Биологические механизмы жизненного цикла клетки

Особенности биологического цикла развития клетки, дифференцировка и смерть, алгоритм полного жизненного цикла. Регуляция ассиметричного клеточного деления. Характеристика различных видов клеточной смерти. Молекулярные механизмы регуляции этого процесса.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 14.05.2015
Размер файла 314,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

1.Жизненный цикл клетки

биологический клетка деление

До сих пор много тайн клетки остаются неразгаданными. Загадочным во многом остается и запрограммированный генетически алгоритм ее жизни, названный жизненным циклом клетки (клеточным циклом). Жизненный цикл клетки (рисунок 1) начинается с момента ее образования после деления родительской клетки и заканчивается либо новым делением, либо превращением в специализированную клетку.

Рисунок 1. Жизненный цикл клетки:

1 - интерфаза;

2 - митоз;

3 - дифференцировка;

4 - функционирование специализированной клетки

Большинство клеток продолжает делиться. Им свойственен клеточный цикл, состоящий из периодически повторяющихся стадий: так называемой интерфазы (1) - этапа подготовки к делению и непосредственно процесса деления - митоза (2). К этапам дифференцировки (3) и функционирования специализированной клетки (4) мы вернемся чуть позже.

На стадии подготовки к делению происходит удвоение генетического материала (редупликация ДНК). Масса клетки во время интерфазы увеличивается до тех пор, пока она примерно вдвое не превысит начальную. Отметим, что сам процесс деления намного короче этапа подготовки к нему: митоз занимает примерно 1/10 часть клеточного цикла.

Цикличность (периодическое повторение) стадий интерфазы и митоза можно проиллюстрировать на примере фибробластов - одного из видов клеток соединительной ткани (рисунок 2). Так, нормальные фибробласты эмбриона человека размножаются приблизительно 50 раз. Каков генетически запрограммированный предел возможных делений клетки - это одна из неразгаданных тайн биологии.

Рисунок 2. Цикличность стадий интерфазы и митоза:

1 - интерфаза, стадия подготовки к митозу;

2 - митоз (деление клетки)

Жизненный цикл клеток базального слоя эпидермиса в обычных условиях составляет 28-60 дней. При повреждении кожи (конкретнее - при повреждении мембран и разрушении клеток эпидермиса под воздействием внешних факторов) выделяются особые биологически активные вещества. Они значительно ускоряют процессы деления (это явление называется регенерацией), именно поэтому ранки и ссадины так быстро заживают. Максимальной регенеративной способностью обладает эпителий роговицы: одновременно в стадии митоза находятся 5-6 тысяч клеток, продолжительность жизни каждой из которых 4-8 недель.

Хотя все клетки появляются путем деления предшествующей (материнской) клетки (“Всякая клетка от клетки”), не все они продолжают делиться. Клетки, достигшие некоторой стадии развития при дифференцировке, могут терять способность к делению.

Дифференцировка - возникновение различий в процессе развития первоначально одинаковых клеток, приводящее к их специализации. Процесс дифференцировки заключается в последовательном считывании и использовании наследственной информации, что обеспечивает синтез различных белков (в первую очередь ферментов), характерных для данного вида клеток. Другими словами, различия между клетками определяются набором белков, синтезируемых в клетках определенного вида.

Различия между клетками определяются набором синтезируемых в них белков.

При дифференцировке набор хромосом в клетке не меняется, изменяется лишь соотношение активных и неактивных генов, кодирующих различные белки.

Существуют два типа регуляции экспрессии (активации или блокирования) генов:

· Кратковременная адаптивная активация (реже блокирование), зависящая, в частности, от концентрации вещества, включающегося в обмен веществ (исходного вещества или продукта метаболизма). Этот механизм выработался эволюционно как приспособительная реакция и особенно ярко проявляется у животных (например, быстрый синтез пигментов у хамелеона в зависимости от условий).

· Длительное (в течение всей жизни клетки и/или многих генераций клеток!) блокирование или активация гена, возникающее в ходе клеточной дифференцировки. Например, в ДНК любой клетки желудка есть ген, отвечающий за синтез белков, из которых состоит ноготь. Но он необратимо блокирован гистонами и другими белками (этот участок ДНК плотно упакован), что никогда не позволит считывать с него информацию. Поэтому в желудке не растут ногти; а гены, ответственные за синтез гемоглобина, функционируют только у молодых форм эритроцитов, но не действуют в зрелых эритроцитах или других клетках.

На рисунке 1 цифрами 3 и 4 отмечены этапы дифференцировки и активного функционирования специализированной клетки.

Нервные клетки мозга, однажды возникнув, уже не делятся. В течение жизни число нейронов постепенно уменьшается. Поврежденные ткани мозга неспособны восстанавливаться путем регенерации. Однако изначально число нейронов в мозге настолько велико, что до конца жизни человека они способны поддерживать необходимые связи в нервной системе.

В качестве примера клеток, неспособных к делению, можно рассмотреть эритроциты. Как известно, эритроциты в процессе специализации теряют ядро, следовательно, не имеют в своем составе ДНК. Возникают эритроциты из так называемой стволовой клетки костного мозга. Клеткой-предшественницей (стволовой клеткой) называют клетки кроветворной ткани, которые на протяжении всей жизни человека сохраняют способность делиться и, тем самым, поставлять дочерние клетки, которые в дальнейшем будут специализироваться в одном направлении и замещать погибшие клетки. Срок жизни и активного функционирования эритроцитов невелик (около 4 месяцев), затем они разрушаются, в основном в селезенке.

Этапы жизни специализированной клетки, неспособной к делению (нейрона, эритроцита), условно можно изобразить на оси времени линией, разделенной на несколько отрезков (рисунок 4). Эти отрезки дают представление о временном соотношении периодов жизни такой клетки: рождения, созревания и активного функционирования, угасания (старения) и естественной гибели.

