Характеристика дубильных веществ: понятие, классификация и роль
Понятие дубильных веществ, их история. Распространение дубильных веществ в растительном мире, их роль для жизни растений. Биосинтез, локализация и накопление их в растениях. Особенности сбора, сушки и хранения сырья, содержащего дубильные вещества.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 03.12.2014 |
Размер файла | 401,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Дубильные вещества являются безазотистыми органическими соединениями, производные фенола, растворимые в воде и спирту. Дубильные вещества относятся к группе танидов, которые получили свое название за водонепроницаемость при процессе дубления кожи. В основном для процесса дубления использовали кору дуба тому и процесс обработки назвали дублением, а используемые вещества дубильными.
С белками, алкалоидами и солями тяжёлых металлов дубильные вещества выпадают в осадок, а с солями железа образуют чернила. Вот почему дубильные вещества используют при отравлении тяжёлыми металлами и алкалоидами. Очень часто дубильные вещества употребляют при пероральном отравлении морфином, никотином, атропином, кофеином, кокаином, соланином, солями свинца, меди, кобальта, ртути, радионуклидами. При взаимодействии дубильных веществ с беками образуется своеобразная защитная плёнка, которая находясь на слизистых оболочках, осуществляет противовоспалительный эффект, и препятствует дальнейшему развитию воспалительного процесса. На воздухе, дубильные вещества под воздействием кислорода и при участии ферментов, окисляются и превращаются в вещества, окрашенные в тёмно- бурый или красно- бурый цвет, которые не растворимы в воде. На примере можно видеть побурение при разрезании яблока, картофеля, редиса.
Дубильные вещества находятся в различных частях растений, но преимущественно большее количество активных веществ распространяется в коре и древесине деревьев и кустарников, а также в корнях и корневищах различных травянистых растений. Основными представителями, в которых находятся дубильные вещества, является дуб, берёза, черёмуха, пижма, полынь, черника, зверобой, ревень.
Дубильные вещества, нанесённые на раны, обожженные или обмороженные места, также образуют с белками защитную плёнку, что способствует остановке кровотечения и оказывает противовоспалительное действие. дубильный вещество растение биосинтез
История изучения
Несмотря на то что дубильные вещества стали известны уже давно (таннин был впервые получен Дейе [Deyeux] и независимо Сегеном в 1797 г. и в руках Берцелиуса в 1815 г. имелся уже в довольно чистом состоянии) и много изучались, к началу XX века они были недостаточно исследованными, и не только химическая натура и строение почти всех их оставалось невыясненными, но даже и эмпирический состав очень многих из них разными исследователями делался различно. Объясняется это легко, с одной стороны, тем, что, будучи в большинстве веществами, не способными кристаллизоваться, они трудно получаются в чистом виде, а с другой -- малою их стойкостью и легкою изменяемостью. Глазивец (1867), как и многие другие, считал все Д. вещества за гликозидыили тела, им подобные; однако позднейшие исследования показали, что таннин хотя, по-видимому, и встречается в соединении с глюкозой в альгаробиллах и мироболанах (Zцllfel, 1891), но сам по себе не есть гликозид (H. Schiff 1873), также и Д. кислоты дубовой коры (Etti 1880, 83, 89, Lцwe 1881), равно как и очень многие др. Д. вещества, ничего общего с гликозидами не имеют, а получение из некоторых из них сахаристых веществ обусловливалось исключительно нечистотою исследовавшихся препаратов. В настоящее время можно с достаточной уверенностью судить лишь о строении таннина, представляющего ангидрид галловой кислоты (см. и ниже); что же касается других, то в них пока лишь, по-видимому, возможно предполагать, судя по реакциям распадения и некоторым другим, частью ангидридные соединения многоатомных фенолокислот и фенолов, образованные либо по типу простых, либо по типу сложных эфиров, частью ароматические кетонокислоты, являющиеся продуктами конденсации производных галловой кислоты; но часть Д. вещества все же должно и поныне считать за глюкозиды. Ввиду неизвестности строения сама собою понятна невозможность естественной группировки Д. веществ [Собственно Д. вещества выделяются в особую группу органических соединений, обладающих некоторой совокупностью общих признаков, лишь благодаря именно неизвестности их строения. Весьма возможно, что по выяснении последнего они распределятся со временем по различным классам органических соединений, и тогда не представится более надобности и в особом общем названии для них, а нынешнее название «дубильное вещество», согласно недавнему предложению Рейнитцера, придется, пожалуй, удержать только для тех из них, которые на самом деле способны дубить кожи.]. Деление их по окрашиванию, производимому с солями окиси железа, на железосинящие (Eisenblauende) и железозеленящие (Eisengrьnende) ныне оставлено, потому что одно и то же Д. вещество может давать иногда синее, а иногда зелёное окрашивание, смотря по тому, какую взять соль железа, а сверх того, окрашивание может изменяться от прибавки, например, малого количества щелочи. Деление Д. веществ на физиологические (см. выше), дубящие кожу и вместе с тем дающие при сухой перегонке пирокатехин и не дающие галловой кислоты при кипячении с слабой серной кислотой, и патологические, для дубления менее пригодные (хотя и осаждающиеся раствором клея), при сухой перегонке дающие пирогаллол, а при кипячении со слабой серной кислотой -- галловую кислоту, также не вполне отвечает фактам, ибо, как в настоящее время известно, и патологические Д. вещества могут, хотя и не столь успешно, служить для дубления, а кроме того, таннин, например, являясь по преимуществу патологическим Д. веществом, встречается, по-видимому, и как нормальный продукт (сумах, альгаробилла, мироболаны). Как кислоты, Д. вещества образуют металлические производные -- соли, из которых свинцовые, представляющие нерастворимые в воде аморфные осадки, нередко применяются для извлечения Д. вещества из водных экстрактов Д. материалов, а также при анализе.
