Аналогия и моделирование в биологических исследованиях

Накопление фактического материала, отражающего предметы и явления природы в биологических исследованиях. Методы количественного учета живых организмов, популяций, биогеоценозов. Аналогия и моделирование в биологии. Мониторинг и его применение в науке.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 21.09.2015
Размер файла 30,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство сельского хозяйства РФ

ФГБОУ ВО

"Южно-Уральский государственный аграрный университет"

Кафедра биологии и экологии

Реферат

На тему "Аналогия и моделирование в биологических исследованиях"

Троицк, 2015

Содержание

Введение

1. Методы биологических исследований

2. Мониторинг в биологических исследованиях

Заключение

Литература

Введение

Биология - наука, добывающая сведения о живой природе разными методами исследований. Метод (греч. methodos - "путь к чему-либо") - это способ достижения цели. Методы выражают определенным образом упорядоченную деятельность исследователя в раскрытии сути явлений.

Любое биологическое исследование включает наблюдение, сравнение, описание и эксперимент. Наблюдение и описание обеспечивают накопление фактического материала, отражающего предметы и явления природы. Метод сравнения дает возможность выявлять сходство и различия между организмами, видами, другими биосистемами и их частями. Эксперимент позволяет активно изучать природные явления жизни с помощью опытов и проверять гипотезы, выдвигаемые в результате наблюдения, сравнения и других методов исследований.

Биологические исследования проводят в полевых (природных) условиях и в лаборатории. Все полученные результаты подвергают количественному и качественному анализу.

В полевых условиях можно не только проводить наблюдения, но и ставить эксперимент. Эксперимент особенно широко используют растениеводы: создают различные условия минерального питания, меняют сроки посева и способы полива, выявляя агротехнику более эффективного выращивания культивируемых растений.

В экологических исследованиях основными выступают методы количественного учета живых организмов, популяций, биогеоценозов.

Лабораторные исследования широко применяются во всех отраслях биологии. Самым распространенным инструментом при этом был и остается микроскоп. За многолетнюю историю микроскопических исследований накоплен огромный практический опыт, разработана масса методик подготовки препаратов (фиксация различными химикатами - формалином, спиртом, хлороформом и др.; окрашивание йодом, эозином, гематоксилином и др.), созданы специальные приборы для приготовления особо тонких срезов (микротомы), для зарисовок (рисовальные аппараты), для определения размеров клеток и органоидов (окуляр-микрометры) и множество других. Специальные приборы позволяют изучать в лабораториях биохимические процессы в тканях и клетках организмов, электромагнитные свойства органов и тканей, обмен веществ и энергии в живых особях и многие другие процессы.

1. Методы биологических исследований

Когда мы говорим о биологии, мы говорим о науке, которая занимается исследованием всего живого. Все живые существа, включая ареал их обитания, изучаются. Начиная от строения клеток и заканчивая сложными биологическими процессами, все это является предметом биологии. Рассмотрим методы исследования в биологии, которые на данный момент используются.

Методы биологических исследований включают в себя:

· Эмпирические/экспериментальные методы

· Описательные методы

· Сравнительные методы

· Статистические методы

· Моделирование

· Исторические методы

Эмпирические методы заключаются в том, что объект опыта подвергается изменению условий его существования, а потом, учитываются полученные результаты. Эксперименты бывают двух видов в зависимости от их места проведения: лабораторные эксперименты и полевые эксперименты. Для проведения полевых экспериментов используются естественные условия, а для проведения лабораторных экспериментов, используется специальное лабораторное оборудование.

Описательные методы основываются на наблюдение, с последующим анализом и описанием феномена. Этот метод позволяет выделить особенности биологических явлений и систем. Это один из самых древних методов.

Сравнительные методы подразумевают сравнение полученных фактов и явлений с другими фактами и явлениями. Сведения получаются путем наблюдения. В последнее время стало популярно применять мониторинг. Мониторинг это постоянное наблюдение, которое позволяет собрать данные, на основе которых будет проводиться анализ, а потом прогнозирование.

Статистические методы также известны под названием математические методы, и используются для того, чтобы обработать данные числового характера, которые были получены в ходе эксперимента. Кроме этого, данный метод применяется для того, чтобы убедиться в достоверности определенных данных.