Рисунок 4. Этапы жизненного цикла специализированной клетки:1 - рождение в процессе деления материнской клетки;2 - созревание и дифференцировка;3 - активное функционирование;4 - угасание (старение);5 - запрограммированная клеточная гибель

Время протекания каждого этапа и продолжительность жизненного цикла для однотипных клеток в нормальных условиях практически одинаковы.

Продолжительность жизненного цикла однотипных клеток в нормальных условиях практически одинакова.

Например, эритроциты живут 90-125 дней, а тромбоциты - всего 4 суток. Это говорит о том, что клетки используют для отсчета времени своей жизни некий механизм, алгоритм, заложенный в них природой. И в каждый момент жизни клетка строго следует законам, продиктованным этим алгоритмом.

На всех этапах клеточного цикла варьируют значения некоторых параметров жизнедеятельности клетки, и, в частности, отмечается различная скорость и интенсивность протекания процессов метаболизма(рисунок 5). Это обусловлено, в первую очередь, непрерывно меняющейся активностью ферментов, благодаря которым протекают все реакции в клетке. Ферменты могут синтезироваться в клетке “по мере надобности”, активироваться, временно блокироваться или полностью разрушаться .

Рисунок 5. Интенсивность метаболизма на различных этапах жизни клетки:1 - рождение;2 - созревание и дифференцировка;3 - активное функционирование;4 - угасание (старение);5 - запрограммированная клеточная гибель

Рассмотрим подробнее наиболее характерные процессы, происходящие на каждом из этапов клеточного цикла.

Рождение. Отправным моментом жизни любой клетки (кроме половой, для которой характерен мейоз) считают деление материнской клетки с образованием двух идентичных дочерних - митоз (от греческогоmitos - нить). Во время митоза основная задача материнской клетки - поровну передать равноценный в количественном и качественном отношении генетический материал дочерним клеткам.

Митоз часто называют “танцем хромосом”. Каждая следующая фигура в этом танце не случайна, здесь нет ни одного лишнего или бессмысленного “па” - это еще один четкий, выверенный природой алгоритм. В. Дудинцев в романе “Белые одежды” так описывает процесс деления клетки: “Хромосомы шевелились, как клубок серых червей, потом вдруг выстроились в строгий вертикальный порядок. Вдруг удвоились - теперь это были пары. Тут же какая-то сила потащила эти пары врозь, хромосомы подчинились, обмякли, и что-то повлекло их к двум разным полюсам.”

Деление клетки на две идентичные (митоз) характеризуется сменой нескольких морфологически и физиологически различающихся стадий (рисунок 6). На первой стадии митоза хроматин плотно упаковывается (этот процесс называется суперспирализацией хроматина) с образованием хромосом (1). Каждая хромосома состоит из двух идентичных половинок (хроматид) - будущих дочерних хромосом. Затем при сокращении так называемого веретена деления (2), представляющего собой комплекс микротрубочек и микрофибрилл, дочерние хромосомы расходятся, буквально подтягиваются нитями веретена деления к противоположным полюсам клетки. После окончательного расхождения дочерние хромосомы вновь раскручиваются, превращаясь в длинные и тонкие нити хроматина (3). Веретено деления исчезает, хроматин в дочерних клетках окружается ядерной оболочкой, и между дочерними клетками образуется поперечная перетяжка (4) из клеточных мембран.

Рисунок 6. Последовательность стадий митоза (схема):1 - хромосомы;2 - веретено деления;3 - хроматин;4 - поперечная перетяжка

Хромосомы, как мы уже говорили, представляют собой максимально плотно упакованные нити ДНК, с которых на этапе деления невозможно считывание информации. Соответственно, на этапе деления не происходит биосинтеза белка, интенсивность процессов метаболизма минимальна, транспорт веществ в клетку и из нее практически равен нулю. Все процессы в делящейся клетке направлены на выполнение главнейшей задачи - максимально точно, без искажения, передать генетическую информацию дочерним клеткам, - в ущерб второстепенным (на данном этапе!) функциям.

Созревание. В этот период происходит дифференцировка клеток и становление ключевых ферментных систем. Клетка готовится выполнять предназначенные природой функции, постепенно активизируя свой обмен веществ.

Активное функционирование. Интенсивность реакций метаболизма и сопряженного с нимэнергетического обмена в это время максимальны.

В период активного функционирования интенсивность обмена веществ в клетке максимальна.

Процессы в клетке направлены на обеспечение постоянства внутренней среды и выполнение специфических функций: нейрон воспринимает и передает нервный импульс, эритроцит переносит кислород и так далее.

Угасание (старение). Этот процесс запрограммирован генетически и, в первую очередь, проявляется уменьшением выработки и активности ферментов в клетке. При этом замедляются биохимические реакции, тормозится метаболизм и энергетический обмен.

Период старения клетки характеризуется уменьшением выработки и активности ферментов.

Стареющие клетки, как правило, имеют неудвоенное количество ДНК, но сохраняют жизнеспособность и некоторую метаболическую активность в течение определенного времени.

Естественная гибель клетки (апоптоз). К сожалению, до сих пор процесс естественной гибели клеток до конца не изучен.

Известно, что в клетке из-за блокирования ферментов прекращается синтез белка, а нет белка - нет и жизни. Морфологически апоптоз характеризуется разрушением ядра и цитоплазмы. “Осколки” погибшей клетки поглощаются и перерабатываются специальными клетками иммунной системы - фагоцитами. Но ведь клетки могут погибнуть и под воздействием случайных факторов (механических, химических и любых других). Случайная гибель клеток (а также ткани, органа) в биологии называется некрозом. Важно то, что естественная клеточная гибель (апоптоз) в отличие от некроза не вызывает воспаления в окружающих тканях.

Апоптоз не вызывает воспаления в окружающих тканях.