Распространение дубильных веществ в растительном мире
ДВ широко распространены в растительном мире. Встречаются преимущественно в высших растениях, наиболее распространены в представителях двудольных, где они накапливаются в максимальных количествах. Однодольные обычно не содержат ДВ, в папоротниках ДВ встречаются, а у хвощей, мхов, плаунов их почти нет, или они находятся в минимальных количествах. Наиболее высоким содержанием ДВ отличаются семейства: сумаховые -Anacardiaceae (сумах дубильный, скумпия кожевенная), розоцветные - Rosaceae (кровохлебка лекарственная, лапчатка прямостоячая), буковые - Fagaceae (дуб черешчатый и скальный), гречишные - Polygonaceae (горец змеиный и мясо-красный, вересковые - Ericaceae (толокнянка, брусника), березовые - Betulaceae (ольха серая и клейкая) и др.
Содержание таннидов в растениях доходит до 20-30%, наивысшее содержание ДВ найдено в патологических образованиях - галлах (до 50-70%).
Роль дубильных веществ для жизни растений
Биологическая роль для жизни растений до конца не выяснена. Существует несколько гипотез:
1). ДВ выполняют защитную функцию, т.к. при повреждении растений они образуют комплексы с белками, которые создают защитную пленку, препятствующую проникновению фитопатогенных организмов. Обладают бактерицидными и фунгицидными свойствами;
2). ДВ участвуют в окислительно-восстановительных процессах, являются переносчиками кислорода в растениях;
3). ДВ - одна из форм запасных питательных веществ. На это указывает их локализация в подземных органах и коре;
4). ДВ - отбросы жизнедеятельности растительных организмов.
Классификация дубильных веществ
Так как ДВ это смеси различных полифенолов, из-за разнообразия их химического состава классификация затруднена.
Наибольшее признание получила классификация Г. Поварнина (1911) и К. Фрейденберга (1920), основанная на химической природе ДВ и их отношении к гидролизующим агентам. Согласно этой классификации ДВ делятся на 2 большие группы:
1) гидролизуемые ДВ;
2) конденсированные ДВ.
1. Гидролизуемые ДВ
Гидролизуемые ДВ - это смеси сложных эфиров фенолкарбоновых кислот с сахарами и несахаридами. В водных растворах под действием кислот, щелочей и ферментов они способны гидролизоваться на составные фрагменты фенольной и нефенольной природы. Гидролизуемые ДВ можно разделить на 3 группы.
Галлотаннины -эфиры галловой, дигалловой кислот и других ее полимеров с циклическими формами Сахаров.
м-дигалловая кислота (депсид - D)
Важнейшие источники галлотаннинов, применяемых в медицине - галлы турецкие, образующиеся на дубе лузитанском и китайские, образующиеся на сумахе полукрылатом, листья сумаха дубильного и скумпии кожевенной.
Танин представляет собой гетерогенную смесь веществ различного строения. Встречаются моно-, да-, три-, тетра-, пента- и полигаллоильные эфиры.
По мнению Л. Ф. Ильина, Э. Фишера и К. Фрейденберга китайский танин представляет собой пента-М-дигаллоил-в-D-глюкозу, т.е. в-D-глюкозу, гидроксильные группы которой этерифицированы М-дигалловой кислотой.
По мнению П. Каррера китайский танин представляет собой гетерогенную смесь веществ различного строения, гидроксильные группы глюкозы могут быть этерифицированы галловой, дигалловой и тригалловой кислотами.
К. Фрейденберг предполагал, что у турецкого таннина в среднем одна из пяти гидроксильных групп глюкозы свободна, другая этерифицирована М-дигалловой кислотой, а остальные - галловой кислотой.
ДВ этой, группы содержатся и преобладают в корневищах и корнях кровохлебки» корневищах змеевика, бадана, соплодиях ольхи, коре дуба, листьях гамамелиса.