Исторические методы основываются на изучение предыдущих фактов, и позволяют определить существующие закономерности. Но так как не всегда один метод оказывается достаточно эффективным, принято эти методы совмещать для получения лучших результатов.

Моделирование это метод, который в последнее время принимает большие обороты и подразумевает работать с объектами путем представления их в моделях. То, что нельзя анализировать и изучать впоследствии эксперимента, то можно узнать путем моделирования. Частично используется не только обычное моделирование, а также математическое моделирование.

Рассмотрим аналогию и моделирование в биологических исследованиях.

Аналогия и моделирование в биологии

Под аналогией понимается подобие, сходство каких-то свойств, признаков или отношений у различных в целом объектов. Установление сходства (или различия) между объектами осуществляется в результате их сравнения. Таким образом, сравнение лежит в основе метода аналогии.

Если делается логический вывод о наличии какого-либо свойства, признака, отношения у изучаемого объекта на основании установления его сходства с другими объектами, то этот вывод называют умозаключением по аналогии. Ход такого умозаключения можно представить следующим образом. Пусть имеется, например, два объекта А и В. Известно, что объекту А присущи свойства P1 Р 2,..., Рn, Рn+1. Изучение объекта В показало, что ему присущи свойства Р 1 Р 2,..., Рn, совпадающие соответственно со свойствами объекта А. На основании сходства ряда свойств (Р 1 Р 2,..., Рn) у обоих объектов может быть сделано предположение о наличии свойства Рn+1 у объекта В.

Степень вероятности получения правильного умозаключения по аналогии будет тем выше: 1) чем больше известно общих свойств у сравниваемых объектов; 2) чем существеннее обнаруженные у них общие свойства и 3) чем глубже познана взаимная закономерная связь этих сходных свойств. При этом нужно иметь в виду, что если объект, в отношении которого делается умозаключение по аналогии с другим объектом, обладает каким-нибудь свойством, не совместимым с тем свойством, о существовании которого должен быть сделан вывод, то общее сходство этих объектов утрачивает всякое значение.

Указанные соображения об умозаключении по аналогии можно дополнить также и следующими правилами:

1) общие свойства должны быть любыми свойствами сравниваемых объектов, т. е. подбираться "без предубеждения" против свойств какого-либо типа; 2) свойство Рn+1 должно быть того же типа, что и общие свойства Р 1 Р 2,..., Рn; 3) общие свойства Р 1 Р 2, ..., Рn должны быть возможно более специфичными для сравниваемых объектов, т. е. принадлежать возможно меньшему кругу объектов; 4) свойство Рn+1, наоборот, должно быть наименее специфичным, т. е. принадлежать возможно большему кругу объектов.

Существуют различные типы выводов по аналогии. Но общим для них является то, что во всех случаях непосредственному исследованию подвергается один объект, а вывод делается о другом объекте. Поэтому вывод по аналогии в самом общем смысле можно определить как перенос информации с одного объекта на другой. При этом первый объект, который собственно и подвергается исследованию, именуется моделью, а другой объект, на который переносится информация, полученная в результате исследования первого объекта (модели), называется оригиналом (иногда - прототипом, образцом и т. д.). Таким образом, модель всегда выступает как аналогия, т. е. модель и отображаемый с ее помощью объект (оригинал) находятся в определенном сходстве (подобии).

"Под моделированием понимается изучение моделируемого объекта (оригинала), базирующееся на взаимооднозначном соответствии определенной части свойств оригинала и замещающего его при исследовании объекта (модели) и включающее в себя построение модели, изучение ее и перенос полученных сведений на моделируемый объект - оригинал"

Модели в биологии применяются для моделирования биологических структур, функций и процессов на разных уровнях организации живого: молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом. Возможно также моделирование различных биологических феноменов, а также условий жизнедеятельности отдельных особей, популяций и экосистем.

