Симметрия в природе
История возникновения учения о симметрии. Значение симметрии в познании природы. Основные аспекты, без которых симметрия не возможна. Основные пространственно-временные виды симметрий. Человек - существо симметричное. Примеры симметрии в природе.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 16.11.2015 |
Размер файла | 46,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
- Введение
- 1. История возникновения учения о симметрии
- 2. Значение симметрии в познании природы
- 3. Основные пространственно-временные виды симметрий
- 4. Человек - существо симметричное
- 5. Примеры симметрии в природе
- Заключение
- Список использованной литературы
Введение
Под симметрией (от греч. symmetria -- соразмерность) в широком смысле понимают правильность в строении тела и фигуры. Учение о симметрии представляет собой большую и важную ветвь тесно связанную с науками разных отраслей. С симметрией мы часто встречаемся в искусстве, архитектуре, технике, быту. Так, фасады многих зданий обладают осевой симметрией. В большинстве случаев симметричны относительно оси или центра узоры на коврах, тканях, комнатных обоях. Симметричны многие детали механизмов, например, зубчатые колеса.
Проблеме симметрии посвящена поистине необозримая литература. От учебников и научных монографий до произведений, апеллирующих не столько к чертежу и формуле, сколько к художественному образу, и сочетающих в себе научную достоверность с литературной отточенностью.
Симметрия является одной из наиболее фундаментальных и одной из наиболее общих закономерностей мироздания: неживой, живой природы и общества. С симметрией мы встречаемся всюду. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания; его широко используют все без исключения направления современной науки.
Что же такое симметрия? Почему симметрия буквально пронизывает весь окружающий нас мир? Существуют, в принципе, две группы симметрий. К первой группе относится симметрия положений, форм, структур. Это та симметрия, которую можно непосредственно видеть. Она может быть названа геометрической симметрией. Вторая группа характеризует симметрию физических явлений и законов природы. Эта симметрия лежит в самой основе естественнонаучной картины мира: ее можно назвать физической симметрией. На протяжении тысячелетий в ходе общественной практики и познания законов объективной действительности человечество накопило многочисленные данные, свидетельствующие о наличии в окружающем мире двух тенденций: с одной стороны, к строгой упорядоченности, гармонии, а с другой - к их нарушению. Люди давно обратили внимание на правильность формы кристаллов, цветов, пчелиных сот и других естественных объектов и воспроизводили эту пропорциональность в произведениях искусства, в создаваемых ими предметах, через понятие симметрии. «Симметрия, - пишет известный ученый Дж. Ньюмен, - устанавливает забавное и удивительное родство между предметами, явлениями и теориями, внешне, казалось бы, ничем не связанными: земным магнетизмом, женской вуалью, поляризованным светом, естественным отбором, теорией групп, инвариантами и преобразованиями, рабочими привычками пчел в улье, строением пространства, рисунками ваз, квантовой физикой, лепестками цветов, интерференционной картиной рентгеновских лучей, делением клеток морских ежей, равновесными конфигурациями кристаллов, романскими соборами, снежинками, музыкой, теорией относительности...". Слово «симметрия» имеет двойственное толкование. В одном смысле симметричное означает нечто весьма пропорциональное, сбалансированное; симметрия показывает тот способ согласования многих частей, с помощью которого они объединяются в целое. Второй смысл этого слова - равновесие. Еще Аристотель говорил о симметрии как о таком состоянии, которое характеризуется соотношением крайностей. Из этого высказывания следует, что Аристотель, пожалуй, был ближе всех к открытию одной из самых фундаментальных закономерностей Природы закономерности о ее двойственности. Характерно, что к наиболее интересным результатам наука приходила именно тогда, когда устанавливались факты нарушения симметрии. Следствия, вытекающие из принципа симметрии, интенсивно разрабатывались физиками в прошлом веке и привели к ряду важных результатов. Такими следствиями законов симметрии являются, прежде всего, законы сохранения классической физики. В настоящее время в естествознании преобладают определения категорий симметрии и асимметрии на основании перечисления определенных признаков. Например, симметрия определяется как совокупность свойств: порядка, однородности, соразмерности, гармоничности. Все признаки симметрии во многих ее определениях рассматриваются равноправными, одинаково существенными, и в отдельных конкретных случаях, при установлении симметрии какого-то явления, можно пользоваться любым из них. Так, в одних случаях симметрия - это однородность, в других - соразмерность и т. д. То же самое можно сказать и о существующих в частных науках определениях асимметрии.
