От физики существующего к физике возникающего

Современная физическая картина мира. Математическое обоснование волновой модели атома. Происхождение галактик, звезд и Солнечной системы: характеристика космогонии. Земля: ее происхождение и динамика геосфер. Роль живых организмов в эволюции Земли.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 19.10.2015
Размер файла 32,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Современная физическая картина мира

2. Происхождение галактик и Солнечной системы

3. Земля: происхождение и динамика геосфер

4. Роль живых организмов в эволюции Земли

Заключение

Список используемой литературы

Введение

Представленная работа посвящена теме "От физики существующего к физике возникающего".

Проблема данного исследования носит актуальный характер в современных условиях. Об этом свидетельствует частое изучение поднятых вопросов.

Данная тема изучается на стыке сразу нескольких взаимосвязанных дисциплин. Для современного состояния науки характерен переход к глобальному рассмотрению проблем этой тематики

Вопросам исследования посвящено множество работ. В основном материал, изложенный в учебной литературе, носит общий характер, а в многочисленных монографиях по данной тематике рассмотрены более узкие вопросы проблемы . Однако, требуется учет современных условий при исследовании проблематики обозначенной темы.

Дальнейшее внимание к вопросу о проблеме "От физики существующего к физике возникающего" необходимо в целях более глубокого и обоснованного разрешения частных актуальных проблем тематики данного исследования.

волновой галактика солнечный космогония

1. Современная физическая картина мира

Картина мира, которую начали создавать Галилей и Ньютон, а завершали Фарадей, Максвелл и Эйнштейн, отражала философские воззрения, которые брали начало еще от древних: природа не делает скачков. Эти представления основывались на непрерывности процессов.

Это мнение изменила квантовая теория, согласно которой вещество при излучении испускает энергию конечными порциями - квантами. Энергия кванта равна произведению постоянной Планка на частоту излучения.

Луи де Бройль писал: ”День, когда была введена постоянная Планка, остается одной из замечательных дат в истории человеческой мысли”.

С постоянной Планка вошло в науку представление о дискретности энергии в микромире; постоянная Планка оказалась связанной с понятием о строении атома.

Каково строение атома? Известно, что на основе экспериментальных данных Резерфордом была создана планетарная модель атома. Это была последняя наглядная его модель. Предложенная Резерфордом модель была катастрофой для классической физики.

Согласно представлениям электродинамики Максвелла, движущийся вокруг ядра электрон должен излучать энергию и поэтому очень быстро упасть на ядро. Получалось, что с признанием модели атома Резерфорда следует пересмотреть классическую электродинамику, которая уже стала основой электромагнитной картины мира. Резерфорд понимал, что “его” атом обречен.

Но в 1913 году Резерфорду пришел пакет от молодого Нильса Бора с наброском его первой работы по квантовой теории строения атома. В этой http://www.biotimes.ru/статье Бор писал:”...существование мира постоянно доказывает, что атом - устойчивая система. Значит, электроны, вращаясь вокруг ядра, вопреки

Максвеллу-Лоренцу, не излучают непрерывно. Так, если это не происходит и они, обессиленные не падают на ядро, не проще ли предположить, что в атоме есть пути, на которых электроны не растрачивают энергию: стационарные орбиты! Только покидая такую орбиту, электрон начинает излучать...” По существу в этих словах выражено содержание знаменитых постулатов Бора, от которых и началась квантовая механика - новая физика.

Бор считал, что электрон, как и микрочастица в классической физике, движется по определенному пути. Эти пути - стационарные орбиты - Бор определял при помощи главных квантовых чисел. Атом может излучать энергию только тогда, когда электрон перескакивает с одной орбиты на другую, причем эта энергия излучается в виде кванта.1

Теория строения атома, созданная Резерфордом и Бором, позволила объяснить многие факты, но возникло так много новых вопросов, на которые, как казалось физикам, невозможно было ответить. Эйнштейн писал: ”Это было так, точно из-под ног ушла земля и нигде не было видно твердой почвы, на которой можно было строить...”

