Генетика как наука, ее методы

Понятие наследственности и изменчивости, закономерности наследственности. Методы генетики и этапы ее становления как науки. Понятие о генах и аллелях. Закономерности наследования признаков при моногибридном скрещивании. Сущность законов Менделя.

Рубрика Биология и естествознание
Вид лекция
Язык русский
Дата добавления 21.04.2015
Размер файла 765,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

ТЕМА № 1. ГЕНЕТИКА - НАУКА О ЗАКОНОМЕРНОСТЯХ НАСЛЕДСТВЕННОСТИ И ИЗМЕНЧИВОСТИ. ПРОЯВЛЕНИЕ НАСЛЕДСТВЕННОСТИ НА РАЗНЫХ УРОВНЯХ ОРГАНИЗАЦИИ ЖИВОГО: МОЛЕКУЛЯРНОМ, КЛЕТОЧНОМ, ОРГАНИЗМЕННОМ, ПОПУЛЯЦИОННОМ. МЕТОДЫ ГЕНЕТИКИ. ИСТОРИЯ НАУКИ И ЕЕ ИСТОЧНИКИ

1. Понятие «наследственность» и «изменчивость»

Генетика изучает закономерности наследственности и изменчивости. Наследственность и изменчивость относятся к основным свойствам живой материи. наследственность генетика ген скрещивание

Наследственностью называется свойство организмов повторять в ряде поколений сходные признаки и обеспечивать специфический характер индивидуального развития в определенных условиях среды. Благодаря наследственности родители и потомки имеют сходный тип биосинтеза, определяющий сходство в химическом составе тканей, характере обмена веществ, физиологических отправлениях, морфологических признаках и других особенностях. Вследствие этого каждый вид организма воспроизводит себя из поколения в поколение.

Изменчивость - это явление, противоположное наследственности. Изменчивость заключается в изменении наследственных задатков, а также в вариабельности их проявлений в процессе развития организмов при взаимодействии с внешней средой.

Наследственность и изменчивость тесно связаны с эволюцией. В процессе филогенеза органического мира эти два противоположных свойства находятся в неразрывном диалектическом единстве. Новые свойства организма появляются только благодаря изменчивости, но она лишь тогда может играть роль в эволюции, когда появившиеся изменения сохраняются в последующих поколениях, то есть наследуются.

2. Закономерности наследственности

Основные закономерности наследственности установил выдающийся чешский ученый Грегор Мендель. Свои исследования Г. Мендель начал с моногибридного скрещивания, при котором родительские особи отличаются по состоянию одного признака. Выбранный им горох посевной - самоопыляемое растение, поэтому потомки каждой особи являются чистыми линиями. Вместе горох можно искусственно перекрестно опылить, что делает возможным гибридизацию и получения гетерозиготных (гибридных) форм. Как материнские (Р) были взяты растения чистой линии с желтым цветом семян, а родительской (Р) - с зеленым цветом. В результате такого скрещивания семена растений (гибридов первого поколения - F1) оказалось однообразным - желтого цвета. То есть в фенотипе гибридов F1 проявились лишь доминантные признаки.

Однообразие первого гибридного поколения и выявления у гибридов только доминантного признака называется законом доминирования или 1 законом Менделя.

Расщепление - явление проявления обоих состояний признаки во втором поколении гибридов (F2), обусловлено различием аллельных генов, которые их определяют.

Есть самоопыляющиеся растения F1 с желтыми семенами дают потомства с желтым и с зелеными семенами; рецессивный признак не исчезает, а только временно подавляется, вновь появляется в F2 в соотношении 1/4 часть зеленых семян и 3/4 - желтых. То есть точно - 3:1.

Проявление в фенотипе четверти гибридов второго поколения рецессивного признака, а трех четвертых - доминантной, получила название закона расщепления, II закона Менделя.