В биологии применяются в основном три вида моделей: биологические, физико-химические и математические (логико-математические). Биологические модели воспроизводят на лабораторных животных определённые состояния или заболевания, встречающиеся у человека или животных. Это позволяет изучать в эксперименте механизмы возникновения данного состояния или заболевания, его течение и исход, воздействовать на его протекание. Примеры таких моделей - искусственно вызванные генетические нарушения, инфекционные процессы, интоксикации, воспроизведение гипертонического и гипоксического состоянии, злокачественных новообразований, гиперфункции или гипофункции некоторых органов, а также неврозов и эмоциональных состояний. Для создания биологической модели применяют различные способы воздействия на генетический аппарат, заражение микробами, введение токсинов, удаление отдельных органов или введение продуктов их жизнедеятельности (например, гормонов), различные воздействия на центральную и периферическую нервную систему, исключение из пищи тех или иных веществ, помещение в искусственно создаваемую среду обитания и многие другие способы. Биологические модели широко используются в генетике, физиологии, фармакологии.

Физико-химические модели воспроизводят физическими или химическими средствами биологические структуры, функции или процессы и, как правило, являются далёким подобием моделируемого биологического явления. Начиная с 60-х гг. 19 в. были сделаны попытки создания физико-химической модели структуры и некоторых функций клеток. Так, немецкий учёный М. Траубе (1867) имитировал рост живой клетки, выращивая кристаллы CuSО 4 в водном растворе К 4[Fе(СN)6]: французский физик С. Ледюк (1907), погружая в насыщенный раствор К 3РО 4 сплавленный СаСl2, получил - благодаря действию сил поверхностного натяжения и осмоса - структуры, внешне напоминающие водоросли и грибы. Смешивая оливковое масло с разными растворимыми в воде веществами и помещая эту смесь в каплю воды, О. Бючли (1892) получал микроскопические пены, имевшие внешнее сходство с протоплазмой; такая модель воспроизводила даже амебовидное движение. С 60-х гг. 19 в. предлагались также разные физические модели проведения возбуждения по нерву. В модели, созданной итальянским учёным К. Маттеуччи и немецким - Л. Германом, нерв был представлен в виде проволоки, окруженной оболочкой из проводника второго рода. При соединении оболочки и проволоки с гальванометром наблюдалась разность потенциалов, изменявшаяся при нанесении на участок "нерва" электрического "раздражения". Такая модель воспроизводила некоторые биоэлектрические явления при возбуждении нерва. Французский учёный Р. Лилли на модели, распространяющейся по нерву волны возбуждения, воспроизвёл ряд явлений, наблюдаемых в нервных волокнах (рефрактерный период, "всё или ничего" закон, двустороннее проведение). Модель представляла собой стальную проволоку, которую помещали сначала в крепкую, а затем в слабую азотную кислоту. Проволока покрывалась окислом, который восстанавливался при ряде воздействий; возникший в одном участке процесс восстановления распространялся вдоль проволоки. Подобные модели, показавшие возможность воспроизведения некоторых свойств и проявлений живого посредством физико-химических явлений, основаны на внешнем качественном сходстве и представляют лишь исторический интерес.

Позднее более сложные модели, основанные на гораздо более глубоком количественном подобии, строились на принципах электротехники и электроники. Так, на основе данных электрофизиологических исследований были построены электронные схемы, моделирующие биоэлектрические потенциалы в нервной клетке, её отростке и в синапсе. Построены также механические машины с электронным управлением, моделирующие сложные акты поведения (образование условного рефлекса, процессы центрального торможения и пр.).

Значительно большие успехи достигнуты в моделировании физико-химических условий существования живых организмов или их органов и клеток. Так, подобраны растворы неорганических и органических веществ (растворы Рингера, Локка, Тироде и др.), имитирующие внутреннюю среду организма и поддерживающие существование изолированных органов или культивируемых вне организма клеток.

Модели биологических мембран (плёнка из природных фосфолипидов разделяет раствор электролита) позволяют исследовать физико-химические основы процессов транспорта ионов и влияние на него различных факторов. С помощью химических реакций, протекающих в растворах в автоколебательном режиме, моделируют колебательные процессы, характерные для многих биологических феноменов, - дифференцировки, морфогенеза, явлений в сложных нейронных сетях и т. д.

