Концепция Большого взрыва

Представления о событиях, происходивших в молодой Вселенной. Общепринятый космологический сценарий, получивший название "стандартной модели" или "модели Большого взрыва". Развитие идеи эволюции живой природы, противостояние преформизма и эпигенеза.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 29.05.2015
Размер файла 21,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

1.На чём основана концепция Большого Взрыва?

Представления о событиях, происходивших в молодой Вселенной, разработаны довольно подробно. Общепринятый космологический сценарий получил название «стандартной модели» или «модели Большого взрыва». Может вызывать удивление уверенность, с которой ученые говорят о столь давних событиях, но на самом деле удивительного здесь мало. Ранняя Вселенная была весьма просто устроена: в ней еще не было никаких сложных структур.

Итак, несколько миллиардов лет тому назад вся материя Вселенной была сосредоточена в объеме поперечником примерно 1035 м и нагрета до чрезвычайно высокой температуры. Как известно, температура есть мера средней кинетической энергии беспорядочного движения частиц. В первые мгновения она была настолько высока, что элементарная частица могла иметь энергию, сравнимую с энергией пудовой гири, падающей с высоты нескольких метров. При таких энергиях исчезает различие между разными типами физических взаимодействий. Более того, по всей видимости, сам физический вакуум находился в другом состоянии, гораздо с большей энергией, чем в современную эпоху. Но ненулевая энергия вакуума соответствует ненулевому Л-члену в уравнениях Эйнштейна, который описывает антигравитацию, силу всемирного отталкивания. Идея Эйнштейна возродилась на новом уровне научных знаний, получив обоснование в квантовых представлениях, столь упорно им отвергавшихся.

Под действием мощных сил отталкивания, обусловленных энергией вакуума (которая могла составлять до 10 Дж/м3), Вселенная начала раздуваться с нарастающим ускорением. По оценкам ученых, на этой стадии инфляции пространственные масштабы Вселенной могли увеличиваться в сотни раз каждые 1042 секунды. В результате спустя ничтожное время, не превышающее 1033 с, расстояние между любыми двумя частицами вещества, которые существовали в начальный момент, должно было стать больше поперечника доступной сегодня для наблюдения части Вселенной. В такой же степени должна была упасть температура. Из сверхплотной и сверхгорячей Вселенная стала почти абсолютно пустой и холодной.

Если бы на этом все и закончилось, то сегодня некому было бы ни писать, ни читать эти строки. Однако понижение температуры привело к нарушению симметрии -- единое взаимодействие, существовавшее в первые мгновения, разделилось на четыре взаимодействия, знакомых нам сегодня. Одновременно высокоэнергетическое состояние физического вакуума стадо неустойчивым, и он перешел в современное, привычное для нас низкоэнергетическое состояние. Избыток энергии выделился в виде энергии покоя и кине­тической энергии возникших элементарных частиц. Вселенная стала вновь горячей (- 1027 К) и заполненной, частицами. Таким образом, можно с полным правом говорить, что все в мире возникло из ничего -- если, конечно, лукаво считать вакуум «ничем».

Кинетическая энергия частиц при такой температуре была достаточной, чтобы при их столкновениях рождались самые разнообразные новые частицы. В результате весьма быстро установился равновесный состав только что родившейся Вселенной: количество частиц каждого сорта определялось исключительно их массой (т. е. энергией покоя). Этот вывод не зависит от деталей взаимодействия между частицами, поскольку выражает общий принцип симметрии Больцмана:

- при тепловом равновесии вероятность обнаружить систему в со­стоянии с энергией, отличающейся от среднего значения на Е, зависит только от величины Е и температуры Т и пропорциональна е,

где е - 2,71828... -- основание натуральных логарифмов, k -- постоянная Больцмана. Чем больше масса частицы, тем больше ее энергия и соответственно меньше вероятность возникнуть в результате тепловых столкновений.

По мере дальнейшего расширения Вселенной и понижения температуры энергия теплового движения перестает быть достаточной для рождения тяжелых частиц. Все они нестабильны и потому до наших дней не дожили. Мы знакомы с ними лишь по их мимолетным появлениям в мощных ускорителях и в потоках космических лучей. Вымирание (физики говорят: «вымораживание») тяжелых частиц означает цепочку нарушений больцмановской симметрии.

