Хаос и порядок. Явление самоорганизации

Хаос как основа порядка. Системы, далекие от термодинамического равновесия. Случайное, хаотическое, некоррелированное, некогерентное и неупорядоченное движение. Процессы самоорганизации и организации как альтернативные направления упорядочения хаоса.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 11.08.2015
Размер файла 30,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Хаос и порядок. Явление самоорганизации

Содержание

Введение

Хаос как основа порядка

Понятие структуры

Процессы самоорганизации и организации как альтернативные направления упорядочения хаоса

Список литературы.

Введение

Испокон веков, то есть, во все времена и даже без времен, Хаос и Порядок жили вместе и очень дорожили друг другом. Да ведь как было не дорожить тем, что дает тебе возможность жить в мире или без него. Порядок может возникнуть лишь из Хаоса, но и Хаос возникает лишь из Порядка. Такова исходно двойственная равновесная в себе самой и самодостаточная Природа мира…

Хаос постоянно присутствовал в самом сердце Порядка, напоминая ему о себе, как о своем мульти-зеркальном или исходном состоянии. При этом Хаос был способен на любую шалость и случайное поведение, нарушающие стабильность Порядка и вынуждающие того совершенствоваться и целенаправленно видоизменяться в любую сторону бытия. Хаос был источником каждого порядочного и закономерного процесса, благодаря беспорядочному и игровому характеру действий вечно изменчивой Матери Природы. А потому он и был Ее любимцем. Она же баловала свое любимое дитя без всякой меры и с великодушием истинной Женщины. Как только Порядок налаживал некоторую стабильную жизнь, так Хаос начинал свое разрушительное действие, вынуждая Порядка на порядок измениться в ту или иную сторону.

В настоящее время бурно развивается область естествознания, рассматривающая системы, далекие от термодинамического равновесия, обменивающиеся с внешней средой энергией и частицами, к которым неприменимо второе начало термодинамики. Как показывает опыт, при достаточно большой степени неравновесности, в таких открытых системах возможно спонтанное образование упорядоченных структур. Это явление, названное самоорганизацией, лежит в основе многих физических, биологических, а также экономических и социальных процессов. Поэтому изучение сущности хаоса и порядка как составляющих явления самоорганизации является весьма актуальной темой всех времен.

Хаос как основа порядка

Рассмотрим кинетическую энергию совокупности частиц. Если вдруг окажется, что все частицы движутся в одном и том же направлении с одинаковыми скоростями, то вся система, подобно теннисному мячу, будет находится в состоянии полета. Система ведет себя в этом случае аналогично одной массивной частице, и к ней применимы обычные законы динамики, такое движение называется движением центра масс.

Существует, однако, и другой вид движения. Можно представить себе, что частицы системы движутся не упорядоченно, а хаотически: полная энергия системы может быть той же самой, что и в первом случае, но теперь отсутствует результирующее движение, поскольку направления и скорости движения атомов беспорядочны. Если бы мы могли проследить за какой-либо отдельной частицей, то увидели бы, что она проходит небольшое расстояние вправо, затем, соударяясь с соседней частицей, смещается немного влево, снова соударяется и т. д. Основная черта этого вида движения состоит в отсутствии корреляции между движениями различных частиц; иными словами, их движения некогерентны (неупорядочены).

Описанное случайное, хаотическое, некоррелированное, некогерентное, неупорядоченное движение называется тепловым движением. Очевидно, понятие теплового движения неприменимо к отдельной частице, поскольку бессмысленно говорить о некоррелированном движении одной частицы. Иными словами, когда мы переходим от рассмотрения движения отдельной частицы к системам многих частиц и при этом возникает вопрос о наличии корреляций в их движениях, мы по существу переходим от обычной динамики в новую область физики, которая называется термодинамикой.

Итак, существует два вида движения частиц в сложных системах: движение может быть когерентным (упорядоченным), когда все частицы движутся согласованно («в ногу»), или, напротив, неупорядоченным, когда все частицы движутся хаотически.