Математические модель (математическое и логико-математическое описания структуры, связей и закономерностей функционирования живых систем) строятся на основе данных эксперимента или умозрительно, формализованно описывают гипотезу, теорию или открытую закономерность того или иного биологического феномена и требуют дальнейшей опытной проверки. Различные варианты подобных экспериментов выявляют границы применения математической модели и дают материал для её дальнейшей корректировки. Математическая модель в отдельных случаях позволяет предсказать некоторые явления, ранее не известные исследователю. Так, модель сердечной деятельности, предложенная голландскими учёными ван дер Полом и ван дер Марком, основанная на теории релаксационных колебаний, указала на возможность особого нарушения сердечного ритма, впоследствии обнаруженного у человека. Из математической модели физиологических явлений следует назвать также модель возбуждения нервного волокна, разработанную английскими учёными А. Ходжкином и А. Хаксли. На основе теории нервных сетей американских учёных У. Мак-Каллока и У. Питса строятся логико-математические модели взаимодействия нейронов. Системы дифференциальных и интегральных уравнений положены в основу моделирования биоценозов (В. Вольтерра, А.Н. Колмогоров). Марковская математическая модель процесса эволюции построена О.С. Кулагиной и А.А. Ляпуновым. И.М. Гельфандом и М.Л. Цетлиным на основе теории игр и теории конечных автоматов разработаны модельные представления об организации сложных форм поведения. В частности, показано, что управление многочисленными мышцами тела строится на основе выработки в нервной системе некоторых функциональных блоков - синергий, а не путём независимого управления каждой мышцей. Создание и использование математических и логико-математических М., их совершенствование способствуют дальнейшему развитию математической и теоретической биологии.

Метод моделирования в биологии является средством, позволяющим устанавливать все более глубокие и сложные взаимосвязи между биологической теорией и опытом. В последнее столетие экспериментальный метод в биологии начал наталкиваться на определенные границы, и выяснилось, что целый ряд исследований невозможен без моделирования. Если остановиться на некоторых примерах ограничений области применения эксперимента, то они будут в основном следующими: (19 с 15)

- эксперименты могут проводиться лишь на ныне существующих объектах (невозможность распространения эксперимента в область прошлого);

- вмешательство в биологические системы иногда имеет такой характер, что невозможно установить причины появившихся изменений (вследствие вмешательства или по другим причинам);

- некоторые теоретически возможные эксперименты неосуществимы вследствие низкого уровня развития экспериментальной техники;

- большую группу экспериментов, связанных с экспериментированием на человеке, следует отклонить по морально - этическим соображениям.

Но моделирование находит широкое применение в области биологии не только из-за того, что может заменить эксперимент. Оно имеет большое самостоятельное значение, которое выражается, по мнению ряда авторов (19, 20,21), в целом ряде преимуществ:

1. С помощью метода моделирования на одном комплексе данных можно разработать целый ряд различных моделей, по-разному интерпретировать исследуемое явление, и выбрать наиболее плодотворную из них для теоретического истолкования;

2. В процессе построения модели можно сделать различные дополнения к исследуемой гипотезе и получить ее упрощение;

3. В случае сложных математических моделей можно применять ЭВМ;

4. Открывается возможность проведения модельных экспериментов (синтез аминокислот по Миллеру) (19 с 152).

Все это ясно показывает, что моделирование выполняет в биологии самостоятельные функции и становится все более необходимой ступенью в процессе создания теории. Однако моделирование сохраняет свое эвристическое значение только тогда, когда учитываются границы применения всякой модели.

Этапы проведения биологического исследования

Этап

Описание

1. Постановка проблемы

Выработка четкой постановки проблемы.

2. Предполагаемое решение, формулирование гипотезы

Формулирование ожидаемых результатов и их научного значения с опорой на уже известные данные

3. Планирование исследования

Разработка порядка проведения исследования: разработка последовательности осуществления отдельных этапов исследования

4. Проведение исследования

Подбор необходимых биологических объектов, приборов, реактивов. Проведение различных этапов исследования. Сбор и запись наблюдений, измеряемых величин и результатов

5. Подведение итогов

Сравнение полученных результатов с гипотезой, научное объяснение результатов, формулирование выводов

В настоящее время в различных отраслях биологической науки широко используют метод моделирования (фр. modele - "образец", "прообраз"), когда на специально созданной модели воспроизводят характеристики изучаемого объекта. При этом между моделью и объектом, интересующим исследователя, должно быть известное подобие. Моделирование широко используется, если объект исследования очень сложный (многокомпонентный) или труднодоступный для непосредственного наблюдения. В этих случаях моделирование помогает не только выявить свойства и взаимозависимости изучаемого объекта, но и представить его характеристики в изменяющихся условиях.