симметрия природа временной учение
1. История возникновения учения о симметрии
Симметрия является фундаментальным свойством природы, представление о котором, как отмечал академик В.И. Вернадский, «слагалось в течение десятков, сотен, тысяч поколений». «Изучение археологических памятников показывает, что человечество на заре своей культуры уже имело представление о симметрии и осуществляло ее в рисунке и в предметах быта. Харитонов А.С. Феномен симметрии. - ЮНИТИ, 1999. Хорошавина С.Г. Курс лекций «Концепция современного естествознания». Ростов н/Д: Феникс, 2000.Надо полагать, что применение симметрии в первобытном производстве определялось не только эстетическими мотивами, но в известной мери и уверенностью человека в большей пригодности для практики правильных форм». Это слова другого нашего замечательного соотечественника, посвятившего изучению симметрии всю свою долгую жизнь, академика А.В.Шубникова. Первоначальное понятие о геометрической симметрии как о гармонии пропорций, как о «соразмерности», что и означает в переводе с греческого слово «симметрия», с течением времени приобрело универсальный характер и было осознано как всеобщая идея инвариантности (т.е. неизменности) относительно некоторых преобразований. Таким образом, геометрический объект или физическое явление считаются симметричными, если с ними можно сделать что-то такое, после чего они останутся неизменными. Например, пятиконечная звезда, будучи повернута на 72° (360°:5), займет первоначальное положение, а ваш будильник одинаково звенит в любом углу комнаты. Первый пример дает понятие об одном из видов геометрической симметрии - поворотной, а второй иллюстрирует важную физическую симметрию - однородность и изотропность (равнозначность всех направлений) пространства. Благодаря последней симметрии все физические приборы (в том числе и будильник) одинаково работают в разных точках пространства, если, конечно, не изменяются окружающие физические условия. Легко вообразить, какая бы царила на Земле неразбериха, если бы эта симметрия была нарушена! Таким образом, не только симметричные формы окружают нас повсюду, но и сами многообразные физические и биологические законы гравитации, электричества и магнетизма, ядерных взаимодействий, наследственности пронизаны общим для всех них принципом симметрии. «Новым в науке явилось не выявление принципа симметрии, а выявление его всеобщности»,-- писал Вернадский. Пристальное внимание уделяли симметрии Пифагор и его ученики. Основное положение пифагорейской философии, согласно Аристотелю, состоит в том, «что число есть сущность всех вещей и организация вселенной в ее определениях представляет собою вообще гармоническую систему чисел и их отношений». Исходя из учения о числе пифагорейцы дали первую математическую трактовку гармонии, симметрии, которая не потеряла своего значения и в наши дни. Взгляды Пифагора и его школы получили дальнейшее развитие в платоновском учении о познании. Особый интерес представляют взгляды Платона на строение мира, который, по его утверждению, состоит из правильных многоугольников, обладающих идеальной симметрией. Для Платона характерно соединение учения об идеях с пифагорейским учением о числе. Действительно, еще Платон мыслил атомы четырех стихий -- земли, воды, огня и воздуха -- геометрически симметричными в виде правильных многогранников. И хотя сегодня «атомная физика» Платона кажется наивной, принцип симметрии и через два тысячелетия остается основополагающим принципом современной физики атома. За это время наука прошла путь от осознания симметрии геометрических тел к пониманию симметрии физических явлений. Среди более поздних естествоиспытателей и философов, занимавшихся разработкой категории симметрии, следует назвать Р. Декарта и Г. Спенсера. Р.Декарт писал: «Каково бы ни было то неравенство и беспорядок, которое, как мы можем предположить, были с самого начала установлены богом между частицами материи, почти все эти частицы должны по законам природы приблизиться к средней величине и среднему движению». Таким образом, по Декарту, бог, создав асимметричные тела, придал им «естественное» круговое движение, в результате которого они совершенствовались в тела симметричные. Характерно, что к наиболее интересным результатам наука приходила именно тогда, когда устанавливала факты нарушения симметрии. Следствия, вытекающие из принципа симметрии, интенсивно разрабатывались физикам в прошлом веке и привели к ряду важных результатов. Такими следствиями законов симметрии являются прежде всего законы сохранения классической физики. Понятия симметрии и асимметрии, которыми пользуются в частных науках, далеко не полно отражают существующую в реальном мире симметрию и асимметрию; они развиваются и обогащаются. Как показывает история науки, это понятия, с помощью которых можно объяснить многие явления и предсказывать существование новых, еще не познанных свойств природы. Симметрия пронизывает буквально все вокруг, захватывая, казалось бы, совершенно неожиданные области и объекты. Дж. Ньюмена, который особенно удачно подчеркнул всеохватывающие и вездесущие проявления симметрии, говорил: «Симметрия устанавливает забавное и удивительное сродство между предметами, явлениями и теориями, внешне, казалось бы, ничем не связанными: земным магнетизмом, женской вуалью, поляризованным светом, естественным отбором, теорией групп, инвариантами и преобразованиями, рабочими привычками пчел в улье, строением пространства, рисунками ваз, квантовой физикой, скарабеями, лепестками цветов, интерференционной картиной рентгеновских лучей, делением клеток морских ежей, равновесными конфигурациями кристаллов, романскими соборами, снежинками, музыкой, теорией относительности...». Леонардо да Винчи тоже не обошел своим вниманием и симметрию. Он рассмотрел равновесие шара, имеющего» опору в центре тяжести: две симметричные половины шара уравновешивают друг друга и шар не падает. Как художник он главное внимание уделял изучению законов перспективы и пропорций, с помощью которых выявляются художественные достоинства произведений искусства. В науку симметрия вошла в 30-х гг. XIX в. в связи с открытием Гесселем 32 кристаллографических классов и появлением теории групп как области чистой математики. Кристаллы наделены наибольшей величиной симметрии из всех реальных объектов, они блещут своей симметрией. Кристаллы -- это симметричные тела, структура которых определяется периодическим повторением в трех измерениях элементарного атомного мотива. Симметрия является основным предметом изучения кристаллографии. Она -- основной теоретический принцип и практический метод классификации кристаллов. Симметричной в кристаллографии считается фигура, которая делится без остатка на равные и одинаково расположенные части. Величина симметрии определяется наибольшим числом равных и одинаково расположенных частей фигуры, на которые она делится без остатка. Э.Галуа предложил классифицировать алгебраические уравнения по их группам симметрии. Ф.Клейн предложил взять идею симметрии в качестве единого принципа при построении различных геометрий. Эта идея сделала очевидным тот факт, что принцип симметрии служит той единственной основой, которая может объединить все разрозненные части огромною здания современной математики. Клейн развил свою концепцию в физике и механике. Программа Клейна как задача поиска различных форм симметрии выходит за рамки не только геометрии, но и всей математики в целом, превращается в проблему поиска единого принципа для всего естествознания. Главенствующую роль в теории играет плоскость симметрии. Недаром знаменитый русский кристаллограф Г.В. Вульф писал о плоскости симметрии как об «основном элементе симметрии». Итак, в современном понимании симметрия -- это общенаучная философская категория, характеризующая структуру организации систем. Важнейшим свойством симметрии является сохранение (инвариантность) тех или иных признаков (геометрических, физических, биологических и т. д.) по отношению к вполне определенным преобразованиям. Математическим аппаратом изучения симметрии сегодня является теория групп и теория инвариантов.