В ту же эпоху произошло нарушение еще одной важнейшей сим­метрии -- между частицами и античастицами, в результате которого частиц оказалось немного, на одну миллиардную долю больше, чем античастиц. Именно из этой доли состоят сегодняшние звезды, планеты и люди: все остальные частицы и античастицы взаимно аннигилировали, превратившись в электромагнитное излучение.

Когда возраст Вселенной достиг 50 микросекунд, температура упала до 5 триллионов градусов, а состав вещества свелся к бурлящей смеси протонов и нейтронов, составляющих современные атомные ядра, а также легких элементарных частиц -- электронов, фотонов и нейтрино. Высокая температура еще некоторое время поддерживала взаимопревращения нейтронов и протонов, однако когда возраст Вселенной достиг 1 секунды, а температура опустилась до 10 млрд. градусов, нарушилась и эта симметрия. Реакции «протон - нейтрон» стали тормозиться (поскольку нейтрон несколько тяжелее протона) и через 3 секунды прекратились полностью. За это время количество нейтронов уменьшилось до 15-20% от числа протонов, и если бы дела пошли так и дальше, через два-три часа (свободный нейтрон рас­падается в среднем за 16 минут) нейтронов во Вселенной практически не осталось бы.

Последствия были бы поистине ужасны. Единственный химический элемент, ядра атомов которого не содержат нейтронов, -- водород. Вселенная могла бы состоять из одного водорода, и в этом случае не было бы ни звезд, ни планет, ни живых существ. Однако космологическая история похожа намногосерийный боевик, в каждой серии которого хотя и совершается несколько убийств, главные герои неизменно остаются живыми, чтобы появиться в следующих сериях.

Роль палочки-выручалочки для нейтронов сыграли реакции их объединения с протонами в альфачастицы -- ядра атомов гелия. Реакции эти шли и раньше, но возникавшие альфа-частицы туг же разрушались из-за слишком высокой температуры. Когда же температура упала настолько, что нейтроны стали «вымерзать», одновременно ядра гелия приобрели способность выдерживать потерявшие свою силу удары окружающих частиц. За короткое время, несколько секунд, все нейтроны были связаны в ядра гелия. В ядре же они могут существовать бесконечно. Именно благодаря этому убежищу до наших дней дожило достаточно нейтронов, чтобы обеспечить образование химических элементов помимо водорода.

Итак, через 3-5 минут после рождения Вселенная имела температуру около миллиарда градусов, плотность 100 000 кг/м3 (в 15 раз больше плотности стали) и была заполнена протонами (ядрами водорода), альфа-частицами (ядрами гелия), а также электронами, нейтрино и электромагнитным излучением (фотонами).

2.Концепции изменчивости Земли

В преодолении идей креацианизма и телеологии важную роль сыграла концепция ограниченной изменчивости видов в пределах относительно узких подразделений (от одного единого предка) под влиянием среды - трансформизм. Эту концепцию в развернутой форме сформулировал выдающийся естествоиспытатель 18 века Жорж Бюффон. Трансформизм в основе своей имеет представления об изменении и превращении органических форм, происхождении одних организмов от других.

В становлении идеи эволюции органического мира существенную роль сыграла систематика - биологическая наука о разнообразии всех существующих и вымерших организмов, о взаимоотношениях и родственных связях между их различными группами (таксонами). Основными задачами систематики являются определение путем сравнения специфических особенностей каждого вида и каждого таксона более высокого ранга, выяснение общих свойств у тех или иных таксонов.

Большую роль в становлении и развитии идеи эволюции живой природы сыграла эмбриология, для которой в Новое время было характерно противостояние преформизма и эпигенеза.

Преформизм - от лат. «предобразую» - учение о наличии в половых клетках материальных структур, предопределяющих развитие зародыша и признаки развивающегося из него организма.

Эпигенез - это учение, согласно которому в процессе зародышевого развития происходит постепенное и последовательное новообразование органов и частей зародыша из бесструктурной субстанции оплодотворенного яйца.Таким образом, в 17-18 веках возникала идея исторических изменений наследственных признаков организмов, необратимого исторического развития живой природы - идея эволюции органического мира.