Модель не копирует, а имитирует реальность. Моделирование позволяет экспериментировать с объектом, использовать процессы или явления, недоступные для непосредственного наблюдения. Методами имитационного моделирования (особенно с применением компьютеров), изменяя условия или компоненты объекта, можно получить достаточно надежные количественные прогнозы, например возможной численности популяции, математических закономерностей в системах "хищник - жертва", "паразит - хозяин", устойчивости структуры биосистем. Моделирование особенно широко используется в исследованиях биосферы.

2. Мониторинг в биологических исследованиях

В исследованиях состояния природы применяется мониторинг (лат. monitor - "предостерегающий") - многоцелевое длительное наблюдение за состоянием и изменениями изучаемого объекта. Мониторинг необходим для выявления загрязнения окружающей среды, установления изменений в видовом разнообразии в биогеоценозах для обнаружения и спасения редких, исчезающих биологических видов на нашей планете. При проведении мониторинга наряду с биологическими методами используются физические, химические, географические, космические (например, зондирование с искусственных спутников, космических кораблей).

Проведение многих биологических исследований требует особых навыков, а также внимания, терпения и тщательности в работе. Однако известно немало открытий, сделанных в биологии очень молодыми людьми, студентами и даже школьниками. Вы также можете провести настоящее исследование с наблюдением и экспериментом и подготовить отчет о его результатах. исследование биологический моделирование

Каждый исследователь обязательно ведет дневник наблюдений (его также называют полевым дневником). По многовековой традиции принято делать все записи простым карандашом, так как такие записи не пропадут, даже если дневник намокнет под дождем, упадет в снег, пропитается формалином или долго пролежит на ярком солнце. Никакие чернила не выдержат подобных испытаний.

Все собранные данные необходимо грамотно обработать. Для этого созданы специальные математические формулы, которые позволяют подтвердить достоверность статистических биометрических расчетов. Как правило, достоверность результатов основана на большом числе фактов. Чем больше проведено измерений, тем выше достоверность их среднего показателя. Результаты обобщают и для наглядности оформляют в таблицы, графики и диаграммы.

О формах моделирования биологических понятий

Построение моделей как одна из сторон диалектической пары противоположностей анализ-синтез имеет много аспектов, из которых некоторый выдвигается на первый план.

Особенно существенным при построении моделей является аспект отражения, понимаемого в смысле теории познания.

Каждая модель хранит знания в надлежащей форме; при этом запоминание знаний, как правило, связано с уменьшением избыточности. Поэтому каждая модель имеет также языковую функцию. Содержание знаний является семантической стороной; способы, с помощью которых знания вводятся в модель, кодируются в ней, являются синтаксической стороной. Последний языковой компонент имеет большое значение при активизации модели при каждом приведении ее в действие.

Но в то же время модель в своей функции как структура для хранения знаний является связующим звеном между теоретическим и эмпирическим познанием. Фразу "нет ничего проще хорошей теории" следует воспринимать дословно. Формализованная теория позволяет описать большое число частных фактов с помощью наибольшего числа основных результатов. Следовательно, главное назначение теории - в уменьшении избыточности, обусловленной изобилием частных фактов, и связанных с этим более глубоким познанием закономерных связей.

В основе каждой модели лежит более или менее развитая теория отображаемого объекта; эта теория укладывается в синтаксически установленные рамки, в концепцию системы, положенную в основу конкретного построения модели.

Системная концепция фиксирует общие рамки модели, иначе говоря, определяет структуру памяти модели. Конкретная форма модели, в которой она может действовать в качестве замены только одного конкретного объекта, получается благодаря тому, что экспериментальные, то есть эмпирические, данные приводятся в соответствии с этими рамками, то есть для параметров модели, ее степеней свободы шаг за шагом устанавливаются все более достоверные значения. В этом смысле каждая разработанная модель выражает компромисс между теорией и практикой, между теоретическими познаниями и эмпирическими данными.

Основным стержнем системы развивающего обучения является деятельностный подход. Поэтому содержание обучения задано в виде способов детских действий, а значит, результатом такого обучения будет ряд способностей, которыми овладеют дети в ходе обучения. Но какие именно человеческие способности кроются в способах работы с биологическими объектами? Какие из этих способностей уместно делать предметом школьного курса обучения биологии? Что такого особенного есть в биологии, чего не может дать детям изучение химии, физики и истории? Таким образом, я, как будущий учитель биологии, должна найти то уникальное, что бы показать, что мой предмет может дать формирующемуся сознанию ученика.