2. Значение симметрии в познании природы
Идея симметрии часто являлась отправным пунктом в гипотезах и теориях ученых прошлого. Вносимая симметрией упорядоченность проявляется, прежде всего, в ограничении многообразия возможных структур, в сокращении числа возможных вариантов. В качестве важного физического примера можно привести факт существования определяемых симметрией ограничений разнообразия структур молекул и кристаллов. Поясним эту мысль на следующем примере. Допустим, что в некоторой отдаленной галактике обитают высокоразвитые существа, увлекающиеся среди прочих занятий также играми. Мы можем ничего не знать о вкусах этих существ, о строении их тела и особенностях психики. Однако достоверно, что их игральные кости имеют одну из пяти форм - тетраэдр, куб, октаэдр, додекаэдр, икосаэдр. Всякая иная форма игральной кости в принципе исключена, поскольку требование равновероятности выпадения при игре любой грани предопределяет использование формы правильного многогранника, а таких форм только пять. Идея симметрии часто служила ученым путеводной нитью при рассмотрении проблем мироздания. Наблюдая хаотическую россыпь звезд на ночном небе, мы понимаем, что за внешним хаосом скрываются вполне симметричные спиральные структуры галактик, а в них - симметричные структуры планетных систем. Симметрия внешней формы кристалла является следствием ее внутренней симметрии - упорядоченного взаимного расположения в пространстве атомов (молекул). Иначе говоря, симметрия кристалла связана с существованием пространственной решетки из атомов, так называемой кристаллической решетки. Согласно современной точке зрения, наиболее фундаментальные законы природы носят характер запретов. Они определяют, что может, а что не может происходить в природе. Так, законы сохранения в физике элементарных частиц являются законами запрета. Они запрещают любое явление, при котором изменялась бы "сохраняющаяся величина", являющаяся собственной «абсолютной» константой (собственным значением) соответствующего объекта и характеризующая его «вес» в системе других объектов. И эти значения являются абсолютными до тех пор, пока такой объект существует. В современной науке все законы сохранения рассматриваются именно как законы запрета. Так, в мире элементарных частиц многие законы сохранения получены как правила, запрещающие те явления, которые никогда не наблюдаются в экспериментах. Видный советский ученый академик В. И. Вернадский писал в 1927 году: "Новым в науке явилось не выявление принципа симметрии, а выявление его всеобщности". Действительно, всеобщность симметрии поразительна. Симметрия устанавливает внутренние связи между объектами и явлениями, которые внешне никак не связаны. Всеобщность симметрии не только в том, что она обнаруживается в разнообразных объектах и явлениях. Всеобщим является сам принцип симметрии, без которого по сути дела нельзя рассмотреть ни одной фундаментальной проблемы, будь то проблема жизни или проблема контактов с внеземными цивилизациями. Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твердого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идет не только о физических законах, но и других, например, биологических. Примером биологического закона сохранения может служить закон наследования. В основе его лежат инвариантность биологических свойств по отношению к переходу от одного поколения к другому. Вполне очевидно, что без законов сохранения (физических, биологических и прочих) наш мир попросту не смог бы существовать. Следует выделить аспекты, без которых симметрия невозможна:
1. объект - носитель симметрии; в роли симметричных объектов могут выступать вещи, процессы, геометрические фигуры, математические выражения, живые организмы и т.д.
2. некоторые признаки - величины, свойства, отношения, процессы, явления - объекта, которые при преобразованиях симметрии остаются неизменными; их называют инвариантными или инвариантами.
3.изменения (объекта), которые оставляют объект тождественным самому себе по инвариантным признакам; такие изменения называются преобразованиями симметрии;
4. свойство объекта превращаться по выделенным признакам в самого себя после соответствующих его изменений.
Важно отметить что, инвариант вторичен по отношению к изменению; покой относителен, движение абсолютно. Таким образом, симметрия выражает сохранение чего-то при каких-то изменениях или сохранение чего-то несмотря на изменение. Симметрия предполагает неизменность не только самого объекта, но и каких-либо его свойств по отношению к преобразованиям, выполненным над объектом. Неизменность тех или иных объектов может наблюдаться по отношению к разнообразным операциям - к поворотам, переносам, взаимной замене частей, отражениям и т.д. В связи с этим выделяют разные типы симметрии.
Зеркальная симметрия. Зеркально симметричным считается объект, состоящий из двух половин, которые являются зеркальными двойниками по отношению друг к другу. Трехмерный объект преобразуется сам в себя при отражении в зеркальной плоскости, которую называют плоскостью симметрии. Зеркальная симметрия хорошо знакома каждому человеку из повседневного наблюдения. Как показывает само название, зеркальная симметрия связывает любой предмет и его отражение в плоском зеркале. Говорят, что одна фигура (или тело) зеркально симметрично другой, если вместе они образуют зеркально симметричную фигуру (или тело). Достаточно взглянуть на окружающий нас реальный мир, чтобы убедиться в первостепенном значении именно зеркальной симметрии с соответствующим симметричным элементом -- плоскостью симметрии. В самом деле, форма всех объектов, которые двигаются по земной поверхности или возле нее шагают, плывут, летят, катятся, обладает, как правило, одной более или менее хорошо выраженной плоскостью симметрии. Все то, что развивается или движется лишь в вертикальном направлении, характеризуется симметрией конуса, то есть имеет множество плоскостей симметрии, пересекающихся вдоль вертикальной оси. И то и другое объясняется действием силы земного тяготения, симметрия которого моделируется конусом.
Поворотная симметрия. Говорят, что объект обладает поворотной симметрией, если он совмещается сам с собой при повороте на угол 2?/n, где n может равняться 2, 3, 4 и т.д. до бесконечности. Ось симметрии называется ось осью n-го порядка.
Переносная (трансляционная) симметрия. О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние а либо расстояние, кратное этой величине, она совмещается сама с собой. Прямая, вдоль которой производится перенос, называется осью переноса, а расстояние а - элементарным переносом или периодом. С данным типом симметрии связано понятие периодических структур или решеток, которые могут быть и плоскими, и пространственными.
Симметрии подобия. Представляют собой своеобразные аналоги предыдущих симметрий с той лишь разницей, что они связаны с одновременным уменьшением или увеличением подобных частей фигуры и расстояний между ними. Простейшим примером такой симметрии являются матрешки. Иногда фигуры могут обладать разными типами симметрии.
Например, поворотной и зеркальной симметрией обладают некоторые буквы: Ж, Н, Ф, О, Х. Выше перечислены так называемые геометрические симметрии.
