. В общетеоретическом плане особенно интересно, что для Беклемишева понятие организации являлось основным и в определении жизни. Понятия жизни и организации не разделимы и, в сущности, тождественны. Поэтому качественное противоположение живого и мертвого целесообразно заменить количественным противоположением более организованного и менее организованного. Живое обладает, по Беклемишеву, внутренней организацией, т.е. динамическим морфопроцессом, мёртвое - нет. Этот вывод актуален и для современной методологии биологического познания, как и само по себе целостное восприятие Природы, которое Беклемишев пронёс через всю жизнь». Музрукова Е.Б., Методология биологического познания в концепции В.Н. Беклемишева, в Сб.: Грани познания: наука, философия, культура в XXI веке в 2-х книгах, Книга 2 / Отв. ред. Н.К. Удумян, М., Наука, 2007 г., с. 109-110. Под руководством В.Н. Беклемишева была разработана система мер, в результате которых, в СССР была практически полностью ликвидирована малярия.
Подобные документы
Биосфера как область обитания живых организмов. Оболочка Земли: состав, структура и энергетика которой определяется совокупной деятельностью живых организмов. Абиотические компоненты биосферы. Связь биосферы с космосом и взаимодействие с человеком.
реферат [27,7 K], добавлен 13.05.2009Учение В.И. Вернадского о биосфере - оболочке Земли, населенной живыми организмами. Границы и косное вещество биосферы. Характеристика основных оболочек Земли: атмосферы, гидросферы и литосферы. Анализ закономерностей в распределении живых организмов.
презентация [2,5 M], добавлен 20.11.2014Вклад В. Вернадского в развитие науки о биосфере. Структура биосферы (живое, биогенное, косное и биокосное вещество) и ее границы. Степень сосредоточения массы живого вещества в атмосфере, гидросфере и литосфере, преобладающие виды живых организмов.
презентация [5,3 M], добавлен 07.11.2011Определение биосферы как общепланетной оболочки. Масса биосферы. Географическая оболочка. Образование живых веществ и их распад. Кругооборот кислорода, углерода, азота, фосфора и воды. Замкнутый круг взаимозависимых и взаимоприспособленных организмов.
реферат [24,9 K], добавлен 09.03.2009Основа организации и устойчивости биосферы, распределение и классификация живого вещества. Миграция живых организмов, постоянство их биомассы. Фотосинтез - основное звено биохимического круговорота в природе. Функции живого вещества в биосфере Земли.
реферат [23,7 K], добавлен 25.11.2010Клеточные и неклеточные формы живых организмов, их основные отличия. Животные и растительные ткани. Биоценоз - живые организмы, имеющие общее место обитания. Биосфера Земли и ее оболочки. Таксон - группа организмов, объединенных определенными признаками.
презентация [2,9 M], добавлен 01.07.2011Изучение и характеристика учения В.И. Вернадского о биосфере, его концепции "О начале и вечной жизни на земле". Противостояние двух мировоззрений как "Два синтеза Космоса". Понятие Вернадского о живом веществе, т.е. совокупности всех живых организмов.
реферат [31,3 K], добавлен 24.07.2010Учение В.Н. Вернадского о биосфере, как об активной оболочке земли. Связь геологических процессов в биосфере с деятельностью живого вещества. Зависимость существования биосферы от условий, созданных геологическими процессами. Проблемы биосферы сегодня.
реферат [23,8 K], добавлен 23.10.2009Сущность, особенности и методологическое значение биосферы - целостной геологической оболочки Земли, заселенной жизнью и качественно преобразованной ею в направлении формирования и повышения жизнепригодных свойств. Понятие "ноосфера" и его специфика.
реферат [44,8 K], добавлен 23.02.2011Роль и значение биосферы для развития жизни на Земле. Процесс освоения жизнью планеты. Положение эволюционной теории Вернадского, живое и косное вещество. Структура биосферы в рамках различных подходов. Круговорот химических элементов в биосфере.
курсовая работа [46,5 K], добавлен 24.09.2011