Ответ физики нашли, но для этого пришлось отказаться от прежних представлений о микропроцессах. В механической и электромагнитной картинах мира микрочастицы представлялись неизменными, их скорость, координату, энергию можно было определить абсолютно точно в любой заданный момент времени. В современной картине мира совершенно другой взгляд и на сами микрочастицы, и на их поведение.

Французский физик Луи де Бройль в 1924 г. предложил рассматривать дискретные состояния электрона в атоме как волновые явления. Это давало возможность объяснить, почему электрон при своем движении вокруг ядра не излучает энергию (стоячая волна не излучает и не поглощает энергию). Вскоре была открыта дифракция электронов, что подтвердило наличие у них волновых свойств.

Математическое обоснование волновой модели атома дал австрийский физик Эрвин Шредингер. Решение составленного им для описания движения микрочастиц уравнения дает значения величины, известной в физике под названием пси-функции или волновой функции. Эта функция описывает движение электрона. Это движение не подчиняется законам механики Ньютона: если бы мы создали двум электронам абсолютно одинаковые начальные условия, то дальнейшее их движение могло бы быть совершенно различным, чего законы механики не допускают.

Поведение элементарных частиц вероятностное. Обусловлено это тем, что элементарным частицам присущи свойства корпускулы и волны. Для них невозможно с абсолютной точностью одновременно определить координату и импульс, изменение энергии и интервал времени, на протяжении которого происходит это изменение. Соотношения, которые дают возможность увидеть, как связаны между собой неопределенности при определении координаты и импульса, энергии и времени жизни микрообъекта введены в 1927 г. В.Гейзенбергом.

Оказалось, что не только макроскопические законы, определяющие массовый результат поведения микрочастиц, носят статистический характер, но и законы, определяющие поведение частиц в каждый момент времени и в каждой точке, являются статистическими.

Борьба идей дискретности и непрерывности материи завершилась слиянием обеих идей в представлении о свойствах элементарных частиц.

В механической и электромагнитной картинах мира элементарным понятием было движение себетождественной частицы. В МКМ такой частицей был атом, в ЭКМ на роль “абсолютных атомов” (неделимых и неизменных частиц, из которых состоит все сущее) претендовали электрон и протон.

Но открытие нейтрона в 1932 году привело к выводу, что в ядре атомов нет электронов и, значит, они образуются в результате распада нейтрона. Позитроны, открытые в космических лучах, дали возможность наблюдать такие удивительные процессы, как превращение электрон-позитронной пары в фотоны или, наоборот, превращение фотона большой энергии в электрон-позитронную пару.

Эксперименты в области физики высоких энергий изменили представление о мире... Начиная с Демокрита, атомисты объясняли бесконечное разнообразие вещей соединением и разъединением их частей, в этих процессах конечными и неделимыми частицами представлялись атомы. В их вечности и сохранении их числа усматривались доказательства вечности мира.

А в чем же мы видим опору для понимания несотворимости и неуничтожимости мира? Можем ли мы элементарные частицы считать “конечными частицами” материи аналогично тому, как атомисты представляли вечные и неделимые атомы?

Чтобы ответить на этот вопрос, подумаем, чем отличается понятие делимости в классической и современной физике.

Представим себе мысленный эксперимент, в котором моделью “конечной частицы” материи служит тарелка. Возьмем две тарелки и ударим одну о другую. С точки зрения классической физики возможны два случая:

1) тарелки останутся целыми, и тогда они “неделимы”; 2) тарелки разлетятся на кусочки, сложим их - форма тарелок восстановится; масса кусочков равна массе исходной тарелки. Тарелка делима.

Если бы набор посуды имел свойства элементарных частиц, мы наблюдали бы нечто совершенно иное.

Представим себе, что мы ударяем одну тарелку о другую. И ничего не происходит. Ударяем их с большей силой, и вот результат: у нас в руках оказываются две тарелки и одна чашка!