Существует много других видов симметрий, имеющих абстрактный характер. Например: Перестановочная симметрия, которая состоит в том, что если тождественные частицы поменять местами, то никаких изменений не происходит; Наследственость - это тоже определенная симметрия.
Важным понятием в современной физике является также понятие калибровочной симметрии. Этот вид симметрии связан с инвариантностью относительно масштабных преобразований. Под калибровкой понимают изменение уровня или масштаба.
В неживой природе симметрия прежде всего возникает в таком явлении природы, как кристаллы, из которых состоят практически все твердые тела.
Именно она и определяет их свойства. Самый очевидный пример красоты и совершенства кристаллов - это известная всем снежинка. Так, в специальной теории относительности физические законы не изменяются относительно переноса (сдвига) системы координат (траектории движения остаются прямолинейными, пространственный сдвиг остается одинаковым у всех точек пространства).
3. Основные пространственно-временные виды симметрий
1. Сдвиг начала координат. Эта операция не изменяет физических законов, что связано с физической эквивалентностью всех точек пространства, т.е. с его однородностью. В этом случае говорят о симметрии относительно переносов в пространстве.
2. Поворот системы координат. Эта возможность обусловлена одинаковостью свойств пространства во всех направлениях, т.е. изотропностью пространства, и соответствует симметрии относительно поворотов.
3. Сдвиг начала отсчета во времени, соответствующий симметрии относительно переноса во времени. Этот вид симметрии связан с физической эквивалентностью различных моментов времени и однородностью времени, т.е. равномерным его течением во всех инерциальных системах отсчета.
Смысл эквивалентности различных моментов времени заключается в том, что все физические явления протекают независимо от времени их начала (при прочих равных условиях).
4. Переход от покоящейся системы к системе, движущейся равномерно и прямолинейно. Такие системы эквивалентны, этот вид симметрии называется изотропностью пространства-времени и устанавливается классическим принципом относительности Галилея. Важнейшей особенностью геометрических симметрий является их связь с законами сохранения. Эту связь устанавливает теорема Э. Нетер (1882-1935), которая гласит: если свойства системы не меняются относительно какого-либо преобразования переменных, то этому соответствует некоторый закон сохранения. Другими словами, симметрия в физике определяется следующим образом: если физические законы не меняются при определенных преобразованиях, которым подвергается система (физический объект), то считается, что эти законы обладают симметрией (или инвариантны относительно этих преобразований).
К таким фундаментальным законам природы относятся соответственно:
1. Закон сохранения импульса (следствие однородности пространства) системы тел (частиц): в замкнутой системе (т.е. результирующая всех сил равна нулю) сумма импульсов системы остается постоянной.
2. Закон сохранения момента импульса (следствие изотропности пространства) системы тел (частиц): в замкнутой системе сумма моментов импульсов системы остается постоянной (если к телам этой системы не приложены моменты внешних сил).
3. Закон сохранения энергии (следствие однородности времени) суммарная энергия в замкнутой (изолированной) системе не изменяется (остается постоянной).
В 1918 г. Амалия Эмми Нетер установила связь между симметриями и законами сохранения.
4. Закон сохранения скорости центра масс (следствие изотропности пространства-времени).
Теорема Нетер: каждому виду симметрии должен соответствовать определенный закон сохранения:
- следствием однородности пространства является закон сохранения импульса
- следствием изотропности пространства является законсохранения момента импульса
- следствием однородности времени является закон сохранения энергии.
Законы сохранения:- это физические законы, согласно которым числовые значения некоторых физических величин, характеризующих состояние системы, в определенных процессах не изменяются эти законы играют роль принципа запрета: любой процесс, при котором нарушается хотя бы один из законов сохранения, невозможен.
Связь с законами сохранения обнаруживают не только геометрические, но и динамические симметрии. В частности, симметрия относительно калибровочных преобразований приводит к закону сохранения электрического заряда (разрешено только парное рождение и гибель заряженных частиц).
Современное естествознание пришло к еще одному важному открытию, связанному с симметрией и касающемуся отличия живого от неживого: «живые» молекулы, т.е. молекулы органических веществ, составляющих живые организмы, отличаются от «неживых» зеркальной симметрией. Неживые молекулы могут быть как зеркально симметричны (как, например, правая и левая перчатка), так и зеркально асимметричны. Асимметричные молекулы, отклоняющие луч света вправо или влево, в химии называют стереомерами (энантиомерами), само же свойство зеркальной асимметрии носит название хиральности или киральности (от греч.cheir - рука). Неживые хиральные молекулы встречаются в природе как в «левом», так и в «правом» варианте, т.е. они хирально нечистые. «Живые» же молекулы могут быть только одной ориентации - «левой» или «правой», т.е. молекулы живых организмов хирально чисты
С помощью экспериментов было доказано, что подобное разделение возникает при нелинейной динамике протекания химических автокаталитических реакций. Такой переход от симметричных молекул неживого к асимметричным молекулам живой природы вполне реально мог происходить при определенных условиях на стадии химической (предбиологической) эволюции материи. Следовательно, спонтанное, возможно скачкообразное, нарушение зеркальной симметрии в результате реакций автокаталитического типа может рассматриваться как одно из необходимых условий перехода от неживого к живому В этом процессе, конечно, еще очень много неясного. Например, неясно, почему белковые полимерные цепи содержат только «левую симметрию», а спираль молекулы ДНК закручена вправо; что могло привести к такой закономерности в асимметрии живого.