Естественное стремление энергии к рассеянию определяет и направление, в котором происходят физические процессы в природе. Под этим понимается рассеяние энергии в пространстве, рассеяние частиц, обладающих энергией, и потеря упорядоченности, свойственное движению этих частиц. Первое начало термодинамики в принципе не отрицает возможности событий, казалось бы противоречащих здравому смыслу и повседневному опыту: например, мяч мог бы начать подскакивать за счет своего охлаждения, пружина могла бы самопроизвольно сжаться, а кусок железа мог бы самопроизвольно стать более горячим, чем окружающее пространство. Все эти явления не нарушили бы закона сохранения энергии. Однако в действительности ни одно из них не происходит, поскольку нужная для этого энергия, хотя и имеется в наличии, но недоступна. Если не принимать всерьез существующий в принципе, но чрезвычайно небольшой шанс, можно смело утверждать, что энергия никогда не может сама по себе локализоваться, собравшись в избытке в какой-либо небольшой части Вселенной. Однако, если бы даже произошло, еще менее вероятно, что подобная локализация была бы упорядоченной.

Естественные процессы - это всегда процессы, сопровождающие рассеяние, диссипацию энергии. Отсюда становится ясным, почему горячий объект охлаждается до температуры окружающей среды, почему упорядоченное движение уступает место неупорядоченному и, в частности, почему механическое движение вследствие трения полностью переходит в тепловое. Столь же просто осознать, что любые проявления асимметрии, так или иначе сводятся к рассеянию энергии. Проявление любых диспропорций в организационной структуре объекта приводит к образованию асимметрии как по отношению к окружающей среде, так и для самой структуры в частности, это может привести к увеличению потенциальной энергии или, при большом скоплении этой энергии, к распаду системы, как противоречащей законам природы (общества).

Организация создается из хаоса (общества) одним или несколькими возбужденными атомами (предпринимателями) и в хаос проваливается при ликвидации. Естественные, самопроизвольно происходящие процессы - это переход от порядка к хаосу.

Поставим теперь следующий вопрос: сколькими способами можно произвести перестройку внутри системы, так чтобы внешний наблюдатель не заметил ее. Отметим, что в формулировке вопроса учтено то существенное, что характеризует переход от мира атомов к макроскопической системе, а именно «слепота» внешнего наблюдателя по отношению к «индивидуальностям» атомов, образующих систему. Термодинамика имеет дело только с усредненным поведением огромных совокупностей атомов, причем поведение каждого отдельного атома не играет роли. Если внешний наблюдатель, изучающий термодинамику, не заметил, что в системе произошло изменение, то состояние системы считается неизменным. лишь «педантичный» наблюдатель, тщательно следящий за поведением каждого атома, будет знать, что изменение все-таки произошло.

Сделаем теперь последний шаг на пути к полному определению хаоса. Предположим, что частицы вселенной не закреплены и могут, подобно состоянию возбуждения и энергии, свободно перемещаться с места на место; например, такое могло бы случиться, если бы Вселенная была газом. Предположим также, что мы создали начальное состояние вселенной, пустив струю газа в правый нижний угол сосуда. Интуитивно мы понимаем, что произойдет: облако частиц начнет самопроизвольно распространяться и через некоторое время заполнит весь сосуд.

Такое поведение вселенной можно трактовать как установление хаоса. Газ -- это облако случайно движущихся частиц (само название «газ» происходит от того же корня, что и «хаос»). Частицы мчатся во всех направлениях, сталкиваясь и отталкиваясь друг от друга после каждого столкновения. Движения и столкновения приводят к быстрому рассеиванию облака, так что вскоре оно равномерно распределяется по всему доступному пространству. Теперь существует лишь ничтожно малый шанс, что все частицы газа когда-нибудь спонтанно и одновременно вновь соберутся в угол сосуда, создав первоначальную конфигурацию. Разумеется, их можно собрать в угол с помощью поршня, но это означает совершение работы, следовательно, процесс возврата частиц в исходное состояние не будет самопроизвольным.

Ясно, что наблюдаемые изменения объясняются склонностью энергии к рассеянию. Действительно, теперь состояние возбуждения атомов оказалось физически рассеянным в пространстве вследствие спонтанного рассеяния атомов по объему сосуда. Каждый атом обладает кинетической энергией, и потому распространение атомов по сосуду приводит и к распространению энергии.