Эволюция - от лат. «развертывание» - историческое развитие природы. В ходе эволюции, во-первых, возникают новые виды, т.е. увеличивается разнообразие форм организмов. Во-вторых, организмы адаптируются, т.е. приспосабливаются к изменениям условий внешней среды. В-третьих, в результате эволюции постепенно повышается общий уровень организации живых существ: они усложняются и совершенствуются.

Для направлений в эволюционном учении, которые рассматривают историческое развитие живой природы как прямое приспособление организмов к среде обитания, используется общее название - эктогенез (от греч.слов «вне, снаружи» и «возникновение, образование»). Сторонники эктогенеза рассматривают эволюцию как процесс прямого приспособления организмов к среде и простого суммирования изменений, приобретаемых организмами под воздействием среды.

Автогенез близок витализму - совокупности течений в биологии, согласно которым жизненные явления объясняются присутствием в организмах нематериальной сверхъестественной силы («жизненная сила», «душа», «энтелехия», «архей»), управляющей этими явлениями. Витализм - от лат. «жизненный» - объясняет жизненные явления действием особого нематериального начала.

По-своему идея эволюции органического мира развивалась в теории катастроф. большой взрыв вселенная космологический

Кювье стал основателем теории катастроф - концепции, в которой идея биологической эволюции выступила как производная от более общей идеи развития глобальных геологических процессов.

Теория катастроф (катастрофизм) исходит из представлений о единстве геологических и биологических аспектов эволюции.

В теории катастроф прогресс органических форм объясняется через признание неизменяемости отдельных биологических видов.

Против учения катастрофизма выступили сторонники другой концепции эволюции, которые также ориентировались преимущественно на геологическую проблематику, но исходили из представлений о тождественности современных и древних геологических процессов - концепции униформизма.

Униформизм складывался под влиянием успехов классической механики, прежде всего небесной механики, галактической астрономии, представлений о бесконечности и безграничности природы в пространстве и времени.

Дарвин выделил две основные формы изменчивости :

- определенную изменчивость - способность всех особей одного и того же вида в определенных условиях внешней среды одинаковым образом реагировать на эти условия (климат, почву);

- неопределенную изменчивость, характер которой не соответствует изменениям внешних условий.

В современной терминологии неопределенная изменчивость называется мутацией.

Мутация - неопределенная изменчивость в отличие от определенной носит наследственный характер.

Неизбежным результатом борьбы за существование и наследственной изменчивости организмов, по Дарвину, является процесс выживания и воспроизведения организмов, наиболее приспособленных к условиям среды, и гибели в ходе эволюции неприспособленных - естественный отбор.

Механизм естественного отбора в природе действует аналогично селекционерам, т.е. складывает незначительные и неопределенные индивидуальные различия и формирует из них у организмов необходимые приспособления, а также межвидовые различия. Этот механизм выбраковывает ненужные формы и образовывает новые виды.

Геологическая эра Земли от ее образования до зарождения жизни называется катархей.

Катархей (от греч. «ниже древнейшего») - эра, когда была безжизненная Земля, окутанная ядовитой для живых существ атмосферой, лишенной кислорода; гремели вулканические извержения, сверкали молнии, жесткое ультрафиолетовое излучение пронизывало атмосферу и верхние слои воды.

Архей - древнейшая геологическая эра Земли (3,5 - 2,6 млрд. лет назад).

Ко времени архея относится возникновение первых прокариот (бактерий и сине-зеленых) - организмов, которые в отличие от эукариот не обладают оформленным клеточным ядром и типичным хромосомным аппаратом.

В отложениях архея найдены также остатки нитчатых водорослей. В этот период появляются гетеротрофные организмы не только в море, но и на суше. Образуется почва. В атмосфере снижается содержание метана, аммиака, водорода, начинается накопление углекислого газа и кислорода.

Протерозой (с греч. «первичная жизнь») - огромный по продолжительности этап исторического развития Земли (2,6 млрд. - 570 млн. лет назад).

Возникновение многоклеточности - важный ароморфоз в эволюции жизни.

Палеозой (от греч. «древняя жизнь») - геологическая эра (570 - 230 млн. лет). Для развития жизни в раннем палеозое (кембрий, ордовик, силур) характерно интенсивное развитие наземных растений и выход на сушу животных.