Можно ли их считать осколками двух тарелок? Конечно, нет... Эти образовавшиеся “элементарные частицы” имеют также статус элементарных частиц, как и исходные. Интересно, что масса образовавшихся частиц не обязательно равна массе исходных: она может быть как больше их массы, так и меньше, в зависимости от условий, в которых происходило взаимодействие.

Элементарные частицы - это более или менее стабильные образования материи, которые не делятся на осколки. Основное свойство ЭЧ - взаимопревращаемость. Мы не называем их “конечными частицами” материи и не пытаемся найти “конечные частицы”. Чем глубже мы продвигаемся в направлении увеличения концентрации энергии, тем дальше от нас отодвигается мираж конечных сущностей, “исходных кирпичиков мироздания”.

В современной картине мира ЭЧ - это простейший элемент данного поля, или просто “квант данного поля”. Поля современной физики можно сравнить со стихиями в картине мира древних мыслителей. Если они считали фундаментальными сущностями четыре стихии (землю, воду, воздух, огонь), то современная физика пытается раскрыть все содержание реального мира через проявление четырех видов взаимодействий.

Сильное взаимодействие обеспечивает связь нуклонов в атомных ядрах. Электромагнитное взаимодействие связывает электроны в атомах и атомы в молекулах.

Слабому взаимодействию подвержены все элементарные частицы, кроме фотона. Оно ответственно за распады некоторых частиц и за процессы с участием нейтрино.

Гравитационное взаимодействие действует между всеми материальными объектами.

Свести все разнообразные силы к единой основе, к чему стремилось человеческое знание на протяжении всего развития науки, современной физике пока не удалось.

2. Происхождение галактик и солнечной системы

Происхождение галактик и звезд (космогония) связано с возникновением неоднородностей в однородной среде. Крупномасштабные неоднородности с массой в солнечных образовали протоскопления галактик, и они представляли собой массивные облака газа. Такие облака приобретали не сферическую форму, а становились похожими на гигантские “блины”.

В разных частях расширяющейся Метагалактики могли возникать разные “блины” по массе, плотности и температуре. Результатом их эволюции было возникновение или скоплений галактик, или одиночных галактик. Специалисты надеются обнаружить “блины”, еще не успевшие превратиться в галактики. Взаимодействуя между собой, “блины” могут образовывать границы наблюдаемых ячеек крупномасштабной структуры Вселенной.

Если нейтрино обладают ненулевой массой, то уже на начальных стадиях расширения Метагалактики решающее значение для последующей эволюции играло появление нейтринных неоднородностей, которые играли роль “теста” для образования “блинов”. Далее предполагается, что нейтринные “блины” образовали ячеистую структуру, которая была невидимой, поскольку невидимы сами нейтринные облака. Когда обычное вещество начало собираться в центральных областях нейтринных облаков, стала проявляться невидимая ячеистая структура Вселенной.

Каждая галактика, возникшая из распавшихся “блинов”, имела свой жизненный путь - в ней возникали шаровые звездные скопления и звезды разных поколений. Например, в нашей спиральной Галактике массивные звезды первого поколения давно завершили свой жизненный путь и, взорвавшись, обогатили межзвездную среду тяжелыми элементами. Часть из них вошла в состав звезд нового поколения.

3. Земля: происхождение и динамика геосфер

Разработка космогонических гипотез является результатом усилий многих ученых (Декарт, 1644; Кант, 1775; Лаплас, 1796; в XX столетии -О.Шмидт, Х.Альвен, Ф.Хойл, А.Камерон, Э.Шацман и др.).

Сейчас считается общепризнанным, что планеты возникли в результате объединения твердых тел и частиц, образовавшихся во вращающемся вокруг Солнца гигантском протопланетном облаке, состоящем и газа и пыли. Пока не существует однозначного ответа на вопрос: откуда взялось протопланетное облако? Однако у некоторых звезд, например Веги, обнаружены газово-пылевые диски.