В дальнейшем Г. Мендель усложнил условия в опытах - использовал растения, которые отличались различными состояниями двух (дигибридное скрещивание) или большего числа признаков (полигибридное скрещивания). При скрещивании растений гороха с желтыми гладкими семенами и морщинистыми зелеными - все гибриды первого поколения имели гладкие желтые семена - проявление закона Менделя - единообразия гибридов первого поколения. Но среди гибридов F2 оказалось четыре фенотипа.

На основании полученных результатов Г. Мендель сформулировал закон независимого комбинирования состояний признаков (закон независимого наследования признаков). Это ІІІ закон Менделя.

При ди или полигибридном скрещивании расщепления состояний каждого признака у потомков происходит независимо от других.

Для дигибридного скрещивания характерно расщепление по фенотипу 9:3:3:1, причем появляются группы с новыми сочетанием признаков.

Неполное доминирование - промежуточный характер наследования. Существуют аллели, которые лишь частично доминируют над рецессивными.

3. Проявление наследственности на разных уровнях организации живого

Наследственность и изменчивость на разных уровнях организации живого (молекулярном, клеточном, организменном и популяционном)

Наследственность - свойство организмов обеспечивать материальную и функциональную преемственность между поколениями, а также повторять определенный тип индивидуального развития. Обеспечивается воспроизведением материальных единиц наследственности - генов, локализованных в специфических структурах ядра клетки (хромосомах) и цитоплазмы. Все многообразие явлений наследственности на разных уровнях организации живого (молекулярном, клеточном, организменном и популяционном) изучается генетикой и другими науками биологического цикла.

4. Охарактеризуйте методы генетики

ГИБРИДОЛОГИЧЕСКИЙ - Производится анализ закономерностей наследования отдельных признаков и свойств организмов при половом размножении, а также анализ изменчивости генов и их комбинаторики. Метод разработан Г. Менделем

ЦИТОЛОГИЧЕСКИЙ - С помощью светового и электронного микроскопов изучаются материальные основы наследственности на клеточном и субклеточном уровнях (хромосомы, ДНК)

ЦИТОГЕНЕТИЧЕСКИЙ - Синтез гибридологического и цитологического методов обеспечивает изучение кариотипа человека, изменений в строении и количестве хромосом

ПОПУЛЯЦИОННО-СТАТИСТИЧЕСКИЙ - Основывается на определении частоты встречаемости различных генов в популяции, что позволяет вычислить количество гетерозиготных организмов и прогнозировать, таким образом, количество особей с патологическим (мутантным) проявлением действия гена

БИОХИМИЧЕСКИЙ - Изучаются нарушения обмена веществ (белков, жиров, углеводов, минеральных веществ), возникающих в результате генных мутаций

МАТЕМАТИЧЕСКИЙ - Производится количественный учет наследования признаков

ГЕНЕАЛОГИЧЕСКИЙ - Выражается в составлении родословных (человека, животных). Позволяет установить тип и характер наследования признаков

БЛИЗНЕЦОВЫЙ - Основан на изучении близнецов с одинаковыми генотипами, что позволяет выяснить влияние среды на формирование признаков

ОНТОГЕНЕТИЧЕСКИЙ - Позволяет проследить действие генов в процессе индивидуального развития; в сочетании с биохимическим методом позволяет установить присутствие рецессивных генов в гетерозиготном состоянии по фенотипу.

5. Этапы становления генетики как науки

Этапы развития генетики

1865г. Грегор Мендель делает доклад Опыты над растительными гибридами (опубликован в 1866 г.)

1903г. Высказано предположение о том, что хромосомы являются носителями наследственности.

1905г. Уильям Бэтсон в письме к Адаму Сэджвику вводит термин генетика.

1910г.Томас Хант Морган доказывает, что гены расположены в хромосомах.

1913г. Альфред Стёртевант составляет первую генетическую карту хромосомы.

1927г. Для обозначения изменений в генах введен термин мутация.

1928г. Фредерик Гриффит обнаруживает молекулу наследственности, которая передаётся от бактерии к бактерии.