Наступивший в конце силура горообразовательный период изменил климат и условия существования организмов. В результате поднятия суши и сокращения морей климат девона был более континентальный, чем в силуре. В девоне появились пустынные и полупустынные области; на суше появляются первые леса из гигантских папоротников, хвощей и плаунов. Новые группы животных начинают завоевывать сушу, но их отрыв от водной среды не был еще окончательным. К концу карбона относится появление первых пресмыкающихся - полностью наземных представителей позвоночных. Они достигли значительного разнообразия из-за засушливого климата и похолодания.

Так в палеозое произошло завоевание суши многоклеточными растениями и животными.

Мезозой (с греч. «средняя жизнь») - это геологическая эра (230 - 67 млн. лет). Мезозой справедливо называют эрой пресмыкающихся. Их расцвет, широчайшая дивергенция и вымирание происходят именно в эту эру.

В мезозое усиливается засушливость климата. Вымирает множество сухопутных организмов, у которых отдельные этапы жизни связаны с водой: большинство земноводных, папоротники, хвощи и плауны. Вместо них начинают преобладать наземные формы, в жизненном цикле которых нет стадий, связанных с водой. В триасе среди растений сильного развития достигают голосеменные, среди животных - пресмыкающиеся. В триасе появляются растительноядные и хищные динозавры. Весьма разнообразны в эту эру морские пресмыкающиеся. Помимо ихтиозавров, в морях юры появляются плезиозавры.

В юре пресмыкающиеся начали осваивать и воздушную среду. Летающие ящеры просуществовали до конца мела.

В юре от пресмыкающихся возникли и птицы. На суше в юре встречаются гигантские растительноядные динозавры.

Во второй половине мела возникли сумчатые и плацентарные млекопитающие. Приобретение живорождения, теплокровности были теми ароморфозами, которые обеспечили прогресс млекопитающих.

Геологическая эра, в которую мы живем, называется кайнозой.

Кайнозой (от греч. «новая жизнь») - это эра (67 млн. лет - наше время) расцвета цветковых растений, насекомых, птиц и млекопитающих.

Кайнозой делится на два неравных периода: третичный (67 - 3 млн. лет) и четвертичный (3 млн. лет - наше время).

В первой половине третичного периода широко распространены леса тропического и субтропического типа. В течение третичного периода от насекомоядных млекопитающих обособляется отряд приматов. К середине этого периода широкое распространение получают и общие предковые формы человекообразных обезьян и людей.

К концу третичного периода встречаются представители всех современных семейств животных и растений и подавляющее большинство родов.

В течение четвертичного периода вымирают мамонты, саблезубые тигры, гигантские ленивцы, большерогие торфяные олени и другие животные. Большую роль в вымирании крупных млекопитающих сыграли древние охотники.

Около 10 тысяч лет назад в умеренно теплых областях Земли наступила «неолитическая революция», связанная с переходом человека от собирательства и охоты к земледелию и скотоводству. Это определило видовой состав органического мира, который существует в настоящее время.

Австралопитеки были связующим звеном между животным миром и первыми людьми.

В 1891 г. голландский исследователь ЭженДюбуа на о. Ява впервые нашел окаменелости древнейшего человека - первого питекантропа, или человека прямоходящего. Уже в нашем веке на Яве найдены еще несколько питекантропов, в Китае - близкие к ним синантропы и т.д.

В 60--70-е годы нашего века в Африке были обнаружены остатки древнейших людей и самые примитивные орудия труда из гальки. Этот древнейший предок человека получил название человека умелого.

Древнейших людей - питекантропов - сменили древние люди, которых называют неандертальцами (по месту первой находки в долине реки Неандр, Германия). Их скелетные остатки открыты в Европе, Азии и Африке. Время существования - 200--35 тысяч лет назад. Они могли не только поддерживать, но и добывать огонь. Шло развитие речи. С помощью изготовленных орудий древние люди охотились на животных, сдирали с них шкуры, разделывали туши, строили жилища. У неандертальцев впервые встречаются захоронения.

В гроте Кроманьон во Франции было обнаружено сразу несколько ископаемых людей современного типа. По месту находки их называют кроманьонцами. Самые ранние их костные остатки датируются в 40 тысяч лет. Разнообразие типов орудий из камня и кости говорит о сложной трудовой деятельности. Человек уже умел сшивать шкуры животных и изготавливать из них одежду, жилье. На стенах пещер обнаружены мастерские рисунки.