Таким образом, наука обнаружила фундаментальную связь между симметрией и сохраняющимися, инвариантными величинами. Симметрия - это то, что не меняется в ходе эволюции системы. Наличие инвариантов означает принцип сохранения, а сохраняется то, чему запрещено меняться. В настоящее время законы сохранения все чаще называют принципами запрета. Согласно этим принципам, безграничное познание невозможно, они задают правила, которые накладываются на случайный выбор. Так, к примеру, запрещено одновременное точное измерение двух дополнительных величин, существует запрет на превышение скорости света, запрещены вечные двигатели и т.д. Принципы запрета говорят о том, что во Вселенной могут существовать только структуры, построенные по определенным правилам и никакие другие. Попытки что-либо «навязать» системе обречены на провал. Практика показала, что подобные попытки «перестроить» или «создать заново» в экономических, социальных, экологических системах редко приводят к положительным результатам. Инварианты образуют каркас, с одной стороны, достаточно жесткий, чтобы не позволить системе перейти к хаосу, а с другой, достаточно гибкий, чтобы обеспечить разнообразие в ней. Инварианты обеспечивают естественный отбор в ходе эволюции системы любой природы. Принципы запрета или законы сохранения помогают отобрать из множества вариантов развития - реальные. Любой процесс самоорганизации способен реализовать лишь те потенциальные возможности, которыми располагает природа.
Таким образом, идея о существовании вечного начала, возникшая в древности, обрела фундамент в понятии симметрии. Вместо стихий - воды, земли, огня и воздуха - физика предлагает инварианты, которыми обладает материя: энергию, импульс, момент импульса, заряд и т.д. Симметрия отвечает за аспект сохранения системы. Знание типов симметрий, которыми обладает система, позволяет делать прогноз ее развития. В этом развитиинеобходимо достижение равновесия свободы и порядка. Одна из составляющих, ответственная за наличие порядка, - это набор инвариантов. Принципы отбора или правила запрета действуют и в живой и в неживой природе, а знание инвариантов служит основой для правильного диалога с природой, для грамотного управления экономикой, государством, для построения искусственных объектов и т.д. Таким образом, выявление различных типов симметрии в природе, постулирование их стало одним из методов теоретического исследования свойств микро-, макро- и мегамира. В качестве наиболее адекватного и точного языка для описания симметрии при этом используется весьма сложный и абстрактный математический аппарат - теория групп, любой физический процесс протекает одинаковым образом, независимо от того, когда он начался, т.е. позволяет сравнивать результаты аналогичных опытов, проведенных в разное время возможность выбора любого момента времени за начальный. Двойственность свойств вышеуказанных симметрий связана с тем, что их можно рассматривать с двух точек зрения - как изменения положения самой системы (в пространстве и времени) и как изменения положения наблюдателя (и связанной с ним системы отсчета)
4. Человек - существо симметричное
Не станем пока разбираться, существует ли на самом деле абсолютно симметричный человек. У каждого, разумеется, обнаружится родинка, прядь волос или какая-нибудь другая деталь, нарушающая внешнюю симметрию. Левый глаз никогда не бывает в точности таким, как правый, да и уголки рта находятся на разной высоте, во всяком случае, у большинства людей. И всё же это лишь мелкие несоответствия. Никто не усомнится, что внешне человек построен симметрично: левой руке всегда соответствует правая и обе руки совершенно одинаковы! НО! Здесь стоит остановиться. Если бы наши руки и в самом деле были совершенно одинаковы, мы могли бы в любой момент поменять их. Было бы возможно, скажем, путем трансплантации пересадить левую ладонь на правую руку, или, проще, левая перчатка подходила бы тогда к правой руке, но на самом деле это не так. Каждому известно, что сходство между нашими руками, ушами, глазами и другими частями тела такое же, как между предметом и его отражением в зеркале. Многие художники обращали пристальное внимание на симметрию и пропорции человеческого тела, во всяком случае, до тех пор, пока ими руководило желание в своих произведениях как можно точнее следовать природе.
Известны каноны пропорций, составленные Альбрехтом Дюрером и Леонардо да Винчи. Согласно этим канонам, человеческое тело не только симметрично, но и пропорционально. Леонардо открыл, что тело вписывается в круг и в квадрат. Дюрер занимался поисками единой меры, которая находилась бы в определенном соотношении с длиной туловища или ноги (такой мерой он считал длину руки до локтя). В современных школах живописи в качестве единой меры чаще всего принимается размер головы по вертикали. С известным допущением можно считать, что длина туловища превосходит размер головы в восемь раз. На первый взгляд это кажется странным. Но нельзя забывать, что большинство высоких людей отличаются удлинённым черепом и, наоборот, редко можно встретить низкорослого толстяка с головой удлинённой формы. Размеру головы пропорциональна не только длина туловища, но и размеры других частей тела. По этому принципу построены все люди, оттого-то мы, в общем, похожи друг на друга. Однако наши пропорции согласуются лишь приблизительно, а потому люди лишь похожи, но не одинаковы. Во всяком случае, все мы симметричны! К тому же некоторые художники в своих произведениях особенно подчёркивают эту симметрию. И в одежде человек тоже, как правило, старается поддерживать впечатление симметричности: правый рукав соответствует левому, правая штанина -- левой. Пуговицы на куртке и на рубашке сидят ровно посередине, а если и отступают от нее, то на симметричные расстояния. Но на фоне этой общей симметрии в мелких деталях мы умышленно допускаем асимметрию, например, расчесывая волосы на косой пробор -- слева или справа или делая асимметричную стрижку. Или, скажем, помещая на костюме асимметричный кармашек на груди. Или, надев кольцо на безымянный палец только одной руки. Лишь на одной стороне груди носятся ордена и значки (чаще на левой). Полная безукоризненная симметрия выглядела бы нестерпимо скучно. Именно небольшие отклонения от неё и придают характерные, индивидуальные черты.И вместе с тем порой человек старается подчеркнуть, усилить различие между левым и правым. В средние века мужчины одно время щеголяли в панталонах со штанинами разных цветов (например, одной красной, а другой черной или белой). В не столь отдалённые дни были популярны джинсы с яркими заплатами или цветными разводами. Но подобная мода всегда недолговечна. Лишь тактичные, скромные отклонения от симметрии остаются на долгие времена.
5. Примеры симметрии в природе
Симметрия веками оставалась тем свойством, которое занимало умы философов, астрономов, математиков, художников, архитекторов и физиков. Древние греки были просто одержимы ею, и даже сегодня мы, как правило, стараемся применять симметрию во всем: от того, как мы располагаем мебель, до того, как мы укладываем наши волосы. Никто не знает, почему это явление настолько сильно занимает наши умы, или почему математики стараются увидеть порядок и симметрию в окружающих нас вещах - как бы то ни было, ниже представлены десять примеров того, что симметрия действительно существует, а также того, что мы ею окружены. Примите во внимание: как только вы об этом задумаетесь, вы уже постоянно будете невольно искать симметрию в окружающих вас предметах.