В химии, как и в физике, все естественные изменения вызваны бесцельной «деятельностью» хаоса. Мы познакомились с двумя важнейшими достижениями Больцмана: он установил, каким образом хаос определяет направление изменений и как он устанавливает скорость этих изменений. Мы убедились также в том, что именно непреднамеренная и бесцельная деятельность хаоса переводит мир в состояния, характеризующиеся все большей вероятностью. На этой основе можно объяснить не только простые физические изменения (скажем, охлаждение куска металла), но и сложные изменения, происходящие при превращениях вещества. Но вместе с тем мы обнаружили, что хаос может приводить к порядку. Если дело касается физических изменений, то под этим понимается совершение работы, в результате которой в свою очередь могут возникать сложные структуры, иногда огромного масштаба. При химических изменениях порядок также рождается из хаоса; в этом случае, однако, под порядком понимается такое расположение атомов, которое осуществляется на микроскопическом уровне. Но при любом масштабе порядок может возникать за счет хаоса; точнее говоря, он создается локально за счет возникновения неупорядоченности где-то в ином месте. Таковы причины и движущие силы происходящих в природе изменений.

Понятие структуры

Каждый из нас в общих чертах знает, что такое структура; как правило, это определенное расположение, конфигурация частиц -- атомов, молекул или ионов. Так, вполне определенную структуру представляет собой кристалл. Он отличается от газа, от жидкости и от куска масла, так как во всех этих веществах взаимное расположение частиц не является строго определенным, фиксированным. Но имея дело с кристаллом, мы можем быть уверены, что обнаружим частицы на строго определенном расстоянии друг от друга. В бесструктурных состояниях вещества -- в газах, жидкостях и аморфных твердых телах -- относительные расположения частиц совершенно неопределены.

Обобщая эти предварительные наблюдения (в дальнейшем мы будем иметь дело с более сложными примерами), нетрудно заметить, что частицы в кристаллических твердых телах расположены упорядочено (или, как иногда говорят, обладают пространственной когерентностью); иными словами, расположение частиц взаимно коррелированно. В противоположность этому в газах (и в меньшей степени в жидкостях) подобная пространственная упорядоченность практически отсутствует: расположения частиц не обладают взаимной корреляцией. Таким образом, можно сказать, что понятие структуры равнозначно понятию упорядоченности, когерентности, когда частицы организованы в строго определенные конфигурации; напротив, отсутствие структуры означает и отсутствие упорядоченности, когда расположения частиц вполне случайны. В такое понимание связи структуры и порядка хорошо вписываются как твердое тело, обладающее структурой, так и бесструктурные газы.

Такое предварительное определение структуры через описание вещества, состоящего из частиц с упорядоченным расположением, можно уточнить с тем, чтобы дать более адекватное описание природы жидкого состояния. При изменении расположения частиц в жидкостях одним из методов рентгеноструктурного анализа, столь широко используемых ныне для исследования строения твердых тел, обнаруживается вполне определенное локальное расположение частиц. Однако чем дальше мы отходим от данной частицы, тем все с меньшей уверенностью можем ожидать, что действительно обнаружим следующую частицу там, где ей следовало бы находиться согласно установленному локальному порядку. Иными словами, с удалением друг от друга частицы становятся все более независимыми, а их расположение - неуправляемым (т.е. взаимная корреляция частиц ослабляется). Короче говоря, твердые тела обладают дальним порядком; им присуща глобальная структура или крупномасштабная когерентность -- в том смысле, что расположения частиц вполне предсказуемы на больших расстояниях (например, вплоть до границ кристалла). Газы практически полностью лишены подобной глобальной структуры (они не имеют даже границы своего положения); в расположении их частиц отсутствует когерентность даже на самых малых расстояниях. Жидкости, как подсказывает нам интуиция, занимают промежуточное положение между твердыми телами и газами. Они обладают лишь локальной структурой и лишены структуры глобальной; на малых расстояниях (порядка нескольких соседних молекул) расположения частиц сохраняют упорядоченность, полностью теряя ее на больших расстояниях. Существуют различные виды жидкостей с большей или меньшей степенью упорядоченности. Например, жидкие кристаллы обладают дальним порядком по некоторым направлениям, тогда как по другим он полностью отсутствует. Можно сказать, что такие анизотропные вещества по одним направлениям являются твердыми телами, а по другим - жидкостями. Подобная анизотропия служит причиной необычных оптических свойств этих веществ, позволяющих использовать их в качестве материала для дисплеев ЭВМ, микрокалькуляторов, наручных часов и т. д.

Уточним теперь наше предварительное определение структуры и расширим область его применимости. Здесь и далее мы будем рассматривать понятия структуры и упорядоченности как синонимы (лат. structura означает строение, расположение, порядок). Везде и всегда, если только устанавливается состояние упорядоченности, мы будем рассматривать это как возникновение структуры. Более того, будем считать, что упорядоченность -- это не только наличие корреляции в пространстве, как в обычных физических объектах; она может также проявляться -- и это имеет принципиальное значение -- как корреляция во времени (в последнем случае термин «когерентность» употребляется в своем буквальном смысле).