Список использованных источников

1.Вернадский В.И. Начало и вечность жизни. - М.: Республика, 2010.-482 с.

2.Горелов А.А. Концепции современного естествознания: Курс лекций. - М.: Центр, 2009.-312 с.

3.Данилова В.С., Кожевников Н.И. Основные концепции современного естествознания: учебник, М.: Аспект-пресс, 2010. - 256 с.

4.Карпенков С.Х. Концепции современного естествознания - М.: ЮНИТИ, 2007.- 418 с.

5.Карпенков С.Х. Современное естествознание: учеб., М.: Академический проект 2009. - 560 с.

6.Найденыш В.М. Концепции современного естествознания: Учеб.пособие д/вузов, М.: Гардарики 2011, - 476 с.

7.Садохин А.П. Концепции современного естествознания - М.: ЮНИТИ-ДАНА, 2008.-344 с.

Размещено на Allbest.ru


Подобные документы

  • Гипотетические представления о Вселенной. Основные принципы познания в естествознании. Развитие Вселенной после Большого Взрыва. Космологическая модель Птолемея. Особенности теории Большого Взрыва. Этапы эволюции и изменение температуры Вселенной.

    курсовая работа [1,8 M], добавлен 28.04.2014

  • Основы эволюции Вселенной. Анализ сценария образования Вселенной в соответствии с концепцией Большого взрыва. Характеристика моделей расширяющейся и пульсирующей Вселенной. Эволюция концепции единства мира применительно к концепции Большого взрыва.

    презентация [204,8 K], добавлен 03.12.2014

  • Формирование основных положений космологической теории - науки о строении и эволюции Вселенной. Характеристика теорий происхождения Вселенной. Теория Большого взрыва и эволюция Вселенной. Строение Вселенной и её модели. Сущность концепции креационизма.

    презентация [1,1 M], добавлен 12.11.2012

  • Сущность и содержание теории Большого взрыва, история и основные этапы ее развития, место в естествознании. Описание соответствующей модели, этапы и направления формирования Вселенной. Принципы определения возраста Вселенной, критерии его оценки.

    реферат [694,9 K], добавлен 16.03.2014

  • Гипотеза о цикличности состояния Вселенной. Теория "Большого взрыва" как объяснение ее происхождения. Общая характеристика мегамира. Первые теории возникновения Солнечной системы. Что такое галактика. История изучения учеными Вселенной. Строение мегамира.

    реферат [26,3 K], добавлен 14.12.2009

  • Вселенная как понятие и объект познания. Начало космологии, фридмановские космологические модели, разбегание галактик и расширение Вселенной. Гипотеза "большого взрыва". Космологический горизонт и крупномасштабная (ячеистая) структура Вселенной.

    реферат [340,5 K], добавлен 07.01.2010

  • Основные гипотезы мироздания: от Ньютона до Эйнштейна. Теория "большого взрыва" (модель расширяющейся Вселенной) как величайшее достижение современной космологии. Представления А. Фридмана о расширении Вселенной. Модель Г.А. Гамова, образование элементов.

    реферат [45,1 K], добавлен 24.02.2012

  • Классическая космологическая модель, фотометрический, гравитационный и термодинамический парадоксы. Релятивистская модель и модель расширяющейся Вселенной. Концепция Большого взрыва; этапы эволюции. Проблема существования и поиска внеземных цивилизаций.

    реферат [21,8 K], добавлен 18.11.2009

  • Элементарные частицы материи. Теория "Большого взрыва". Научная картина устройства Вселенной А. Эйнштейна. Естественное обоснование горячей модели большого взрыва. Понятие стрелы времени, галактики, звезды. Солнце и Солнечная система. Описание Земли.

    контрольная работа [27,6 K], добавлен 09.11.2010

  • Теория Большого Взрыва. Понятие реликтового излучения. Инфляционная теория физического вакуума. Основы модели однородной изотропной нестационарной расширяющейся Вселенной. Сущность моделей Леметра, де Ситтера, Милна, Фридмана, Эйнштейна-де Ситтера.

    реферат [27,5 K], добавлен 24.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.