1938г. Т. Шванн, М. Шлейден открыли клеточную теорию.

1941г. Эдвард Тейтум и Джордж Бидл показывают, что в генах закодирована информация о структуре белков.

1944г. Освальд Эвери, Колин Маклеод и Маклин Маккарти изолируют ДНК (тогда его называли трансформирующим началом.

1950г. Эрвин Чаргафф показывает, что, хотя доля нуклеотидов в ДНК не постоянна, наблюдаются определённые закономерности (например, что количество аденина, A, равно количеству тимина, T) (Правило Чаргаффа). Барбара Мак-Клинток обнаруживает транспозоны у кукурузы.

1952г. Эксперимент Херши-Чейза доказывает, что генетическая информация бактериофагов (и всех других организмов) содержится в ДНК.

1953г. Структура ДНК (двойная спираль) расшифрована Джеймсом Уотсоном и Фрэнсисом Криком с помощью Розалин Франклин

1956г. Jo Hin Tjio и Алберт Леван впервые верно устанавливают Хромосомное число человека: 46 хромосом в диплоидном наборе.

1958г. Эксперимент Мезельсона-Шталя показывает, что удвоение ДНК носит полуконсервативный характер.

1961г. Выяснено, что генетический код состоит из триплетов.

1964г. Говард Тёмин на примере РНК-содержащих вирусов показал, что центральная догма Уотсона не всегда верна.

1970г. При изучении бактерии Haemophilius influenzae обнаружены ферменты рестриктазы, которые позволяют вырезать и встраивать участки молекул ДНК.

1977г. ДНК секвенирована впервые независимо Фредом Зангером, Уолтером Гилбертом и Алланом Максемом. Лаборатория Зангера полностью секвенирует геном бактериофага Ц-X174;.

1983г. Кэри Бэнкс Мёллис открывает Полимеразную цепную реакцию, открывающую возможности простой и быстрой амплификации ДНК.

1989г. Впервые секвенирован ген человека (Фрэнсис Коллинс и Лап-Че Цуи). Ген кодирует белок CFTR. Дефекты в последовательности гена приводят к развитию опухолей .

1995г. Впервые полностью секвенирован геном организма невирусной природы -- бактерии Haemophilus influenzae.

1996г. Впервые полностью секвенирован геном эукариотного организма -- пекарских дрожжей Saccharomyces cerevisiae.

1998г. Впервые полностью секвенирован геном многоклеточного эукариотного организма -- нематоды C. elegans.

2001г. Обнародованы первые наброски полной последовательности генома человека одновременно Проектом «Геном человека» (Human Genome Project) и Celera Genomics.

2003г. (14 апреля) Проект «Геном человека» успешно завершён: 99 % генома секвенировано с точностью 99.99%.

2008г. Стартовал международный проект по расшифровке геномов 1000 человек.

ТЕМА № 2. ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ ПРИЗНАКОВ И ПРИНЦИПЫ НАСЛЕДСТВЕННОСТИ

1. Понятие о генах, аллелях. Аллелизм. Множественный аллелизм

Ген - функциональная единица наследственного материала. Ген (от греч. genos -- род, происхождение) - участок молекулы геномной нуклеиновой кислоты, характеризуемый специфической для него последовательностью нуклеотидов, представляющий единицу функции, отличной от функций других генов, и способный изменяться путем мутирования.

Аллели (греч. allenon -- различные формы) -- это альтернативные формы гена, определяющие альтернативные формы одного и того же признака. Они возникают в результате изменений структуры гена за счет таких генных процессов, как мутация и рекомбинация.

Аллелизм-аллеломорфизм, явление парности (в некоторых случаях множественности) альтернативных (взаимоисключающих) признаков организма (например, жёлтая и зелёная окраска семян гороха), обусловленное влиянием на их развитие аллельных генов.