Капуста брокколи Романеско. Скорее всего, вы неоднократно проходили в магазине мимо полки с капустой брокколи Романеско и из-за её необычного вида предполагали, что это генно-модифицированный продукт. Но на самом-то деле, это всего лишь ещё один из многих примеров фрактальной симметрии в природе - хотя и безусловно поразительный. В геометрии фрактал -- это сложный узор, каждая часть которого обладает тем же геометрическим рисунком, что и весь узор в целом. Поэтому в случае капусты брокколи Романеско каждый цветок компактного соцветия обладает той же логарифмической спиралью, что и вся головка (просто в миниатюрном виде). По сути, вся головка этой капусты -- это одна большая спираль, которая состоит из маленьких почек похожих на шишки, которые также растут в виде мини-спиралей. Кстати говоря, капуста брокколи Романеско является родственницей, как капусты брокколи, так и цветной капусты, хотя её вкус и консистенция больше напоминают цветную капусту. Она также богата http://boltai.com/g/nauka/каротиноидами и витаминами С и К, что означает, что она является полезным и математически красивым дополнением к нашей пище.
Медовые соты. Пчёлы это не только ведущие производители мёда - они также знают толк в геометрии. Тысячи лет люди поражались совершенству гексагональных форм в медовых сотах и задавались вопросом о том, как же пчёлы могут инстинктивно создавать такие формы, которые человек может создавать только с линейкой и компасом. Медовые соты являются предметов обойной симметрии, где повторяющийся узор покрывает плоскость (например, плиточный пол или мозаика). Так каким же образом и почему пчёлы так любят строить шестиугольники? Начнём с того, что математики считают, что эта совершенная форма позволяет пчёлам запасать самое большое количество мёда, используя наименьшее количество воска. При строительстве других форм у пчёл получались бы большие пространства, так как такие фигуры, как например круг - не прилегают друг к другу полностью. Другие наблюдатели, которые менее склонны верить в сообразительность пчёл, считают, что они формируют гексагональную форму совершенно «случайно». Другими словами, пчёлы на самом деле делают круги, а воск сам по себе принимает гексагональную форму. В любом случае - это произведение природы и довольно-таки потрясающее.
Подсолнухи. Подсолнухи могут похвастаться радиальной симметрией и интересным типом симметрии чисел, известным как последовательность Фибоначчи. Последовательность Фибоначчи это: 1, 2, 3, 5, 8, 13, 21, 24, 55, 89, 144 и т.д. (каждое число определяется суммой двух предыдущих чисел). Если не жалея времени заняться подсчётом количества семенных спиралей в подсолнечнике, мы бы обнаружили, что количество спиралей совпадает с числами Фибоначчи. Более того, огромное количество растений (включая капусту брокколи Романеско) отпускают лепестки, листья и семена в соответствии с последовательностью Фибоначчи, именно поэтому так сложно найти четырёхлистный клевер. Считать спирали на подсолнечнике может быть довольно трудно, поэтому, если вы хотите самостоятельно проверить этот принцип, попробуйте подсчитать спирали на более крупных вещах, таких как шишки, ананасы, и артишоки. Но почему цветы подсолнечника и другие растения подчиняются математическим правилам? Как и в случае шестиугольников в улье, всё дело в эффективности. Чтобы не углубляться в технические особенности, можно просто сказать, что цветок подсолнечника может вместить наибольшее количество семян, если каждое семечко расположено под углом, представляющим собой иррациональное число. Оказывается, самым иррациональным числом является золотое сечение, или Фи, и так уж случилось, что, если мы разделим любое число Фибоначчи или Лукаса на предыдущее число в последовательности, мы получим число, близкое к Фи (+1,618033988749895 ...). Таким образом, в любом растении, растущем в соответствии с последовательностью Фибоначчи, должен быть угол, который соответствует Фи (углу равному числу золотого сечения) между каждым из семян, листьев, лепестков, или веток.
Раковина Наутилуса. Помимо растений существуют также некоторые животные, демонстрирующие собою числа Фибоначчи. Например, раковина Наутилуса выросла в «Спираль Фибоначчи». Спираль образуется в результате попытки раковины поддерживать ту же пропорциональную форму по мере своего роста наружу. В случае наутилуса, такая тенденция роста позволяет ему сохранять одинаковую форму тела в течение всей своей жизни (в отличие от людей, чьи тела изменяют свои пропорции по мере взросления). Как и следовало бы ожидать - в этом правиле существуют и исключения: не каждая раковина наутилуса вырастает в спираль Фибоначчи. Но все они растут в виде своеобразных логарифмических спиралей. И, до того как вы начнёте задумываться над тем, что эти головоногие, пожалуй, знают математику лучше вас, помните, что их раковины растут в такой форме неосознанно для них, и что они просто пользуются эволюционным дизайном, который позволяет моллюску расти, не изменяя форму.
Животные. Большинство животных обладает двусторонней симметрией, это означает, что их можно разделить на две одинаковые половины, если линию деления провести по их центру тела. Даже люди обладают двусторонней симметрией, и некоторые учёные считают, что симметрия человека является самым важным фактором того, будем ли мы считать его физически привлекательным или нет. Другими словами, если у вас кривобокое лицо, надейтесь, что у вас есть целая уйма компенсирующих, положительных качеств. Одно животное, скорее всего, воспринимает важность симметрии в брачных ритуалах слишком серьёзно, и этим животным является павлин. Дарвина очень раздражал этот вид птиц, и в своём письма в 1860 году он написал, что «каждый раз, когда я смотрю на перо из павлиньего хвоста - меня тошнит!». Для Дарвина хвост павлина казался чем-то обременительным, так как, по его мнению, такой хвост не имел эволюционного смысла, так как он не подходил под его теорию «естественного отбора». Он злился до тех пор, пока он не разработал теорию сексуального отбора, которая заключается в том, что животное развивает у себя определённые качества, которые обеспечат ему лучший шанс спариться. Очевидно, для павлинов сексуальный отбор считается невероятно важным, так как они отрастили себе различные варианты узоров, чтобы привлечь своих дам, начиная с ярких цветов, большого размера, симметрии своих тел и повторяющемся узоре их хвостов.