Для биологии ключевым словом является слово "развитие". Философы биологии все чаще обращают внимание на то, что биология со времени Ч. Дарвина все более формируется как наука о возникновении и развитии органического мира. Преимущественное внимание именно к аспекту развития до сих пор отличает биологию от физики и химии, как бы ни усиливалась ее зависимость от этих наук.

Усвоение понятия развития предполагает овладение особым способом рассмотрения живого - потенциальным действием с ним. Овладение понятием развития помогает становлению у человека способности к осторожной и внимательной оценке событий, умению видеть эти события в связи с другими, а не изолированно; способности предвидеть разные возможные варианты развертывания событий, последствия вмешательства в динамику сложных системных объектов; способности реконструировать ход уже свершившегося процесса.

Моделирование - это метод создания и исследования моделей. Изучение модели позволяет получить новое знание, новую целостную информацию об объекте.

Существенными признаками модели являются: наглядность, абстракция, элемент научной фантазии и воображения, использование аналогии как логического метода построения, элемент гипотетичности. Иными словами, модель представляет собой гипотезу, выраженную в наглядной форме.

Заключение

Моделирование - это наглядно-практический метод обучения. Наглядность является необходимым и закономерным средством образовательного процесса на всех этапах изучения биологии, так же как и практический метод. Специальные психолого-педагогические исследования показали, что эффективность обучения зависит от степени привлечения всех органов чувств человека. Чем разнообразнее чувственное восприятие учебного материала, тем прочнее он усваивается. Вследствие этого мы считаем, что совокупность наглядного и практического методов обучение, в виде метода моделирования является самодостаточным и должен занять достойное место среди современных методов обучения.

Что же касается моделирования вообще, то, по словам Р. Тома (1970, с. 153), "построение модели в науке - прежде всего вопрос удачи, результат "счастливой догадки". Но придет время, когда само построение моделей станет если не наукой, то по меньшей мере искусством. Моя попытка описать динамические модели, совместимые с морфологическими данными, представляет собой первый шаг на пути к созданию "Общей теории моделей", которую рано или поздно придется создать". С тех пор построение моделей, по крайней мере такими мастерами как Х. Майнхардт (H. Meinhard), уже превратилось в искусство, однако общая теория моделей еще не создана.

Биологические модели имеют меньшую предсказательную силу по сравнению с физическими. Биологическое моделирование демонстрирует управляемое параметрами моделей возникновение и изменение во времени пространственной неоднородности, появление простых или весьма изощренных структур и дает возможность выявления как общих, так и частных или же случайных характеристик пространственно-временной организации системы, а также конструирования альтернативных сценариев ее развития.

Литература

1. Аверьянов А.Н. Системное познание мира: методологические проблемы. М., 1991, С. 204, 261-263.

2. Алтухов В.Л., Шапошников В.Ф. О перестройке мышления: философско-методологические аспекты. М., 1988.

3. Сборник нормативных документов Биология М., "Дрофа", 2004

4. Батоpоев К.Б. Кибеpнетика и метод аналогий. М., Высшая школа, 1974

5. Богомолов А.С. Античная философия. М., МГУ, 1985

6. Будущее искусственного интеллекта. М., Наука,1991, С. 280-302.

7. В.П. Ермаков, Г.А. Якунин; "Основы тифлопедагогики", М., "Владос", 2000, с.69-76.

8. Вопросы философии, 1995, №7, С. 163.

9. Биология 9-11. Экспресс методика быстрого усвоения школьного курса и подготовки к экзаменам. Новая школа.2005. new-school/

10. Виртуальная школа Кирилла и Мефодия. Репетитор по биологии подготовка к ЕГЭ 2006.

11. В.С Конюшенко, С.Е Павлюченко.,. С.В Чубаро; "Методика обучения биологии". Минск, "Книжный Дом", 2004.

12. Г.Л. Билич, В.А. Крыжановская., Биология для поступающих в вузы. М., "Оникс",2007, с.174.

13. Могилев А.В., Пак Н.И., Хеннер Е.К. Информатика, М., Академия, 1999, С.674-677.