Обобщив таким образом наши рассуждения, посмотрим, какие объекты подходят под новую классификацию. Очевидно, что сюда безоговорочно относится давно знакомое нам твердое тело; обнаруживаются, однако, и «новички». Один из них представляет собой структуру такого типа, которая сохраняется только при условии рассеяния энергии. Подобные структуры называют диссипативными; к ним, в частности, относятся живые организмы, в том числе человек.

Диссипативные структуры -- это структуры, образующиеся в результате рассеяния (диссипации) энергии. К ним относятся некоторые недолговечные структуры, которые распадаются, как только прекращается поток энергии или вещества. Некоторые из таких структур являются по своей природе биологическими, другие - физическими; все они возникают из хаоса - «праха» и вновь обращаются в «прах». Одной из первых описанных структур подобного вида была ячеистая структура, образующаяся в жидкости при наличии конвекции между двумя горизонтальными плоскостями, нижняя из них нагрета сильнее, чем верхняя. Пока разность двух плоскостей мала, движущиеся частицы жидкости распределены хаотично. Однако, когда разность температур становится достаточно большой, возникает неустойчивость Бенара, и жидкость обнаруживает структуру.

Итак, мы убеждаемся в том, что последовательность отдельных процессов, в каждом из которых энтропия лишь возрастает (т.е. хаос во Вселенной при этом увеличивается), может приводить и к возникновению структур высокой степени сложности. Поэтому замечая какой-либо объект, обладающий сложной внутренней структурой, мы не должны сразу же делать вывод о том, что этот объект является воплощением целенаправленного замысла. Он мог возникнуть естественно в результате последовательности процессов, каждый из которых сам по себе не представляет никакой конкретной цели (разводы на мерзлом стекле), а происходит в естественном направлении, по мере того как Вселенная погружается в хаос. Все это резюмируется в известном рассуждении Пэли о часах. Если вы нашли часы, говорит Пэли, то сложность их механизма не оставляет вас сомнений в том, что часы были кем-то сконструированы, то есть по крайней мере когда-то должен был существовать их конструктор. Далее, рассуждает Пэли, поскольку окружающий нас мир в целом устроен значительно сложнее часов, то космический путешественник, посетивший наш мир, не усомнился бы в том, что этот мир был «спроектирован» и что (по крайней мере когда-то) существовал его «создатель». Однако это рассуждение Пэли ошибочно. Если нам попадается кролик, у нас нет необходимости рассматривать его как результат некоего «проекта». Этот кролик (как и его собратья) возник как «промежуточный продукт» на долгом пути, которым Вселенная движется к своему вырождению и ухудшению качества энергии. Кролики, как цветки примулы, поросята или даже мы, люди, -- всего лишь элементы гигантской сети взаимосвязей, имеющей поистине космические масштабы. Именно благодаря таким локальным нарушениям общей тенденции к деградации энергии становится возможным возникновение временных упорядоченных структур -- хотя деградация неуклонно влечет Вселенную к состоянию полного равновесия.

Существует множество способов убедиться в том, что разветвленная система (сеть) взаимозависимых простых процессов может привести к возникновению сложной структуры и тем самым ввести в заблуждение «стороннего наблюдателя», побуждая его предположить существование определенного замысла и «творца».

В мире нет ничего более удивительного, чем сознание, разум человека; тем большее удивление вызывает то, что в своей глубинной основе оно обусловленно весьма простыми явлениями.

В процессе «разматывания» клубка событий локально возникают различные структуры, и хотя все они преходящи, некоторые из них способны существовать миллионы лет.

Процессы самоорганизации и организации как альтернативные направления упорядочения хаоса

хаос порядок термодинамический равновесие

Могут быть разные виды открытых микроскопических и макроскопических систем, в которых происходит обмен и трансформация энергии, приводящие к самоорганизации.

Может быть обмен энергии без обмена веществ. Например, такой случай реализуется при образовании тепловых конвекционных «ячеек Бенара» в тонком слое вязкой жидкости при вертикальном потоке тепла.

Может быть обмен и энергии и вещества.

Однако наиболее интересным и важным случаем для осуществления не только самоорганизации, но и прогрессивной эволюции является обмен веществ и энергии за счет веществ, реагирующих и освобождающих энергию внутри системы. Именно такой случай элементарных открытых каталитических систем (ЭОКС) явился предметом исследований в эволюционном катализа.