Протопланетное облако содержало газ “звездного” состава (водород и гелий) и пыль из более тяжелых элементов. Сжимающееся облако увеличивало скорость вращения. Пылевой слой, будучи гравитационно неустойчивым, распался на множество сгустков, превратившихся в рой твердых тел. Сначала размеры этих тел были сравнительно невелики, а их орбиты юыли близки к круговым. По мере роста масс увеличивалось взаимное притяжение тел, возрастали их относительные скорости, орбиты становились эллиптическими.

Гравитационное взаимодействие было определяющим фактором в формировании будущих планет. Уменьшение числа зародышей и появление сверхзародышей происходило до тех пор, пока возникающие крупные и массивные тела не оказались на таких расстояниях, где взаимное притяжение не могло уже существенно изменить их орбиты. Эти безопасные расстояния и стали залогом устойчивости будущей Солнечной системы.

Планеты земной группы сформировались сравнительно быстро (Земля за 100 млн. лет), планеты-гиганты росли дольше.

В начале 50-х гг. наука отказалась от представления о первичной огненно-жидкой планете. Было развито представление об изначально холодной Земле. Но теперь ученые говорят если не об огненно-жидкой, то об умеренно горячей планете. Крупные по массам и размерам тела, падая на относительно холодную Землю и глубоко врезаясь в нее, разогревали нашу планету. Такой разогрев оказался сильнее, чем это могло произойти за счет энергии других механических (гравитационное сжатие) и немеханических (радиоактивный распад) процессов. Земля частично плавилась, изменяла свою структуру, формировала ядро и оболочки.

В настоящее время, как известно, Земля имеет расплавленное ядро, состоящее в основном из железа и никеля. Вещества, содержащие более легкие элементы (кремний, магний и др.), постепенно всплывали, образуя мантию и кору Земли. Самые легкие элементы вошли в состав океана и первичной атмосферы.

Самые легкие и легче всего испаряющиеся элементы - водород, углерод, азот и кислород - являются составными частями современной атмосферы и самой жизни. Внешние слои Земли содержали эти элементы не в свободном, а в связанном виде в составе других молекул. Под влиянием разогрева при соударениях вещество теряло летучие элементы, из которых образовалась первичная атмосфера. Некоторые молекулы разрушались в процессе фотодиссоциации под воздействием ультрафиолетового излучения Солнца. В результате атмосфера включала и небольшое количество водорода. Таким образом, атмосфера была слабо восстановительной.

Состав атмосферы менялся в результате улетучивания атомов и молекул водорода и выделения газов из земной коры, разогретой за счет распада радиоактивных изотопов. Выделение летучих элементов, которое в значительно ослабленной форме происходит и теперь из вулканов, внесло в атмосферу большое количество водяного пара, углекислого газа, азота и окиси углерода. Таким образом, практически вся вода современных океанов выделилась из пород, слагающих ныне кору и верхнюю мантию Земли.

Под влиянием ультрафиолетового излучения молекулы воды, входящие в состав атмосферы, распадаются на атомы водорода и кислорода. Однако, пока молекулы водорода оставались в составе атмосферы, свободные атомы кислорода быстро вступали в реакцию с ними. Как только водород улетучился, в атмосфере образовался свободный кислород, а затем и озон, который образовал озоновый экран, преградивший путь жесткому ультрафиолетовому излучения к поверхности Земли.

Дальнейшие изменения атмосферы, гидросферы и верхних слоев литосферы происходили под существенным влиянием возникшей на Земле жизни. Что же произошло за последние 4 млрд. лет?

4. Роль живых организмов в эволюции земли

Живое вещество биосферы - это активное начало, преобразующее остальные сферы Земли. Эта роль жизни была впервые обоснована В.И.Вернадским.

Современная атмосфера Земли есть продукт деятельности живых организмов. Как писал Вернадский, “атмосфера всецело создана жизнью”.