Множественный аллелизм -- это существование в популяции более двух аллелей данного гена. В популяции оказываются не два аллельных гена, а несколько.

Множественный аллелизм для генов, контролирующих системы несовместимости, выступает как фактор отбора, препятствующий образованию зигот и организмов определенных зигот. Примером множественного аллелизма является серия множественных аллелей s1, s2, s3, обеспечивающих самостерильность многих растений. Двенадцать различных состояний одного локуса у дрозофилы, обусловливающих разнообразие окраски глаз (w -- белые, we -- эозиновые, wa -- абрикосовые, wch -- вишневые, wm -- пятнистые и т. д.); серия множественных аллелей окраски шерсти у кроликов («сплошная», гималайская, альбинос и т. д.); аллели IA, Iв, I°, определяющие группы крови у человека, и т. д. Серия множественных аллелей -- результат мутирования одного гена.

2. Закономерности наследования признаков при моногибридном скрещивании

Скрещивание особей, отличающихся друг от друга по двум вариантам одного и того же признака, называется моногибридным скрещиванием. Для моногибридного скрещивания Г. Мендель выбирал растения гороха, четко различающиеся по какому-либо признаку, например по окраске семян (желтой или зеленой). Семена этих растений ученый высевал на протяжении ряда поколений и убедился, что они размножаются «в чистоте», т. е. без расщепления потомства: растения, выращенные из желтых семян, давали только желтые семена, а растения, выращенные из зеленых семян - зеленые. Затем он скрещивал растения этих чистых линий между собой, и во всех случаях полученные гибриды первого поколения (F1) имели лишь желтые семена. Признак, проявляющийся у гибридов первого поколения (F1), Мендель назвал доминантным, а не проявляющийся - рецессивным.

На основе анализа гибридов первого поколения Г. Мендель сформулировал привило единообризия гибридов первого поколения: в первом поколении гибридов проявляется только доминантный признак.

Моногибридное скрещивание схематично проиллюстрировано на рис. 1.

Рис. 1. Схема, отражающая закономерности наследования при моногибридном скрещивании

Из схемы видно, что родительские особи гороха в результате мейоза образовали гаметы. У одной из родительских особей по интересующему нас признаку - окраске семян - образовались гаметы, несущие ген A, у другой особи - гаметы с геном a. Слияние разнополых гамет при оплодотворении обусловило появление зигот с генотипом Aa.

Генотип (от греч. typos - форма) - совокупность всех генов, локализованных в хромосомах данного организма. Все растения (гибриды первого поколения - F1) имели только желтые семена. Иными словами, у гибридов первого поколения был одинаковый фенотип (от греч. phaino - являю, typos - форма) - совокупность всех признаков и свойств организма, сложившихся в процессе индивидуального развития генотипа во взаимодействии с условиями окружающей среды.

Затем Г. Мендель дал возможность гибридам первого поколения (F1) самоопылиться и получил второе поколение гибридов (F2), у которого обнаружилось расщепление по окраске семян: три части гибридов имели желтые семена, одна часть - зеленые.

Г. Мендель по анализу полученных результатов сформулировал закон расщепления: в потомстве, полученном при самоопылении гибридов первого поколения, наблюдается расщепление - 1/4 особей из гибридов второго поколения (F2) имеет рецессивный признак, 3/4 - доминантный.

4. В чем отличие реципрокного скрещивания?

Реципрокное скрещивание, система из двух скрещиваний -- прямого и обратного.

При реципокном. скрещивании. каждый из генотипически различных родительских типов А и В используется дважды -- один раз в качестве материнской и другой раз в качестве отцовской форм (+А ґ?В и +В ґ?А).

Различия между реципрокными гибридами могут быть вызваны влиянием материнского организма, наследственности цитоплазматической, сцепленными с полом генами.