Регуляция ассимитричного клеточного деления

В организме запрограммированная клеточная гибель выполняет функцию, противоположную митозу, и, тем самым, регулирует общее число клеток в организме. Апоптоз играет важную роль в защите организма при вирусных инфекциях. В частности, иммунодефицит при ВИЧ-инфекции определяется нарушениями в контроле апоптоза.

Одним из характерных признаков взрослых стволовых клеток является асимметричное деление, благодаря которому одна дочерняя клетка сохраняет статус стволовых клеток, а другая оказывается комитированной к дифференциации. В последнее время появляются данные, позволяющие заключить, что асимметричное деление имеет еще один важный аспект -- обеспечивает самоподдержание стволовых клеток. Центральным аспектом биологии стволовых клеток является асимметричное деление. Достаточно давно было предположено, что именно с помощью асимметричного деления решаются сразу две проблемы: одна дочерняя клетка сохраняет свойства стволовой и продолжает самоподдержи-ваться, тогда как другая приобретает способность к дифференциации [1, 2, 3, 4]. Ниши стволовых клеток создают асимметричное микроокружение и контролируют локальные процессы пролиферации и дифференциации стволовых клеток путем интеграции сигналов, поступающих от соседних клеток, от организма и от внешней среды [5]. Ниши создают систему сигналов, направленную на поддержание стволовых клеток, что достаточно детально было изучено на примере герминативных стволовых клеток Drosophila. Например, для герминативных стволовых клеток яичника дрозофилы было показано, как сигнал стромаль-ных клеток (Dpp) регулирует самоподдержание стволовых клеток и оказывает влияние на судьбу дочерних клеток [6]. В процессе онтогенеза и при опухолевой трансформации стволовые клетки могут делиться как симметрично, так и асимметрично в зависимости от обстоятельств, в которых они находятся [2]. Асимметричное деление, наряду с межклеточными взаимодействиями, является универсальным механизмом формирования разнообразия клеток, и поэтому оно имеет исключительное значение в развитии многоклеточных организмов. Разнообразие клеточных типов может создаваться двумя основными путями [7]. Один путь заключается в том, что сначала образуется большое число одинаковых клеток, которые в дальнейшем благодаря межклеточным взаимодействиям приобретают разные пути дифференциации. В другом случае, при асимметричном делении, дочерние клетки оказываются разными, когда в поляризованной материнской клетке в процессе митоза происходит сегрегация определяющих судьбу клеток детерминант только в одну дочернюю клетку. Такое распределение детерминант обеспечивает выбор одной дочерней клеткой определенного пути специализации, который отличается от специализации сестринской клетки.

2.Виды клеточной смерти

Гибель (смерть) отдельных клеток или целых их групп постоянно встречается у многоклеточных организмов, также как гибель одноклеточных организмов. Причины гибели, процессы морфологического и биохимического характера развития клеточной смерти могут быть различными. Но все же их можно четко разделить на две категории: некроз (от греч. nekrosis - омертвление) и апоптоз (от греч. корней, означающих «отпадение» или «распадение»), который часто называют программируемой клеточной смертью (ПКС) или даже клеточным самоубийством (рис. 7).

Рис. 7. Два пути клеточной гибелиа -- апоптоз (программированная клеточная смерть): 1 -- специфическое сжатие клетки и конденсация хроматина, 2 -- фрагментация ядра, 3 -- фрагментация тела клетки на ряд апоптических телец;б -- некроз: 1 -- набухание клетки, вакуолярных компонентов, конденсация хроматина (кариорексис), 2 -- дальнейшее набухание мембранных органоидов, лизис хроматина ядра (кариолизис), 3 -- разрыв мембранных компонентов клетки - лизис клетки