14. Новик И.Б. О философских вопросах кибернетического моделирования. М., Знание,1964.

15. Высоцкая М.В. Нетрадиционные уроки по биологии в 5-11 классах, М., Учитель, 2010.

16. Новик И.Б., О моделировании сложных систем, М., 1965

17. Моделирование в биологии и медицине, Л., 1969

18. Советский энциклопедический словарь (под ред. А.М. Прохорова) - М., Советская Энциклопедия, 1980, С. 828.

19. Фролов И.Т. "Жизнь и познание. О диалектике в современной биологии" М.: Мысль, 1981

20. Амосов Н.М. "Моделирование мышления и психики" М.: Наука, 1965

21. Веденов А.А. "Моделирование элементов мышления" М.: Наука, 1988

22. Фpолов И.Т. Гносеологические пpоблемы моделиpования. М., Наука, 1961, С.20.

23. Теоретическая и математическая биология, пер. с англ., М., 1968

24. Штофф В.А. Моделиpование и философия. М., Наука, 1966.

25. Pocket Oxford Dictionary, March 1994, Oxford Univercity Press, 1994 (Электронная версия)

26. "Практика развивающего обучения (система Д.Б. Эльконина - В.В. Давыдова)", А.Б. Воронцов М., "русская Энциклопедия"., 1998.

Размещено на Allbest.ru


Подобные документы

  • Формы живого в природе и их промышленные аналоги. Применение в технических устройствах и системах принципов организации, свойств, функций и структур природы. Моделирование живых организмов, архитектурно-строительная бионика; основные направления работ.

    презентация [92,7 K], добавлен 31.03.2012

  • Периодически повторяющиеся изменения в ходе биологических процессов в организме или явлений природы. Эндогенные, экологические, физиологические, циркадианные, приливные, лунные и низкочастотные ритмы. Значение биологических часов в жизни живых существ.

    презентация [4,4 M], добавлен 14.03.2011

  • Назначение и характеристика функции мембран как невидимых пленок, окружающих клетки живых организмов. Изучение строения и анализ химического состава биологических мембран. Описание систем трансмембранного переноса веществ и мембранной передачи сигналов.

    реферат [110,5 K], добавлен 10.12.2015

  • Первая классификация живых организмов, предложенная Карлом Линнеем. Три этапа Великих биологических объединений. Концепция эволюции органического мира Жан-Батиста Ламарка. Основные предпосылки возникновения теории Дарвина. Понятие естественного отбора.

    реферат [762,6 K], добавлен 06.09.2013

  • Одно из фундаментальных свойств живой природы – цикличность большинства происходящих в ней процессов. Описание различных факторов, регулирующих ритмичную активность живых организмов. Понятие биологического ритма. Экзогенные и эндогенные ритмы организма.

    реферат [23,7 K], добавлен 20.07.2010

  • Эмпирический уровень познания и общенаучные методы (анализ и синтез, аналогия и моделирование). Глобальные экономические проблемы. Строение и взаимодействие химических веществ. Современная теория химической эволюции, методология ее исследования.

    контрольная работа [22,5 K], добавлен 27.07.2009

  • Объекты биологического познания и структура биологических наук. Гипотезы возникновения жизни и генетического кода. Концепции начала и эволюции жизни. Системная иерархия организации живых организмов и их сообществ. Экология и взаимоотношения живых существ.

    реферат [52,9 K], добавлен 07.01.2010

  • Структура биологических мембран и строение их основы - билипидного слоя. Молекулярная масса мембранных белков, их различие по прочности связывания с мембраной. Динамические свойства биологических мембран и значение организации для биологических систем.

    реферат [19,1 K], добавлен 20.12.2009

  • Симметрия - фундаментальная особенность природы, охватывающая все формы движения и организации материи: понятие, принципы и методологическая роль в науке. Функциональная биосимметрика: преобразование живых систем; круговая таблица генетического кода.

    реферат [195,8 K], добавлен 18.01.2011

  • Формирование рациональных знаний о природе. Исторический очерк становления биологи как науки. Система биологических наук. Биография Ламарка - ученого, внесшего существенный вклад в биологии. Эволюционная теория. Значение биологических исследований.

    контрольная работа [23,8 K], добавлен 16.10.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.