5. I закон Менделя. Закон единообразия гибридов I поколения

Скрещивание двух организмов называется гибридизацией, потомство от скрещивания двух особей с разной наследственностью называют гибридным, а отдельную особь -- гибридом. Моногибридным называется скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных (взаимоисключающих) признаков. Следовательно, при таком скрещивании прослеживаются закономерности наследования только двух признаков, развитие которых обусловлено парой аллельных генов. Все остальные признаки, свойственные данным организмам, во внимание не принимаются.

6. Взаимодействие аллельных генов

Взаимодействие между аллельными генами осуществляется в виде трех форм: полное доминирование, неполное доминирование и независимое проявление (кодоминирование).

Полное доминирование - когда один доминантный аллель полностью подавляет проявление рецессивного аллеля, например, желтая окраска горошин доминирует над зеленой.

Неполное доминирование наблюдается в том случае, когда один ген из пары аллелей не обеспечивает образование в достаточном для нормального проявления признака его белкового продукта. При этой форме взаимодействия генов все гетерозиготы и гомозиготы значительно отличаются по фенотипу друг от друга. Примером расщепления при неполном доминировании может служить наследование окраски цветков Ночной красавицы.

При скрещивании растений с красными цветками (АА) и растений с белыми (аа) гибриды F1 имеют розовые цветки (Аа).

Таким образом, имеет место неполное доминирование; в F2 наблюдается расщепление

1 : 2 : 1 как по фенотипу, так и по генотипу. P>Кроме полного и неполного доминирования известны случаи отсутствия доминантно-рецессивных отношений иликодоминирования. При кодоминировании у гетерозиготных организмов каждый из аллельных генов вызывает формирование в фенотипе контролируемого им признака.

7. Понятие гомозиготность и гетерозиготность

За каждую наследственную характеристику отвечает пара генов (один из которых получен от матери, другой - от отца), называемая аллелью, а сами гены - аллельными. Гены могут быть не равноценными по силе проявления наследственного признака во внешнем облике (фенотипе) организма. Более «сильный» ген, в первую очередь реализующий свое влияние на появление в фенотипе определенного признака - это доминантный, уступающий ему - рецессивный. Аллель, таким образом, может состоять из:

1. Двух доминантных генов. Такую аллель называют гомозиготной по доминантному признаку.

2. Доминантного и рецессивного. Аллель называют гетерозиготной.

3. Двух рецессивных. Аллель называют гомозиготной по рецессивному признаку.

Соответственно, в первых двух случаях фенотип по данному признаку будет определять доминантный ген и только в последнем случае - рецессивные. По фенотипу невозможно определить, является данный организм гомозиготным по доминантному признаку или гетерозиготным, поэтому невозможно предсказать точно какое будет потомство, можно только рассчитать какие признаки могут проявиться, а какие - нет.

8. Какое расщепление при и анализирующем (возвратном) скрещивании?

Организм из поколения F1, полученного от скрещивания между гомозиготной доминантной и гомозиготной рецессивной особями, гетерозиготен по своему генотипу, но обладает доминантным фенотипом. Для того чтобы проявился рецессивный фенотип, организм должен быть гомозиготным по рецессивному аллелю. В поколении F2особи с доминантным фенотипом могут быть как гомозиготами, таки гетерозиготами. Если селекционеру понадобилось выяснить генотип такой особи, то единственным способом, позволяющим сделать это, служит эксперимент с использованием метода, называемого анализирующим ( возвратным )скрещиванием. Скрещивая организм неизвестного генотипа с организмом, гомозиготным по рецессивному аллелю изучаемого гена, можно определить этот генотип путем одного скрещивания. Например, у плодовой мушки Drosophila длинные крылья доминируют над зачаточными. Особь с длинными крыльями может быть гомозиготной (LL) или гетерозиготной (Ll). Для установления ее генотипа надо провести анализирующее скрещивание между этой мухой и мухой, гомозиготной по рецессивному аллелю (ll). Если у всех потомков от этого скрещивания будут длинные крылья, то особь с неизвестным генотипом - гомозигота по доминантному аллелю. Численное соотношение потомков с длинными и с зачаточными крыльями 1 : 1 указывает на гетерозиготность особи с неизвестным генотипом.