Некроз

Этот вид клеточной смерти обычно связывается с нарушением внутриклеточного гомеостаза в результате нарушения проницаемости клеточных мембран, приводящим к изменению концентрации ионов в клетке, с необратимыми изменениями митохондрий, что сразу приводит к прекращению всех жизненных функций, включая синтез макромолекул. Некроз вызывают повреждения плазматической мембраны, подавление активности мембранных насосов под действием многих ядов, а также необратимые изменения энергетики при недостатке кислорода (при ишемии происходит закупорка кровеносного сосуда) или отравлении митохондриальных ферментов (действие цианидов). При этом при повышении проницаемости плазматической мембраны клетка набухает за счет ее обводнения, в цитоплазме происходит увеличение концентрации ионов Na+ и Са2+, закисление цитоплазмы, набухание вакуолярных компонентов и разрыв их мембран, прекращение синтеза белков в цитозоле, освобождение лизосомных гидролаз и лизис клетки. Одновременно с этими изменениями в цитоплазме изменяются и клеточные ядра: вначале они компактизируются (пикноз ядер), но по мере набухания ядра и разрыва его оболочки пограничный слой хроматина распадается на мелкие массы (кариорексис), а затем наступает кариолизис - растворение ядра. Особенностью некроза является то, что такой гибели подвергаются большие группы клеток (например, при инфаркте миокарда из-за прекращения снабжения кислородом участка сердечной мышцы). Обычным является то, что участок некроза подвергается атаке лейкоцитов и в зоне некроза развивается воспалительная реакция.АпоптозВ процессе развития организмов и их функционировании во взрослом состоянии часть клеток постоянно гибнет, но без их физического или химического повреждения, происходит как бы их «беспричинная» смерть. Гибель клеток наблюдается практически на всех стадиях онтогенеза. Многочисленны примеры отмирания клеток без повреждения при эмбриогенезе. Так, отмирают клетки вольфовых и мюллерова каналов при развитии мочеполовой системы у позвоночных, погибает часть нейробластов и гонадоцитов, клетки при метаморфозах насекомых и амфибий (резорбция хвоста у головастика и жабер у тритона) и т.д.Во взрослом организме также постоянно происходит «спонтанная» гибель клеток. Миллионами погибают клетки крови -- нейтрофилы, клетки эпидермиса кожи, клетки тонкого кишечника -- энтероциты. Погибают фолликулярные клетки яичника после овуляции, клетки молочной железы после лактации. Таких примеров много. Особенно много примеров гибели клеток без непосредственного их повреждения при различных патологических процессах. Например, кастрация (удаление семенников) вызывает гибель клеток простатической железы, удаление гипофиза приводит к гибели клеток надпочечников. Другой пример -- гибель шванновских клеток при дегенерации аксона. Шванновские клетки в поврежденном периферическом нерве взрослого животного, так же как и клетки-сателлиты и чувствительные нейроны в соответствующих спинномозговых узлах, погибают.Эти наблюдения наводят на мысль, что клеточная смерть регулируется межклеточными взаимодействиями различным образом. Множество клеток многоклеточного организма нуждается в сигналах с тем, чтобы оставаться живыми. В отсутствие таких сигналов или трофических факторов в клетках развивается программа «самоубийства» или программируемой смерти. Например, клетки культуры нейронов погибают при отсутствии фактора роста нейронов (NGF), клетки простаты гибнут в отсутствие андрогенов семенника, клетки молочной железы -- при падении уровня гормона прогестерона и т.д. В то же время клетки могут получать сигналы, которые в клетках-мишенях запускают процессы, приводящие к гибели по типу апоптоза. Так, гидрокортизон вызывает гибель лимфоцитов, а глютамат -- нервных клеток в культуре ткани, фактор некроза опухоли (TNF) вызывает гибель самых различных клеток. Тироксин (гормон щитовидной железы) вызывает апоптоз клеток хвоста головастиков. Кроме этого существуют ситуации, когда апоптическая гибель клетки вызывается внешними факторами, например радиацией.Понятие «апоптоз» было введено при изучении гибели части клеток печени при неполной перевязке портальной вены. При этом наблюдается своеобразная картина клеточной смерти, которая затрагивает лишь отдельные клетки в паренхиме печени. Процесс начинается с того, что соседние клетки теряют контакты, они как бы сморщиваются (первоначальное название этой формы гибели shrinkage necrosis - некроз сжатием клетки), в ядрах по их периферии происходит специфическая конденсация хроматина, затем ядро фрагментируется на отдельные части, вслед за этим сама клетка фрагментируется на отдельные тельца, отграниченные плазматической мембраной, -- апоптические тельца.

Апоптоз -- процесс, приводящий не к лизису, не к растворению клетки, а к ее фрагментации, распаду. Судьба апоптических телец тоже необычна: они фагоцитируются макрофагами или даже нормальными соседними клетками. При этом не развивается воспалительная реакция.

Важно отметить, что во всех случаях апоптоза -- во время ли эмбрионального развития, во взрослом ли организме, в норме или при патологических процессах -- морфология процесса гибели клеток очень сходна. Это может говорить об общности процессов апоптоза в разных организмах и в разных органах.

Исследования на разных объектах показали, что апоптоз есть результат реализации генетически запрограммированной клеточной гибели. Первые доказательства наличия генетической программы клеточной смерти (ПКС) были получены при изучении развития нематоды Caenorhabditis elegans. Этот червь развивается всего за трое суток, и его малые размеры позволяют проследить за судьбой всех его клеток, начиная с ранних этапов дробления до половозрелого организма.

Оказалось, что при развитии С. elegans образуется всего 1090 клеток, из которых часть нервных клеток в количестве 131 штуки спонтанно погибает путем апоптоза и в организме остается 959 клеток. Были обнаружены мутанты, у которых процесс элиминации 131 клетки был нарушен. Были выявлены два гена ced-З и ced-4, продукты которых вызывают апоптоз 131 клетки. Если у мутантных C. elegans эти гены отсутствуют или изменены, то апоптоз не наступает и взрослый организм состоит из 1090 клеток. Был найден и другой ген - ced-9, который является супрессором апоптоза: при мутации ced-9 все 1090 клеток погибают. Аналог этого гена был обнаружен у человека: ген bcl-2 также является супрессором апоптоза различных клеток. Оказалось, что оба белка, кодируемые этими генами, -- Ced-9 и Всl-2, имеют один трансмембранный домен и локализуются во внешней мембране митохондрий, ядер и эндоплазматического ретикулума.

Элиминация -- удаление отдельных клеток путем апоптоза, наблюдается и у растений. Здесь апоптоз включает в себя, так же как у животных клеток, фазу индукции, эффекторную фазу и фазу деградации. Морфология гибели клеток растений сходна с изменениями клеток животных: конденсация хроматина и фрагментация ядра, олигонуклеотидная деградация ДНК, сжатие протопласта, его дробление на везикулы, разрыв плазмодесм и т.д. Однако везикулы протопласта разрушаются гидролазами самих везикул, так как у растений нет клеток, аналогичных фагоцитам. Так, ПКС происходит при росте клеток корневого чехлика, при формировании перфораций у листьев, при образовании ксилемы и флоэмы. Опадание листьев связано с избирательной гибелью клеток определенной зоны черенка.

Биологическая роль апоптоза, или программированной смерти клеток, очень велика: это удаление отработавших свое или ненужных на данном этапе развития клеток, а также удаление измененных или патологических клеток, особенно мутантных или зараженных вирусами.

Итак, для того чтобы клетки в многоклеточном организме существовали, нужны сигналы на их выживание -- трофические факторы, сигнальные молекулы. Эти сигналы могут быть переданы на расстояние и уловлены соответствующими рецепторными молекулами на клетках-мишенях (гормональная, эндокринная сигнализация), это может быть паракринная связь, когда сигнал передается на соседнюю клетку (например, передача нейромедиатора). При отсутствии таких трофических факторов реализуется программа апоптоза. В то же время апоптоз может вызываться сигнальными молекулами, например при резорбции хвоста головастиков под действием тироксина. Кроме того, действие ряда токсинов, влияющих на отдельные звенья метаболизма клетки, также может стать причиной клеточной гибели посредством апоптоза.