Первичная атмосфера нашей планеты имела восстановительный характер, была лишена свободного кислорода и состояла из следующих газов:На первом месте по количеству стояли вода и углекислый газ. Развитие фотосинтеза приводило к освобождению больших количеств свободного кислорода в гидросфере и затем в атмосфере. Аммиак и метан практически полностью исчезают из состава атмосферы в результате окисления. Современная атмосфера является азотно-кислородной и состоит в основном из

Углекислый газ, который когда-то занимал второе место по содержанию в атмосфере, оказался химически связанным в породах, главным образом в виде карбоната кальция (мел, известняк). Почти весь углекислый газ исчез из атмосферы. Небольшие его количества остаются благодаря процессам выветривания и дыхания животных; разложение органического вещества также возвращает этот газ в атмосферу.

Кислород до развития жизни существовал в малых количествах. Фотосинтез синезеленых водорослей, а затем и зеленых растений увеличил его содержание в современной атмосфере до 21%.

Азот, из которого на 78% состоит современная атмосфера, поступил в нее при дегазации, но его сохранению помогло существование жизни. При каждом грозовом разряде в атмосфере часть атмосферного азота соединяется с кислородом и образует окислы азота, которые благодаря осадкам попадают в почву и океаны. В почве живут денитрифицирующие бактерии, которые разлагают окислы азота и возвращают его в атмосферу.

Окись углерода, которая была важным компонентом земной атмосферы, давно соединилась с кислородом и превратилась в углекислый газ, который, как отмечено выше, сконцентрировался в углеродсодержащих породах.

Водяной пар, содержание которого было высоким, все еще составляет часть оболочки Земли - океаны, покрывающие 71% поверхности Земли. Океаны отличают Землю от всех других планет.

Химизм вод Мирового океана в значительной степени определяется и регулируется живым веществом. Воды Мирового океана, как и атмосфера Земли, образовались за счет дегазации мантии, т.е. Мировой океан образовался из паров мантийного материала и вначале воды были кислые и минерализованы. Пресные воды появились позже в результате испарения с поверхности первичных океанов (процесс естественной дистилляции).

Сильные кислоты в составе ювенильных вод интенсивно разрушали первичные алюмосиликатные породы, извлекая из них щелочные и щелочноземельные металлы: Na, K, Rb, Cs, Mg, Ca, Sr, а также соли двухвалентного железа. Первичная поверхность суши омывалась кислыми дождями, под влиянием которых происходили гидролиз и гидратация первых минералов. При круговороте воды и выносе катионов Na, K, Mg, Ca значительная их часть задерживалась в океане и сейчас являются главными катионами океанической воды. К главным анионам ее относятся К редким элементам относятся азот, фосфор, кремний, концентрация которых контролируется ростом и размножением живых организмов океана. В морской воде растворены природные газы, тесно связанные с атмосферой и живым веществом моря: азот, кислород, углекислота, сероводород.

Земная кора как верхний слой твердой тела Земли первоначально возникла в результате выплавления материала мантии и в дальнейшем оказалась существенно переработанной в биосфере под влиянием атмосферы, воды и деятельности живых организмов.

Ландшафт первых сухопутных участков был типичный вулканический, подобный современному лунному ландшафту.

Литосфера Земли сформировалась в большей своей части за счет деятельности живого вещества. Это относится к осадочным породам. Известняки, мел, мрамор почти целиком состоят из остатков скелетов организмов.

Почвенный покров сформировался и развивался при активном участии живого вещества.

В самом начале палеозойской эры живое вещество переходит на сушу, формируются наземная флора и фауна. Происходит рост биомассы, усложняется ее качественный состав. Новые виды организмов для построения внутреннего и наружного скелета используют и др. В результате резко увеличивается воздействие живого вещества на геохимию океана, атмосферы и осадочной оболочки Земли.

Состав атмосферы приближается к современному. Морская вода из хлоридно-карбонатно-сульфатной постепенно превращается в хлоридно-сульфатную.

Заключение

Рассматривая эту тему и мир в целом с точки зрения физики, начальные условия произвольны, и только закон, который связывает начальные условия с конечным исходом, имеет свой внутренний смысл.