9. II закон Менделя. Закон расщепления

II закон Менделя (закон расщепления) - в потомстве, полученном от скрещивания гибридов первого поколения, наблюдается явление расщепления: четверть особей из гибридов второго поколения несёт рецессивный признак, три четверти - доминантный

10. Наследование при дигибридном скрещивании. III закон Менделя

III закон Менделя (закон независимого расщепления или закон независимого комбинирования признаков) - при дигибридном скрещивании у гибридов каждая пара признаков наследуется независимо от других и даёт с ними разные сочетания. Образуются фенотипические группы, характеризующиеся отношением 9:3:3:1 (расщепление по каждой паре генов идёт независимо от других пар генов).

11. Расщепление по генотипу и фенотипу при дигибридном скрещивании

При дигибридном скрещивании чистолинейных растений гороха (ААВВ х aabb) гибриды F1 были фенотипически и генотипически единообразны (АаВЪ) в соответствии с первым законом Менделя. При скрещивании дигетерозиготных особей гороха между собой было получено второе поколение гибридов, имеющее четыре фенотипические комбинации двух пар признаков (22). Это объясняется тем, что при мейозе у гибридных организмов из каждой пары гомологичных хромосом в анафазе 1 к полюсам отходит по одной хромосоме. Из-за случайного расхождения отцовских и материнских хромосом ген А может попасть в одну гамету с геном В или с геном Ъ. Аналогичное произойдет и с геном а. Поэтому гибриды образуют четыре типа гамет: АВ, Аb, аВ, аb. Образование каждого из них равновероятно. Свободное сочетание таких гамет приводит к образованию четырех вариантов фенотипов в соотношении 9 : 3 : : 3 : 1 и 9 классов генотипов.

12. Закономерности полигибридного скрещивания. Расщепление при полигибридных скрещиваниях

Гибриды, полученные от скрещивания организмов, различающихся двумя парами альтернативных признаков, были названы дигетерозиготами, тремя парами-- тригетерозиготами, многими признаками -- полигетерозиготами, а скрещивания соответственно ди-, три- и полигибридными.

Анализ наследования одной пары признаков в моногибридном скрещивании позволяет понять наследование двух и более пар признаков при дигибридном и полигибридном скрещиваниях.

Расщепление в F2 по фенотипу для каждой пары альтернативных признаков равно 3 : 1. Это исходное отношение обеспечивается точным цитологическим механизмом расхождения гомологичных хромосом в мейозе.

Принцип независимого поведения разных пар альтернативных признаков в расщеплении по фенотипу в F2 выражается формулой (3+1)n, где n-степень гетерозиготности. Исходя из приведенной формулы, можно рассчитать число ожидаемых классов ( в расщеплении по фенотипу при любом числе пар признаков, взятых в скрещивание:

моногибридное скрещивание (3 + 1)1=3 : 1, т.е. 2 класса,

дигибридное скрещивание (3+ 1)2 -- 9 : 3 : 3 : 1, т. е. 4 класса,

тригибридное скрещивание (3 + 1)3 = 27 : 9 : 9 : 9 : 3 : 3 : 3 : 1, т.е. 8 классов, и т. д.

Иначе говоря, число фенотипических классов в F2 может быть выражено формулой 2n, где основание 2 указывает на парность (аллельность) двух аллелей одного гена, находящихся в одной паре гомологичных хромосом, а степень n -- число генов в негомологичных хромосомах, по которым различаются скрещиваемые родительские формы.

Таким же образом можно рассчитать число типов гамет, образующихся у любого гибрида первого поколения, и число комбинаций гамет, дающих различные генотипы в F2: моногибрида Аа образуются два сорта гамет, или 21; у дигибрида АаВв -- четыре, или 22; у тригибрида -- 23, или восемь сортов гамет и т. д. Следовательно, число различных типов гамет, образуемых гибридом F1, также может быть выражено формулой 2n, где п - число генов, по которым различаются скрещиваемые формы.