3.Молекулярные механизмы регуляции клеточной смерти

Апоптоз - многоэтапный процесс. Первый этап - прием сигнала, предвестника гибели в виде информации, поступающей к клетке извне или возникающей в недрах самой клетки. Сигнал воспринимается рецептором и подвергается анализу. Далее через рецепторы или их сочетания полученный сигнал последовательно передается молекулам-посредникам (мессенджерам) различного порядка и в конечном итоге достигает ядра, где и происходит включение программы клеточного самоубийства путем активации летальных и/или репрессии антилетальных генов. Однако существование ПКС (программируемая клеточная смерть) в безъядерных системах (цитопластах - клетках, лишенных ядра) показывает, что наличие ядра не является обязательным для реализации процесса..

Существует несколько путей реализации программы ПКС .

Среди них важное место занимает путь, опосредованный физиологическими индукторами, действие которых реализуется через клеточные рецепторы, специально предназначенные для включения программы апоптоза. Этот путь передачи сигнала ПКС схематически можно изобразить следующим образом: индукторы ' рецепторы ' адаптеры ' каспазы первого эшелона ' регуляторы ' каспазы второго эшелона. Так, рецептор, обозначаемый Fas, взаимодействуя с соответствующим лигандом (лигандом FasL), трансмембранным белком Т-киллера, активируется и запускает программу смерти клетки, инфицированной вирусом. Тем же путем при взаимодействии с лигандом FasL на поверхности ТН-1-лимфоцитов или с антителом к Fas-рецептору погибают ставшие ненужными выздоровевшему организму В-лимфоциты, продуценты антител, несущие Fas-рецептор. FasL- лиганд, относящийся к многочисленному семейству фактора некроза опухолей TNF. Это семейство гомотримерных лигандов, кроме FasL и TNFa , включает TNFb (лимфотоксин).

Fas - член семейства рецепторов TNF. Все они представлены трансмембранными белками, которые внеклеточными участками взаимодействуют с тримерами лигандов-индукторов . Взаимодействие рецептора и лиганда приводит к образованию кластеров рецепторных молекул и связыванию их внутриклеточных участков с адаптерами. Адаптер, связавшись с рецептором, вступает во взаимодействие с эффекторами, пока еще неактивными предшественниками протеаз из семейства каспаз первого эшелона (инициирующих каспаз).

Взаимодействие адаптера с рецептором и эффектором осуществляется через гомофильные белок-белковые взаимодействия небольших доменов: DD (death domain - домен смерти), DED (death-effector domain - домен эффектора смерти), CARD (- домен активации и рекрутирования каспазы). Все они имеют сходную структуру, содержат по шесть a-спиральных участков. Домены DD(домен смерти) участвуют во взаимодействии рецептора Fas c адаптером FADD (Fas-associated DD-protein). Домены DED участвуют во взаимодействии адаптера FADD с прокаспазами 8 и 10.

Наиболее подробно охарактеризована прокаспаза-8, рекрутируемая рецептором Fas через адаптeр FADD. Образуются агрегаты FasL - Fas - FADD - прокаспаза-8. Подобные агрегаты, в которых происходит активация каспаз, названы апоптосомами , апоптозными шаперонами , или сигнальными комплексами, индуцирующими смерть.

Рис. 2. Зависимый от Fas-рецептора апоптоз клетки-мишени при действии цитотоксического Т-лимфоцита (Т-киллера)

Прокаспазы обладают незначительной протеолитической активностью, составляющей 1-2% активности зрелой каспазы. Будучи в мономерной форме, прокаспазы, концентрация которых в клетке ничтожна, находятся в латентном состоянии. Предполагается, что пространственное сближение молекул прокaспаз при их агрегации ведет к образованию активных каспаз через механизм протеолитического само- и перекрестного расщепления (ауто- или транс-процессинга)]. В результате от прокаспазы (молекулярная масса 30-50 кДа) отделяется регуляторный N-концевой домен (продомен), а оставшаяся часть молекулы разделяется на большую (~20 кДа) и малую (~10 кДа) субъединицы (рис. 3). Затем происходит ассоциация большой и малой субъединиц. Два гетеродимера образуют тетрамер с двумя каталитическими участками, действующими независимо друг от друга. Таким образом прокаспаза-8 активируется и высвобождается в цитоплазму в виде каспазы-8. Существуют другие пути активации каспазы-8 - с участием рецепторов TNFR1 и DR3.

На этапе активации каспаз первого эшелона жизнь клетки еще можно сохранить. Существуют регуляторы, которые блокируют или, напротив, усиливают разрушительное действие каспаз первого эшелона. К ним относятся белки Bcl-2 (ингибиторы апоптоза: A1, Bcl-2, Bcl-W, Bcl-XL, Brag-1, Mcl-1 и NR13) и Bax (промоторы апоптоза: Bad, Bak, Bax, Bcl-XS, Bid, Bik, Bim, Hrk, Mtd). Эти белки эволюционно консервативны: гомолог Bcl-2 обнаружен даже у губок, у которых апоптоз необходим для морфогенеза .

Каспаза-8 активирует каспазу второго эшелона (эффекторную каспазу): путем протеолиза из прокаспазы-3 образуется каспаза-3, после чего процесс, запущенный программой смерти, оказывается необратимым.

Каспаза-3 способна в дальнейшем к самостоятельной активации (автокатализу или автопроцессингу), активирует ряд других протеаз семейства каспаз, активирует фактор фрагментации ДНК, ведет к необратимому распаду ДНК на нуклеосомальные фрагменты. Так запускается каскад протеолитических ферментов,осуществляющих апоптоз.