Паутины пауков. Существует примерно 5 000 видов пауков-кругопрядов, и все они создают практически совершенно круглые паутины с почти равноудаленными радиальными опорами, исходящими из центра и связанными по спирали для более эффективной ловли добычи. Ученые до сих пор не нашли ответа на вопрос, почему пауки-кругопряды делают такой большой акцент на геометрию, так как исследования показали, что округлая паутина не удерживает добычу лучше, чем паутина неправильной формы.
Некоторые ученые предполагают, что пауки строят круглые паутины из-за того, что они более прочные, и радиальная симметрия помогает равномерно распределить силу удара, когда жертва попадает в сети, в результате чего в паутине оказывается меньше разрывов. Но остается вопрос: если это действительно лучший способ создания паутины, то почему не все пауки его используют? У некоторых пауков, не являющихся кругопрядами, есть возможность создавать такую же паутину, однако они этого не делают. Например, недавно обнаруженный в Перу паук строит отдельные части сети одинакового размера и длины (что доказывает его способность «замерять»), но затем он просто соединяет все эти части одинакового размера в случайном порядке в большую паутину, которая не обладает какой-то определённой формой. Может быть эти пауки из Перу знают что-то, чего не знают пауки-кругопряды, или же они ещё просто не оценили всю прелесть симметрии?
Круги на полях с урожаем.
Дайте парочке приколистов доску, кусок верёвки и покров тьмы и окажется, что люди тоже хороши в создании симметричных форм. На самом деле, именно из-за невероятной симметрии и сложности дизайна кругов на полях с урожаем, люди продолжают верить, что только пришельцы из космоса способны сотворить такое, даже несмотря на то, что люди, создавшие эти круги, сознались. Возможно, когда-то и была смесь кругов сделанных людьми с теми, которые сделали пришельцы, но прогрессирующая сложность кругов является самым явным доказательством того, что их сделали именно люди. Было бы нелогичным предположить, что пришельцы сделают свои послания ещё сложнее, учитывая то, что люди ещё толком не разобрались в значении простых посланий. Скорее всего, люди учатся друг у друга по примерам созданного и всё больше и больше усложняют свои творения. Если отбросить в стороны разговоры об их происхождении, можно точно сказать, что на круги приятно смотреть, по большей части из-за того, что они так геометрически впечатляющи. Физик Ричард Тейлор (Richard Taylor) провёл исследование кругов на полях и обнаружил, что помимо того факта, что за ночь на земле создается по крайней мере один круг, большинство их дизайнов отображают широкий спектр симметрии и математических моделей, в том числе фракталов и спиралей Фибоначчи.
Снежинки. Даже такие крошечные вещи как снежинки тоже образуются по законам порядка, так как большинство снежинок формируются в виде шестикратной радиальной симметрии со сложными, идентичными рисунками на каждой из её ветвей. Понять, почему растения и животные выбирают симметрию, сложно само по себе, но неодушевлённые объекты - как же им это удаётся? По-видимому, всё сводится к химии, и в частности к тому, как молекулы воды выстраиваются по мере своего замерзания (кристаллизуются). Молекулы воды приходят в твёрдое состояние путём образования слабых водородных связей друг с другом. Эти связи выравниваются в упорядоченном расположении, которое максимизирует силы притяжения и снижает силы отталкивания, что как раз и является причиной образования гексагональной формы снежинки. Однако всем нам известно, что двух одинаковых снежинок не бывает, так как же снежинка формируется в абсолютной симметрии сама с собой, но не похожа на другие снежинки? По мере того как каждая снежинка падает с неба она проходит через уникальные атмосферные условия, такие как температура и влажность, которые влияют на то, как кристаллы «растут» на ней. Все ветви снежинки проходят через одни и те же условия и следовательно кристаллизуются одинаковым образом - каждая ветвь является точной копией другой. Ни одна другая снежинка не проходит через те же условия по мере своего спуска, поэтому они все выглядят немного по-разному.
Галактика Млечный Путь. Как мы уже видели, симметрия и математические узоры существуют повсюду, куда бы мы ни посмотрели - но ограничены ли эти законы природы только нашей планетой? По всей видимости - нет. Недавно обнаружив новую часть Млечного Пути, астрономы считают, что наша галактика является почти совершенным отражением самой себя. Основываясь на новой информации, учёные получили подтверждение своей теории о том, что в нашей галактике есть только два огромных рукава: Персей и Рукав Центавра. В дополнение к зеркальной симметрии, Млечный Путь обладает ещё одним удивительным дизайном - похожим на раковины наутилуса и подсолнуха, где каждый рукав галактики представляет собой логарифмическую спираль, берущую начало в центре галактики и расширяющуюся к внешнему краю. http://boltai.com/g/nauka/
Симметрия Солнца и Луны. Учитывая, что диаметр солнца составляет 1,4 миллиона километров, а диаметр луны всего 3,474 километра, очень сложно представить себе, что Луна может закрывать собой солнечный свет и давать нам около пяти солнечных затмений каждые два года. Так как же это всё-таки происходит? По совпадению, несмотря на то, что ширина солнца примерно в четыреста раз больше ширины луны, оно расположено от нас в четыреста раз дальше, чем луна. Симметрия этого соотношения приводит к тому, что нам кажется, что солнце и луна, одинаковые по размеру, если смотреть с Земли, поэтому луна может с лёгкостью блокировать солнце, когда они находятся на одной линии по отношению к Земле. Расстояние от Земли до солнца, конечно, может вырасти во время её выхода на орбиту, и когда в это время случается затмение, мы можем полюбоваться ежегодным или неполным затмением, так как солнце не полностью закрыто. Но каждый год или два, всё становится абсолютно симметричным, и мы можем посмотреть на великолепное событие, которое мы называем полным солнечным затмением. Астрономы не уверены, насколько часто такая симметрия встречается между другими планетами, солнцами и спутниками, однако они думают, что это довольно редкое явление. Даже если это так, то мы не должны предполагать, что мы особенные, потому что всё, как ни странно, является делом случая. Например, каждый год луна удаляется от Земли примерно на четыре сантиметра, это означает, что миллиарды лет назад, каждое солнечное затмение было бы полным. Если дело пойдёт так и дальше, полные затмения в конце концов исчезнут, за ними исчезнут ежегодные затмения (если планета ещё продержится настолько долго). Поэтому, можно предположить на самом деле, что мы находимся в нужном месте, в нужное время. Но так ли это? Некоторые люди выдвигают теории о том, что симметрия солнца и луны это именно тот фактор, благодаря которому жизнь на Земле стала возможной.