Открытые системы, исследуемые в эволюционном катализе, оказались весьма распространенными динамическими объектами химии, способными к самоорганизации и саморазвитию и удобными для экспериментальных и теоретических исследований в этой области. Как известно, такие исследования привели к разработке количественной теории образования ЭОКС, их устойчивости, гомеостазиса, самоорганизации и прогрессивной эволюции вплоть до формирования живых объектов.

Кроме того, благодаря исследованию таких систем и разработке теории эволюционного катализа стало ясно, что в природе существуют отнюдь не экзотические, а весьма распространенные объекты с устойчиво и точно повторяющимися внутренними циклическими процессами, сочетающими в себе организацию и самоорганизацию, т. е. энтропийный и антиэнтропийный принципы. В каждом каталитическом акте благодаря кодирующему свойству точно воспроизводится механизм базисного процесса, а, следовательно, и процесс самоорганизации неравновесного кинетического континуума веществ и реакций, образующий каталитическую систему. Поэтому при длительном существовании ЭОКС, с постоянной природой имеет место устойчивое неравновесие, т. е. постоянное сохранение самоорганизации ЭОКС за счет обмена веществ и энергии.

Устойчивое неравновесие ЭОКС аналогично устойчивому неравновесию живых организмов, считавшемуся Э.С. Бауэром наиболее специфичным признаком жизни. Поэтому свойство самоорганизации неживых ЭОКС, обеспечивающее их устойчивое неравновесие, можно считать фундаментальным прототипом этого признака жизни.

В химии объекты с равновесной структурной организацией (А, В, Кi) легко могут превратиться в объекты с неравновесной структурной организацией (ЭОКС), а последние, релаксируя после каждого каталитического акта, в свою очередь, легко превращаются в объекты с равновесной структурной организацией (С, D, Кi). Каждое из этих превращений является процессом самоорганизации (эr) и организации (эrЇ). Обобщая весь материал химии, можно сказать, что в каждом химическом акте активационного характера (каталитическом и некаталитическом) образуются объекты с неравновесной организацией, элементарные химические системы (ЭХС). Это так называемые «переходные состояния», являющиеся неполным и неточным понятием, отражающим реально образующиеся нсравновесные ЭХС.

В эволюционном катализе на примере ЭОКС по существу впервые было доказано энергетически связанное существование двух типов структурной организации вещества, подчиняющихся разным физическим принципам: энтропийному и антиэнтропийному и узаконены естественные антиэнтрипийные процессы. После этого логичным был следующий шаг обобщения: все процессы упорядочения хаоса в природе могут иметь альтернативную направленность: равновесную (эrЇ) и неравновесную (эr), причем в первом случае происходит уменьшение степени неравновесия (эrЇ), а во втором ее возрастание (эr). Процессы организации и самоорганизации, соответствующие этим разным направлениям изменения неравновесия, различаются и по их энергодинамике. При этом они различаются не только по вектору изменений свободной энергии, но и по динамике энергетических изменений во времени. В период образования объектов при упорядочении хаоса имеют место динамические процессы в обоих случаях, различающиеся по направленности изменения неравновесия эr и освобожденной энергии Е.

В период существования объектов во времени в случае «организации» динамизм утрачивается, и объект существует как статический без изменения энергии; в случае «самоорганизации» объект продолжает существовать как динамический с затратой энергии EЇ, пропорциональной времени; в частном случае «самоорганизации» при образовании солитонов объект продолжает существовать как статический без затраты энергии.

Из сказанного ясно, что такая характеристика как динамизм без учета разных фаз существования образующихся объектов, не может быть определяющей только для явления самоорганизации. Различать самоорганизацию и организацию при анализе сложных явлений можно только на основе различий их физической сущности, связанной с разной направленностью изменений r и Е.

Таким образом развитие работ в области эволюционного катализа внесло вклад не только в понимание физической сущности явления самоорганизации и его отличия от альтернативного явления организации, но также и в утверждении новой парадигмы естествознания, узаконивающей антиэнтропийный принцип наряду с энтропийным и дуалистичность мира объектов с равновесной и неравновесной структурной организацией веществ, образующихся в пассивном и активном направлениях упорядочения хаоса.