Второй путь реализации программы ПКС

В клетках, подвергшихся воздействию индуктора апоптоза, резко снижается мембранный потенциал (Dy)митохондрий. Падение Dy обусловлено увеличением проницаемости внутренней мембраны митохондрий вследствие образования гигантских пор. Разнообразны факторы, вызывающие раскрытие пор . К ним относятся истощение клеток восстановленным глутатионом, NAD(P)H, ATP и ADP, образование активных форм кислорода, разобщение окислительного фосфорелирования протонофорными соединениями, увеличение содержания Ca2+в цитоплазме. Образование пор в митохондриях можно вызвать церамидом, NO, каспазами, амфипатическими пептидами, жирными кислотами. Поры имеют диаметр 2,9 нм, позволяющий пересекать мембрану веществам с молекулярной массой 1,5 кДа и ниже. Следствием раскрытия поры является набухание митохондриального матрикса, разрыв наружной мембраны митохондрий и высвобождение растворимых белков межмембранного объема. Среди этих белков - ряд апоптогенных факторов: цитохром с, прокаспазы 2, 3 и 9 , белок AIF (apoptosis inducing factor), представляющий собой флавопротеин с молекулярной массой 57 кДа [69].

Образование гигантских пор не является единственным механизмом выхода межмембранных белков митохондрий в цитоплазму. Предполагается что разрыв наружной мембраны митохондрий может быть вызван гиперполяризацией внутренней мембраны. Возможен и альтернативный механизм, без разрыва мембраны, - раскрытие гигантского белкового канала в самой наружной мембране, способного пропускать цитохром с и другие белки из межмембранного пространства .

Высвобождаемый из митохондрий цитохром с вместе с цитоплазматическим фактором APAF-1 (apoptosis protease activating factor-1) участвует в активации каспазы-9 .

APAF-1 - белок с молекулярной массой 130 кДа, содержащий CARD-домен (caspase activation and recruitment domain) образует комплекс с прокаспазой-9 в присутствии цитохрома с и dATP или АТР. Из этих субъединиц собираются жесткие, симметричные структуры, наподобие веера или пропеллера .APAF-1 играет роль арматуры, на которой происходит аутокаталитический процессинг каспазы-9 . Предполагается, что в результате зависимого от гидролиза dATP (или АТР) конформационного изменения APAF-1 приобретает способность связывать цитохром с (рис. 5). Связав цитохром с, APAF-1 претерпевает дальнейшее конформационное изменение, способствующее его олигомеризации и открывающее доступ CARD-домена APAF-1 для прокаспазы-9, которая тоже содержит CARD-домен. Так образуется конструкция, называемая тоже апоптосомой, с молекулярной массой > 1,3 млн дальтон, в составе которой - не менее 8 субъединиц APAF-1 . Благодаря гомофильному CARD-CARD-взаимодействию с APAF-1 в эквимолярном соотношении связывается прокаспаза-9, а затем прокаспаза-9 связывает прокаспазу-3. Пространственное сближение молекул прокаспазы-9 на мультимерной арматуре из APAF-1-цитохром-с-комплексов, по-видимому, приводит к межмолекулярному протеолитическому процессингу прокаспазы-9 с образованием активной каспазы-9. Зрелая каспаза-9 затем расщепляет и активирует прокаспазу-3.

Флавопротеин AIF, будучи добавленным к изолированным ядрам из клеток HeLa, вызывает конденсацию хроматина и фрагментацию ДНК, а при добавлении к изолированным митохондриям печени крыс - высвобождение цитохрома с и каспазы- AIF является митохондриальным эффектором ПКС у животных, действующим независимо от каспаз .

Кроме рассмотренных компонентов, при нарушении наружной мембраны митохондрий из межмембранного объема выделяется термолабильный фактор, вызывающий необратимое превращение ксантиндегидрогеназы в ксантиноксидазу. Ксантиндегидрогеназа катализирует зависимое от NAD+ окисление ксантина до гипоксантина и последующее окисление гипоксантина до мочевой кислоты. Ксантиноксидаза катализирует те же реакции, но не с NAD+, а с О2 в качестве акцептора электронов. При этом образуются О2A, Н2О2, а из них - и другие активные формы кислорода (АФК), которые разрушают митохондрии и являются мощными индукторами апоптоза. Механизмы образования АФК, конечно, не ограничиваются ксантиноксидазной реакцией. Главным источником АФК в клетках являются митохондрии. Резкое увеличение АФК происходит при возрастании мембранного потенциала в митохондриях, когда снижено потребление ATP и скорость дыхания лимитируется ADP . Цитоплазматическая мембрана макрофагов и нейтрофилов содержит О2A - генерирующую NADPH-оксидазу.

В зависимости от пути, по которому осуществляется активация каспаз, различают разные типы клеток [82]. Клетки типа I (в частности, линия лимфобластоидных В-клеток SKW и T-клетки линии Н9) подвергаются ПКС по пути, зависимому от апоптозных рецепторов плазматической мембраны без участия митохондриальных белков. Клетки типа II (например, линии Т-клеток Jurkat и СЕМ) погибают по пути апоптоза, зависимому от митохондриального цитохрома с. ПКС, вызванная химиотерапевтическими соединениями, УФ- или і-облучением, по-видимому, напрямую связана с апоптозной функцией митохондрий.