Заключение
С симметрией мы встречаемся везде в природе, технике, искусстве, науке. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии. Существует множество видов симметрии как в растительном, так и в животном мире, но при всем многообразии живых организмов, принцип симметрии действует всегда, и этот факт еще раз подчеркивает гармоничность нашего мира. Еще одним интересным проявлением симметрии жизненных npoifeccoe являются биологические ритмы (биоритмы), циклические колебания биологических процессов и их характеристик (сокращения сердца, дыхание, колебания интенсивности деления клеток, обмена веществ, двигательной активности, численности растений и животных), зачастую связанные с приспособлением организмов к геофизическим циклам. Исследованием биоритмов занимается особая наука - хронобиология. Помимо симметрии существует также понятие ассиметрии; Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственное разным объектам, тогда как асимметрия связана с индивидуальным воплощением этого общего в конкретном объекте.
Таким образом, идея о существовании вечного начала, возникшая в древности, обрела фундамент в понятии симметрии. Вместо стихий - воды, земли, огня и воздуха - физика предлагает инварианты, которыми обладает материя: энергию, импульс, момент импульса, заряд и т.д. Симметрия отвечает за аспект сохранения системы. Знание типов симметрий, которыми обладает система, позволяет делать прогноз ее развития. В этом развитии необходимо достижение равновесия свободы и порядка. Одна из составляющих, ответственная за наличие порядка, - это набор инвариантов. Принципы отбора или правила запрета действуют и в живой и в неживой природе, а знание инвариантов служит основой для правильного диалога с природой, для грамотного управления экономикой, государством, для построения искусственных объектов и т.д. Таким образом, выявление различных типов симметрии в природе, постулирование их стало одним из методов теоретического исследования свойств микро-, макро- и мегамира. В качестве наиболее адекватного и точного языка для описания симметрии при этом используется весьма сложный и абстрактный математический аппарат - теория групп.
Список использованной литературы
1. Жёлудев И.С. Симметрия и её приложения. - М.: Энергоатомиздат, 1983.
2. Карпенков С.Х. Концепция современного естествознания: Учебник для вузов. - М.: ЮНИТИ, 2000. «Концепции современного естествознания». Лекции для студентов заочного отделения УГАТУ. Уфа, 2005.
3. Сонин А.С. Постижение совершенства: симметрия, асимметрия, диссимметрия, антисимметрия. - М.: ЗНАНИЕ, 1997.
Подобные документы
Использование принципов симметрии в математике и физике, химии и биологии, технике и архитектуре, живописи и скульптуре, и даже в поэзии и музыке. Значение симметрии в познании природы. Симметрия на уроках геометрии. Внутренняя симметрия Вселенной.
презентация [1,8 M], добавлен 07.01.2011Понятие симметрии - неизменности структуры, свойств, формы материального объекта относительно его преобразований. Симметрии, выражающие свойства пространства и времени, физических взаимодействий. Примеры симметрии в неживой природе, ее обратимость.
презентация [312,0 K], добавлен 18.10.2015Определение, сущность и сравнение симметрии и асимметрии. История возникновения категорий симметрии как одного из фундаментальных свойств природы, а также анализ ее места в познании и архитектуре. Общая характеристика асимметрии человеческого мозга.
контрольная работа [30,6 K], добавлен 22.12.2010Понятие и типы симметрии, ее элементы и основные принципы. Формы и симметрия кристаллических и геологических образований. Граница между живой и неживой природой. Симметрия и ассиметрия в живой природе. Золотое сечение. Симметрия пространства и времени.
реферат [257,8 K], добавлен 13.01.2012Симметрия пространства – времени и законы сохранения, калибровочные симметрии. Связь с инвариантностью относительно масштабных преобразований. Открытие киральной чистоты молекул биогенного происхождения. Связь грани между законами и условиями их действия.
реферат [15,6 K], добавлен 31.01.2009Понятие симметрии как неизменности (инвариантности) свойств и характеристик объекта по отношению к каким-либо преобразованиям (операциям) над ним. Значение законов сохранения (импульса, энергии, заряда) для науки. Изотропность пространства-времени.
курсовая работа [19,5 K], добавлен 04.11.2011Естественнонаучная и гуманитарная культуры и история естествознания. Корпускулярная и континуальная концепции описания природы. Порядок и беспорядок в природе, хаос. Пространство и время, принципы относительности, симметрии, универсального эволюционизма.
курс лекций [545,5 K], добавлен 05.10.2009Симметрия и ее значения: пропорциональное (сбалансированное) и равновесие. Симметрия природы в физике, ее фундаментальные теории. Законы сохранения: закон изменения и закон сохранения полной энергии, закон сохранения импульса, закон сохранения заряда.
реферат [24,0 K], добавлен 05.01.2008Фундаментальные законы сохранения (закон сохранения энергии, закон сохранения импульса, закон сохранения момента импульса). Связь законов сохранения с симметрией пространства и времени. Симметрия как основа описания объектов и процессов в микромире.
реферат [227,7 K], добавлен 17.11.2014Научный метод познания. Принципы симметрии и законы сохранения. Специальная и общая теория относительности. Структурные уровни и системная организация материи. Порядок и беспорядок в природе. Панорама современного естествознания. Биосфера и человек.
тест [32,4 K], добавлен 17.10.2010