Одним из важных вкладов в науку о самоорганизации, который внесла теория эволюционного катализа, является установление существования двух типов самоорганизации: континуальной самоорганизации индивидуальных ЭОКС (микросистем) и когерентной самоорганизации коллективных систем, макроскопических множеств М-ЭОКС. В подходе Пригожина, развитого Хакеном в синергетику, рассматривается лишь второй тип когерентной самоорганизации в макроскопических системах, проявляющийся в образовании диссипативных структур, концентрационных автоволн и пр. Первый же тип самоорганизации, имеющий ведущее и фундаментальное значение, как в возникновении когерентной самоорганизации, так и в осуществлении прогрессивной эволюции, в работах последователей Пригожина не выделялся, не учитывался и его существование даже не предполагалось.

Оба типа самоорганизации имеют одну и ту же физическую сущность (эr; EЇ) активного неравновесного упорядочения, имеют одинаковые причины и движущие силы и описываются неравновесной термодинамикой рабочих процессов. Они различаются по масштабам потоков энергии, превращаемых во внутреннюю полезную работу, по механизму процесса самоорганизации, по морфологическим особенностям и природе самоорганизующихся объектов и по взаимной соподчиненности.

В континуальной самоорганизации индивидуальных ЭОКС на порядок больше мощность используемых на самоорганизацию Q и рассеиваемых бесполезно Q потоков энергии обменного процесса по сравнению с когерентной самоорганизацией множеств М-ЭОКС. Ибо в первом случае мощность соответствует всему энергетическому потенциалу базисной реакции, а во втором определяется лишь частью полезно рассеиваемой после континуальной самоорганизации энергии релаксационных излучений.

Континуальная и когерентная организация существенно различается по механизму. Механизм когерентной самоорганизации связан с кооперативным взаимодействием множества однородных компонентов, приводящим к синхронизации внутренних процессов и их когерентному поведению. Такой механизм Хакен назвал синергетическим (от гр. Synergia -- совместное кооперативное действие). Механизм континуальной самоорганизации связан с механизмом базисной реакции и образованием промежуточного неравновесного функционально неделимого объекта -- кинетического континуума веществ и реакций -- с системно-динамическими связями разнородных компонентов. Такой механизм следует назвать синкретическим (от гр. Synkretismos -- слитное, нерасчлененное соединение разнородного). О различии механизмов двух типов самоорганизации говорит и А.С. Щербаков, называя континуальную самоорганизацию кибернетической, а когерентную -- синергетической.

Поэтому, если науку о когерентной самоорганизации называть «синергетикой» как это предложил Хакен, то науку о континуальной самоорганизации следовало бы называть по другому -- «синкретикой». Если же принять термин «синергетика» за обозначение науки о самоорганизации вообще, то следует учитывать ограниченность хакеновского понимания синергетики.

Существование особого природного явления -- самоорганизации, характеризуемого параметрами эr и ЕЇ, т. е. ростом степени неравновесия и затратой энергии, должно быть предметом изучения специальной научной области. Большинство ученых эту область науки называют сейчас синергетикой, хотя и есть сомнения в строгости применения такого термина. Сомнения возникли в связи с тем, что существуют два типа самоорганизации: для индивидуальных систем (континуальный с синкретическим механизмом) и для коллективных макросистем (когерентный с синергетическим механизмом). При этом термин синергетика, отражающий кооперативные взаимодействия в макросистеме, предложен Хакеном для второго типа и непригоден для первого. Более того оказалось, что когерентная самоорганизация является производной от континуальной и может не проявиться без исходной континуальной самоорганизации составляющих множество компонентов, т. е. синкретический механизм самоорганизации индивидуальных систем может породить синергетический механизм самоорганизации множества, но не наоборот. Еще большую подчиненность всех проявлений самоорганизации ее первому типу мы видим в случае прогрессивной эволюции с естественным отбором, которая возможна только как саморазвитие континуальной (синкретической) самоорганизации и не имеет места для макросистем с когерентной (синергетической) самоорганизацией.

Поэтому, если уж выбирать из двух терминов наиболее строгое название для науки о самоорганизации, охватывающее все ее проявления в разных типах самоорганизации и ее связях с прогрессивной эволюцией, то такую науку надо было бы называть синкретикой. Однако, учитывая современный синергетический бум в науке и стремление связывать с синергетикой все проявления самоорганизации, включая и эволюцию, можно было бы договориться о расширении хакеновского определения синергетики до понятия, охватывающего все проявления самоорганизации и называть науку о самоорганизации «синергетикой» в обобщенном расширенном понимании, которое имеет синкретика. Тем более, что в таком расширенном понимании термин синергетика уже все чаще применяется.