Некоторые клетки, например, клетки эмбриональной нервной системы, включают механизмы апоптоза, если они испытывают дефицит апоптозподавляющих сигналов (называемых также факторами выживания) от других клеток. Физиологический смысл процесса - в элиминации избыточных нервных клеток, конкурирующих за ограниченный фонд факторов выживания. Эпителиальные клетки при отделении от внеклеточного матрикса, вырабатывающего факторы выживания, тоже обречены на ПКС. Факторы выживания связываются соответствующими цитоплазматическими рецепторами, активируя синтез подавляющих апоптоз агентов и блокируя стимуляторы апоптоза . Некоторые вещества (например, стероидные гормоны) оказывают дифференцированный эффект на различные типы клеток - предотвращают апоптоз одних типов клеток и индуцируют его у других [2].((((Так, при наличии во внеклеточном матриксе факторов роста PDGF (platelet-derived growth factor - тромбоцитарный фактор роста) или NGF (nerve growth factor - фактор роста нервов) и цитокина интерлейкина-3 (IL-3) проапоптозный белок Bad не активен .Факторы роста, связавшись со своим рецептором на плазматической мембране, вызывают активацию цитозольной протеинкиназы В, и катализирующей фосфорилирование Bad по Ser-136. IL-3 тоже связывается со своим рецептором на плазматической мембране и активирует митохондриальную cAMP-зависимую протеинкиназу А , катализирующую фосфорилирование Bad по Ser-112. Будучи фосфорилированным по обоим остаткам серина, Bad образует комплекс с белком 14-3-3, располагающийся в цитоплазме. Дефицит факторов роста и IL-3 воспринимается клеткой как сигнал к апоптозу: происходит дефосфорилирование Bad, его внедрение в наружную мембрану митохондрий, выход цитохрома с из митохондрий и последующая активация каспазы-9 через APAF-1-зависимый механизм. )))))

3. В ряде случаев ПКС реализуется в результате комбинированного действия двух путей - с участием и рецепторов плазматической мембраны, и митохондриального цитохрома с. Так, повреждение ДНК ведет к накоплению в клетке белкового продукта гена р53, который может останавливать деление клеток и/или индуцировать апоптоз Белок р53 является фактором транскрипции, регулирующим активность ряда генов. Предполагается, что ответная реакция на образование белка р53 зависит от степени нарушения клеточного генома . При умеренном нарушении генома происходит остановка клеточного деления, осуществляется репарация ДНК, и клетка продолжает свое существование. При чрезмерном нарушении генома, когда ДНК уже не поддается репарации, включаются рецепторный и цитохром с-зависимый апоптозные каскады активации каспаз.

4. Также Существует путь передачи сигнала ПКС с участием эндоплазматического ретикулума (ЭР) . В ЭР локализована прокаспаза-12. Нарушение внутриклеточного Ca2+-гомеостаза добавкой тапсигаргина или Ca2+-ионофорного антибиотика А23187 ведет к апоптозу клеток, вызванному превращением прокаспазы-12 в каспазу-12. ЭР-зависимый апоптоз связан с болезнью Альцгеймера.

5. Цитотоксические лимфоциты, Т-киллеры, могут вызывать апоптоз у инфицированных клеток с помощью белка перфорина. Полимеризуясь, перфорин образует в цитоплазматической мембране клетки-мишени трансмембранные каналы, по которым внутрь клетки поступают TNFb , гранзимы (фрагментины) - смесь сериновых протеаз. Существенным компонентом этой смеси является гранзим В - протеолитический фермент, превращающий прокаспазу-3 в активную каспазу-3 .

6. Взаимодействие клеток с внеклеточным матриксом осуществляется с помощью интегринов. Интегрины - большое семейство гетеродимерных мембранных белков, которые участвуют в адгезии клеток, связывая внутриклеточный цитоскелет с лигандами внеклеточного матрикса. Нарушение адгезии клеток индуцирует апоптоз.

7. Особую форму апоптоза претерпевают эритроциты млекопитающих. Биогенез эритроцитов из плюрипотентной стволовой клетки в костном мозге включает ряд промежуточных этапов. На этапе эритробласта ядро изгоняется (выталкивается) из клетки и пожирается макрофагом . Альтернативный вариант: кариорексис (деструкция ядра) с образованием телец Жолли и их последующий распад и лизис внутри клетки . Безъядерная клетка, называемая ретикулоцитом, в дальнейшем теряет митохондрии и рибосомы и превращается в эритроцит. Потерю ядра эритробластом можно рассматривать как особую форму ядерного апоптоза. Выяснение его механизма позволило бы применить его для обезвреживания опухолевых клеток.

Генетический контроль.

Существует две альтернативные точки зрения на генетический контроль апоптоза. Согласно первой из них апоптоз представляет собой вариант реализации генетических программ пролиферации и дифференцировки клетки. Об этом, в частности, свидетельствует участие в апоптозе серинтреониновой киназы, фактора транскрипции NF-kB, протоонкогена c-myc и других регуляторов клеточного цикла. Согласно другой апоптоз имеет собственную генетическую программу и механизм ее реализации.

Программированная смерть у растений.

Мало известно о механизме ПКС у растений. В сравнении с естественными индукторами ПКС химические и физические воздействия методически более привлекательны, поскольку вызывают синхронный апоптоз с высоким выходом погибших клеток, что облегчает последующий анализ результатов. Так, апоптоз у растений можно вызвать обработкой CN-, менадионом , тепловым воздействием .

Показано , что NaCN (и менадион) вызывает разрушение ядер в эпидермальных и устьичных клетках листьев гороха. Устьичные клетки значительно устойчивее к CN-, чем эпидермальные. Свет ускоряет CN.-индуцированноеразрушение ядер в устьичных клетках. Эффект света незначителен на эпидермальных клетках, которые, в отличие от устьичных клеток, не содержат хлоропластов. Эти данные могут указывать на возможное участие хлоропластов в CN--индуцированной гибели устьичных клеток. Антиоксиданты (ионол и витамин Е) тормозят CN--индуцированное разрушение ядер в эпидермальных клетках. Витамин Е в значительной степени снимает эффект CN- на устьичные клетки. Предполагается, что CN-, ингибируя каталазу и пероксидазы, приводит к образованию и накоплению АФК, индуцирующих апоптоз. Подобно митохондриям, играющим важную роль в апоптозе животных, возможно участие хлоропластов в апоптозе растений .