Если бы это действительно было так, то проблема всего существующего была лишена смысла, кроме произвола, который содержится в приготовлении существующего. Но произвол при выборе начальных условий может скоординировать и идеализировать ситуацию, которую мы сможем подготовить по своему усмотрению. Но, к сожалению, начальные условия программируемы лишь в простых системах, а в сложных, например в социальной структуре, первоначальные условия перестают подчиняться нашему произволу, что делает жизнь намного интереснее и загадочнее.

Список используемой литературы

1. Концепции современного естествознания. Горбачев В.В

2. От существующего к возникающему. Пригожин И.И.

3. http://www.biotimes.ru/

4. http://www.alleng.ru/

5. http://www.hi-edu.ru/

6. http://www.distedu.ru/mirror/_rus/123www.hi-edu.ru

Размещено на Allbest.ru


Подобные документы

  • Земля в космическом пространстве, научные гипотезы относительно происхождения Земли и солнечной системы, основанные на астрономических наблюдениях. Достижения геологической науки в формировании картины мира и выявлении общих закономерностей его развития.

    реферат [51,1 K], добавлен 18.11.2009

  • Мифы о сотворении мира, их соответствие уровню развития общества. Фрэнсис Бэкон, индуктивный путь познания природы. Происхождение Земли по Декарту. Идеи об првоначальном состоянии Земли и их влияние на представления ученых о внутреннем строении планеты.

    реферат [29,9 K], добавлен 09.03.2010

  • Понятие космогонии и сущность гипотез возникновения и жизненного пути звезд учёных Лапласа, Шмидта, Дж. Джинса, Г. Аррениуса. Современное представление о теории возникновения Солнечной системы, её состав: планеты, астероидное кольцо, планеты-гиганты.

    реферат [198,3 K], добавлен 09.03.2016

  • Характеристика основных теорий происхождения Земли: гипотеза Канта-Лапласа и теория Большого Взрыва. Сущность современных теорий эволюции Земли. Образование Солнечной системы, возникновение условий для жизни. Возникновение гидросферы и атмосферы.

    контрольная работа [24,6 K], добавлен 26.01.2011

  • Понятие "научная картина мира". Физика как ведущая дисциплина в классической научной картине мира. Историческая смена физических картин мира. Современная картина мира. Главный предмет синергетики. Исторические формы проблемы происхождения жизни.

    контрольная работа [24,6 K], добавлен 04.02.2010

  • Современная научная картина мира. Фундаментальные воздействия и фундаментальные законы в материальном мире. Геофизическое строение и эволюция Земли. Уникальность планеты Земля в ряду других планет Солнечной системы. Концепция устойчивого развития.

    контрольная работа [23,4 K], добавлен 10.06.2015

  • Гипотеза о происхождении звезд и Солнечной системы и эволюции галактик. Теория формирования звезд из газа за счет гравитационной неустойчивости. Понятие термодинамики земной атмосферы и стадия конвективного равновесия. Превращение звезды в белый карлик.

    реферат [32,9 K], добавлен 31.08.2010

  • Теория эволюционного развития звезд из газово-пылевой материи в результате гравитационной неустойчивости и сил взаимодействия. Происхождение Земли и других планет Солнечной системы. Аксиома сознания и психики человека. Принцип максимизации мощи.

    контрольная работа [17,1 K], добавлен 28.05.2010

  • Основные концепции возникновения планеты: большой взрыв, теория униформизма, геологическая концепция разделения континентов. Факты подтверждения достоверности модели экранированной Земли. Особенности эволюции живых организмов на разных уровнях развития.

    реферат [45,8 K], добавлен 05.12.2010

  • Формы научного знания. Атомистическое учение Левкиппа и Демокрита. Электромагнитная физическая картина мира. Общая характеристика звезд, их виды и эволюция. Свойства живых организмов. Концепции происхождения человека. Понятие информации в кибернетике.

    контрольная работа [47,7 K], добавлен 24.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.