К сожалению, в работах по современной синергетике наблюдается нежелательная тенденция к превращению названия науки синергетики в название явления, подменяющего самоорганизацию. С такой путаницей и размыванием понятий согласиться нельзя. Это не просто ошибка, связанная с непониманием сути явления самоорганизации, но и шаг к утрате предмета науки о самоорганизации и выхолащивания ее научного статуса.

Непонимание различий физической сути процессов самоорганизации (эr, EЇ) и организации (эrЇ, E) и попытки отождествлять термин самоорганизация в общем значении «упорядочения», имеющего, как известно, два направления (эr и эrЇ) приводит часто к путанице в этих понятиях и к неправильному использованию термина самоорганизация (антиэнтропийный процесс) для обозначения альтернативного явления организации (энтропийный процесс). Такие ошибки можно встретить даже в специальных работах по синергетике, не говоря уже о работах, подверженных моде на синергетику, в которых используются красивые термины самоорганизация и синергетика без должного знания сути. Это вносит путаницу и засоряет научный язык.

Примеры такого неправильного применения термина самоорганизация можно найти в появившейся недавно интересной и полезной работе Жана Мари Лена, посвященной проблемам надмолекулярной химии. Для обозначения процессов межмолекулярных взаимодействий крупных молекул «рецептора» с другими более мелкими молекулами за счет водородных и других слабых нековалентных связей, приводящих к образованию комплексов в соответствии с законами равновесной термодинамики, он применяет термины: «самопроцессы», «самоассоциация», «самоорганизация» на основании лишь того, что такие процессы самопроизвольны. При этом, он забывает, что все другие процессы химии также идут самопроизвольно в направлении к равновесию (эrЇ), подчиняясь энтропийному принципу (второму закону термодинамики) и не являются процессами самоорганизации. Здесь он дважды неправ. Во-первых, называть надмолекулярные химические процессы «самопроцессами» на основе их самопроизвольности и не называть таким же образом и противопоставлять им все другие самопроизвольные процессы химии -- не логично. Во-вторых, применять приставку само- (self) ни для тех, ни для других процессов в принципе нельзя, так как те и другие процессы энтропийные, т. е. являются процессами организации (эrЇ). В то время как процессы самоорганизации, также протекающие самопроизвольно, имеют антиэнтропийную направленность (эr). Приставка self (само-) для таких процессов введена не потому, что они самопроизвольны, а потому, что антиэнтропийны.

Понимания этого в книге Лена нет и нельзя согласиться с неправомерным использованием терминов с приставкой само-, вносящим путаницу в научную терминологию.

В то же время можно привести примеры совершенно правильного понимания физической сути явления самоорганизации и его использование для объяснения сложных явлений. Так, геолог В.Л. Сывороткин, рассматривая проблему самоуправляемости процессов на планете Земля, совершенно справедливо связывает самоорганизацию со способностью к воспроизводству антиэнтропийных состояний и с накоплением запаса потенциальной энергии.

Каким-то оправданием неправильного применения терминов самоорганизация и организация может служить существующая условность и семантическая нечеткость этих терминов. Обстоятельства первоначального определения смысла самоорганизации забываются, да и известны они узкому кругу специалистов, в то же время имеется большое желание называть любые самопроизвольные процессы упорядочения самоорганизацией. При этом возникает даже сомнение в том, что процесс истинной самоорганизации, идущей за счет части энергии энтропийного процесса меньше заслуживает приставки само-, чем сам энтропийный процесс организации, идущий самопроизвольно и дающий эту энергию.

Очевидно, что порядок в использовании терминологии может быть установлен только при введении строгих определений: самоорганизация это неравновесное упорядочение, а организация -- равновесное упорядочение. Так как неравновесное и равновесное упорядочение различаются по своей физической сущности, направленности, активному или пассивному характеру, можно все это использовать при определении самоорганизации на основе любого синонима упорядочения. Например, термины самоорганизации и организации чаше всего путают, считая их синонимами упорядочения и забывая при этом, что упорядочение имеет разную направленность (активную и пассивную), приводящие к самоорганизации и организации. Если пойти на поводу такого течения, то истинную самоорганизацию (активное упорядочение) можно было бы называть активной самоорганизацией или же активной организацией при явной излишности первого термина. При этом придется исключить и сам термин самоорганизация и говорить лишь об активном и пассивном упорядочении, активной или пассивной организации, или же организации I и II рода и т. п. По-видимому, это неправильный путь и следует придерживаться первого варианта, опираясь на распространение необходимых знаний о физической сущности рассматриваемых явлений.