Так как при моногибридном скрещивании у гибрида F1 образуются два сорта женских и мужских гамет, то очевидно, что при этом возможно образование 4 комбинаций в отношении: 1AA : 2Аа : 1аа, т. е. 41. При дигибридиом скрещивании таких сочетаний будет 42=16, при тригибридном 43 = 64 и т.д., т.е. число возможных комбинаций гамет выражается формулой 4n, где основание 4 отражает число возможных комбинаций мужских и женских гамет в моногибридном скрещивании, п -- число пар аллелей.

Число генотипических классов в потомстве моногибрида составляет 3, при дигибридном скрещивании в F2 генотипических классов 9, или 32, при тригибридном -- 33 и т. д.

Итак, число генотипических классов можно определить по формуле 3n, где n -- число гетерозиготных пар аллелей.

Размещено на Allbest.ru


Подобные документы

  • Роль генетики в сельском хозяйстве и медицине. Суть и понятие о множественном аллелизме, особенности фенотипической гетерогенности популяций, закономерности наследственности и изменчивости организмов. Примеры наследования по типу множественных аллелей.

    реферат [572,1 K], добавлен 20.12.2011

  • Истоки генетики. Первые идеи о механизме наследственности. Естественный отбор. Изучение теории пангенезиса Ч. Дарвина. Законы единообразия гибридов первого поколения и независимого комбинирования признаков. Значение работ Менделя для развития генетики.

    реферат [34,7 K], добавлен 26.11.2014

  • Генетика и эволюция, классические законы Г. Менделя. Закон единообразия гибридов первого поколения. Закон расщепления. Закон независимого комбинирования (наследования) признаков. Признание открытий Менделя, значение работ Менделя для развития генетики.

    реферат [22,1 K], добавлен 29.03.2003

  • Генетика как наука о наследственности от Г. Менделя и сегодня. Хромосомные нарушения и наследственные болезни как следствие изменений генетической информации. Методы изучения генетики человека и роль воспроизводства в развитии живого, клонирование.

    реферат [17,3 K], добавлен 29.06.2008

  • Закономерности наследования и изменчивости признаков у человека - предмет изучения генетики. Характеристика основных методов исследования. Метод составления родословных (генеалогический). Популяционный, близнецовый, цитогенетический, биохимический методы.

    презентация [4,1 M], добавлен 11.04.2015

  • Явление наследственности. Современная медицинская генетика. Генетика человека на этапе становления и ее проблемы. Ген цветовой слепоты (дальтонизм). Методы генетической инженерии и биотехнологии по конструированию микроорганизмов с заданными свойствами.

    реферат [32,7 K], добавлен 31.10.2008

  • Основные законы наследственности. Основные закономерности наследования признаков по Г. Менделю. Законы единообразия гибридов первого поколения, расщепления на фенотипические классы гибридов второго поколения и независимого комбинирования генов.

    курсовая работа [227,9 K], добавлен 25.02.2015

  • Этапы развития генетики как науки и вклад отечественных ученых в ее развитие. Гибридологический метод Менделя. Хромосомная теория наследственности Моргана. Мутации как нарушения последовательности чередования нуклеиновых оснований в структуре гена.

    реферат [36,0 K], добавлен 16.01.2012

  • Классические законы Менделя. Первый, второй, третий закон. Условия существования законов. Признание законов. Значение работы Менделя для развития генетики. Опыты Менделя послужили основой для развития современной генетики – науки.

    реферат [21,3 K], добавлен 17.12.2004

  • Генетика как наука, изучающая явления наследственности и изменчивости в человеческих популяциях, особенности наследования нормальных и патологических признаков, зависимость заболеваний от наследственной предрасположенности и факторов внешней среды.

    презентация [4,0 M], добавлен 21.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.