Гиперчувствительный ответ на заражение патогенными возбудителями тоже сопровождается накоплением АФК в клетках растений. Это обусловлено подавлением экспрессии аскорбатпероксидазы и каталазы. Трансгенные растения табака, у которых синтез этих ферментов подавлен, гиперчувствительны к патогенам: у них ПКС вызывается низкими дозами патогенов, которые не оказывают влияния на контрольные растения [103].

Действие менадиона как индуктора апоптоза, по-видимому, тоже связано с образованием АФК: восстанавливаясь компонентами дыхательной цепи митохондрий, менадион спонтанно окисляется О2 в одноэлектронной реакции. Обработка протопластов табака менадионом ведет к выходу цитохрома с из митохондрий в цитоплазму, деградации поли(ADP-рибозо)полимеразы (ПАРП), фрагментации ДНК Таким образом, имеющиеся данные свидетельствуют об общности механизмов ПКС у животных и растений.

Библиография

1. Анатомия и физиология человека: учебник для 9 кл. шк. с углубл. изучением биологии / М.Р. Сапин, З.Г. Брыксина - М.: Просвещение, 1998. - 256 с., ил.

2. Билич Г., Катинас Г. С., Назарова Л.В. Цитология: Учебник. - 2-е изд., испр. и доп.. - СПб: Деан, 1999. - 112 с.

3. Большой толковый медицинский словарь (Oxford) / Пер. с англ.: в 2-х томах / Под ред. Г.Л. Билича; М.: Вече АСТ, 1999. - Т. 1, 2.

4. Журнал Acta Naturae (русскоязычная версия)

5. Выпуск№ 2 / том 1 / 2009 Текст научной статьи по специальности «Биология» Авторы: Терских В.В., Воротеляк Е.А., Васильев А.В.

6. Краткая медицинская энциклопедия / Гл. ред. Б.В. Петровский: в 3-х томах - 2-е изд. - М.: Советская энциклопедия, 1989. - Т. 1, 2, 3.

7. Робертис Э, Новинский В., Саэс Ф. Биология клетки: Учебник / Пер. с англ. А.В. Михеевой и др.; Под. ред. С.Я. Залкинда. - М.: Мир, 1973. - 488 с.

8. Физиология человека: Учебник для студентов мед. вузов / Под ред. В.М. Смирнова. - М.: Медицина, 2001. - 608 с., ил.

9. Фрайфелдер Д. Физическая биохимия. Применение физико-химических методов в биологии и молекулярной биологии / Пер. с англ. Е.С. Громовой, С.В. Яроцкого; Под ред. З.А. Шабаровой. - М.: Мир, 1980. - 582 с., ил.

10. Эллиот В., Эллиот Д. Биохимия и молекулярная биология / Пер. с англ.; Под ред. А.И. Арчакова и др. - М.: Изд-во НИИ биомед. химии РАМН, 1999. - 372 с., ил.

11. Энциклопедический словарь медицинских терминов / Гл. ред. Б.В. Петровский: в 3-х томах. - М.: Советская энциклопедия, 1982, Т. 1, 2, 3.

Размещено на Allbest.ru


Подобные документы

  • Сущность клеточного цикла - периода жизни клетки от одного деления до другого или от деления до смерти. Биологическое значение митоза, его основные регуляторные механизмы. Два периода митотического деления. Схема активации циклинзависимой киназы.

    презентация [823,0 K], добавлен 28.10.2014

  • Клеточный цикл как период жизни клетки, его этапы и протекающие процессы, значение в выживании организма. Методы регуляции репликации клетки. Программируемая клеточная гибель (апоптоз) и порядок влияния на нее. Биологическая роль процесса апоптоза.

    лекция [284,6 K], добавлен 21.07.2009

  • Клеточный цикл как период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или гибели. Принципы и методы его регуляции. Этапы и биологическое значение митоза, мейоза, обоснование данных процессов.

    презентация [1,1 M], добавлен 07.12.2014

  • Характеристика жизненного цикла клетки, особенности периодов ее существования от деления до следующего деления или смерти. Стадии митоза, их продолжительность, сущность и роль амитоза. Биологическое значение мейоза, его основные этапы и разновидности.

    лекция [169,6 K], добавлен 27.07.2013

  • Основные механизмы клеточного деления. Микротрубочки, образование веретена деления и метафаза. Правильное присоединение микротрубочек к кинетохорам. Обзор противоопухолевых препаратов. Использование особенностей механизма деления клетки в медицине.

    курсовая работа [1,7 M], добавлен 15.02.2016

  • Последовательность событий в процессе деления новой клетки. Накопление критической клеточной массы, репликация ДНК, построение новой клеточной оболочки. Характер взаимосвязи процессов клеточного деления. Управление скоростью роста микроорганизмов.

    реферат [1014,9 K], добавлен 26.07.2009

  • Периоды и фазы клеточного цикла. Последовательное прохождение клеткой периодов цикла без пропуска или возврата к предыдущим стадиям. Деление исходной клетки на две дочерние клетки. Циклины и циклин-зависимые киназы; деление эукариотической клетки; митоз.

    контрольная работа [25,0 K], добавлен 21.11.2009

  • Основные фазы клеточного цикла: интерфаза и митоз. Определение понятия "митоз" как непрямого деления клетки, наиболее распространенного способа репродукции эукариотических клеток. Характеристика и особенности процессов деления: амитоза и мейоза.

    презентация [799,4 K], добавлен 25.10.2011

  • Смерть клетки как постоянное проявление жизнедеятельности организма. Виды клеточной гибели и механизмы их протекания. Нарушения физиологической гибели клетки и их последствия. Современные направления научно-исследовательской работы в данном вопросе.

    доклад [779,9 K], добавлен 19.04.2013

  • Митоз как непрямое деление клетки, в результате которого образуются соматические клетки. Стадии клеточного цикла. Подготовка к делению эукариотических организмов. Основные этапы кариокинеза. Разделение цитоплазмы с органоидами между дочерними клетками.

    презентация [2,3 M], добавлен 06.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.