Список литературы

1. Барвинский А.О., Каменщик А.Ю., Пономарёв В.Н. Фундаментальные проблемы интерпретации квантовой механики. Современный подход - М.: Изд-во МГПИ, 1988

2. Жан Мари Лен. Супрамолекулярная химия. Концепции и перспективы. Новосибирск: Наука. 1998. 333 с.

3. Курдюмов С.П., Малинецкий. Г.Г. Синергетика -- теория самоорганизации. (Идеи, методы, перспективы). М.: Знание. 1983.

4. Пригожин И., Стенгерс И. Время, хаос, квант - М.: Прогресс, 1994

5. Романовский Ю.М. Процессы самоорганизации в физике, химии и биологии. М.: Знание. 1981. 48 с.

6. Руденко А.П. Термодинамические закономерности химической эволюции и основы биоэнергетики. В кн.: Методологические и теоретические проблемы биофизики. 1979. М.: Наука. 120-127 с.

7. Сывороткин В.Л. Планета Земля -- самоуправляющая система. В кн.: Система планета Земля. (Материалы научных семинаров). М.: РОО «Гармония». 1999. 1-7 с.

Размещено на Allbest.ru


Подобные документы

  • Характеристика сущности теории хаоса и особенностей ее взаимосвязи с естествознанием. Анализ вклада Вернадского в представления о "жизненном порыве" и "творческой эволюции". Применимость теории хаоса в общественных процессах. Человек и явление порядка.

    контрольная работа [25,7 K], добавлен 28.09.2010

  • Исследование теории самоорганизации. Основной критерий рaзвития сaмооргaнизующихся систем. Неравновесные процессы и открытые системы. Самоорганизация диссипативных структур. Химическая реакция Белоусова-Жаботинского. Самоорганизация в физических явлениях.

    реферат [636,7 K], добавлен 30.09.2010

  • Понятия "эволюционизм" и "эволюция". Исторические этапы развития и принципы универсального эволюционизма. Сущность основных понятий синергетики: аттрактор, бифуркация, диссипативность, нелинейность, открытая система, порядок, синергия, флуктуации, хаос.

    презентация [195,9 K], добавлен 05.12.2013

  • Анализ главной темы книги "Время, хаос, квант" - вопроса о парадоксе времени, который рассмотрен как проблема, решение которой требует расширения основной концептуальной схемы теоретической физики. Особенности проблемы центральной роли "законов природы".

    анализ книги [16,8 K], добавлен 02.12.2010

  • Естественнонаучная и гуманитарная культуры и история естествознания. Корпускулярная и континуальная концепции описания природы. Порядок и беспорядок в природе, хаос. Пространство и время, принципы относительности, симметрии, универсального эволюционизма.

    курс лекций [545,5 K], добавлен 05.10.2009

  • Принцип локального равновесия. Факторы изменения климата планет. Информированность как важное свойство самоорганизации. Процессы возникновения биосферы, химической эволюции преджизненных форм. Математическое моделирование биологической эволюции.

    контрольная работа [547,4 K], добавлен 17.08.2010

  • Энтропия или теория хаоса. Показатель неопределенности состояния любой упорядоченной физической системы, или поведения любой системы, включая живые и неживые объекты и их функции. Энтропия мироздания, информации и мышления, термодинамики, информатики.

    реферат [18,0 K], добавлен 04.02.2010

  • Особенность синергетики как науки. Синергетика Ч. Шеррингтона, синергия Улана и синергетический подход И. Забуского. Объекты исследования синергетики. Структура и хаос. Теория диссипативных структур и автоволновых процессов. Поиски универсальной модели.

    контрольная работа [31,5 K], добавлен 16.04.2011

  • Кибернетика и ее принципы. Самоорганизующиеся системы. Связь кибернетики с процессом самоорганизации. Синергетика как новое направление междисциплинарных исследований. Отличие синергетики от кибернетики. Структурные компоненты процесса самоорганизации.

    реферат [58,1 K], добавлен 09.09.2008

  • Понятие энтропии как меры хаоса, ее принципы и место в истории развития классической физики. Общая характеристика образования структур нарастающей сложности. Анализ взаимосвязи экологии и естествознания. Оценка экологической обстановки в г. Новосибирске.

    реферат [40,8 K], добавлен 21.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.