Эллаготапнины -эфиры эллаговой и других кислот, имеющих с нейбиогенетическое родство, с циклическими формами Сахаров. Содержатся в корке плодов гранатника, коре эвкалипта, кожуре грецкого ореха, листьях и соцветиях кипрея (иван-чая).
Несахаридные эфиры фенолкарбоновых кислот -эфиры галловой кислоты с хинной, хлорогеновой, кофейной, оксикоричной кислотами и с флава-нами.
Пример: теогаллин, обнаруженный в листьях чая китайского, представляющий собой эфир хинной и галловой кислот (3-О-галлоилхинная кислота).
2. Конденсированные ДВ
Конденсированные ДВ не обладают эфирным характером, полимерная цепь этих соединений образована посредством углерод-углеродных связей (-C-С-), что обусловливает их прочность к воздействию кислот, щелочей и ферментов. При действии минеральных кислот они не расщепляются, а увеличивают М.м. с образованием продуктов окислительной конденсации - флобафенов или красеней красно-коричневого цвета.
Конденсированные ДВ -это продукты конденсации катехинов (флаван-3-олов), лейкоантоцианидинов (флаван-3,4-диолов), реже оксистильбенов (фенилэтиленов).
Образование конденсированных ДВ может идти двумя путями. По К. Фрейденбергу, оно сопровождается разрывом пиранового кольца катехинов, и С2-атом одной молекулы соединяется углерод-углеродной связью с С6- или C8-атомом другой молекулы.
По Д. Е. Хатуэю, конденсированные ДВ образуются в результате ферментативной окислительной конденсации молекул по -типу «голова к хвосту» (кольцо А к кольцу В) или «хвост к хвосту» (кольцо В к кольцу В) по положениям 6'-8; 6 -2` и др.
Конденсированные ДВ содержатся и преобладают в коре калины, корневищах лапчатки, плодах черники, черемухи, траве зверобоя, листьях чая.
В состав смесей ДВ входят также простые фенолы (резорцин, пирокатехин, пирогаллол, флороглюцин и др.) и свободные фенолкарбоновые кислоты (галловая, эллаговая, протокатеховая и др.).
Чаще всего в растениях встречается смесь гидролизуемых и конденсированных ДВ с преобладанием той или иной группы, поэтому классифицировать их по типу ДВ достаточно сложно, В некоторых видах сырья почти одинаковое содержание обеих групп ДВ (например, корневища змеевика).
Биосинтез, локализация и накопление дубильных веществ в растениях
Биосинтез гидролизуемых ДВ идет по шикиматному пути, конденсированные ДВ образуются по смешанному пути (шикиматному и ацетатно-малонатному). ДВ находятся в растворенном состоянии в вакуолях растительных клеток и отделены от цитоплазмы белково-липоидной мембраной - танопластом, при старении клеток адсорбируются на клеточных стенках.
Локализуются в клетках эпидермиса, обкладочных клетках, окружающих сосудисто-волокнистые пучки (жилки листьев), в паренхимных клетках сердцевинных лучей, коры, древесины и флоэмы.
ДВ накапливаются, главным образом, в подземных органах многолетних травянистых растений (корневища бадана, змеевика, лапчатки, корневища и корни кровохлебки), в корен древесине деревьев и кустарников (кора дуба, калины), в плодах (плоды черемухи, черники, соплодия ольхи), реже в листьях (листья скумпии, сумаха, чая).
Накопление таннидов зависит от генетических факторов, климатических и экологических условий. У травянистых растений, как правило, минимальное количество ДВ отмечается весной в период отрастания, затем их содержание увеличивается и достигает максимума в период бутонизации и цветения (например, корневища лапчатки). К концу вегетации количество ДВ постепенно снижается. У кровохлебки максимум ДВ накапливается в фазу развития розеточных листьев, в фазу цветения их содержание снижается, а осенью вновь увеличивается. Фаза вегетации влияет не только на количество, но и на качественный состав ДВ. Весной, в период сокодвижения, в коре деревьев и кустарников и в фазу отрастания у травянистых растений преимущественно накапливаются гидролизуемые ДВ, а осенью в фазу отмирания растений - конденсированные ДВ и продукты их полимеризации - флобафены (красени).
Наиболее благоприятными для накопления таннидов являются условия умеренного климата (лесная зона и высокогорный альпийский пояс).
Наибольшее содержание ДВ отмечено у растений, произрастающих на плотных известковых почвах, на рыхлых черноземных и песчаных почвах их содержание меньше. Способствуют накоплению ДВ богатые фосфором почвы, богатые азотом почвы снижают содержание таннидов.
Особенности сбора, сушки и хранения сырья, содержащего дубильные вещества
Заготовку сырья проводят в период максимального накопления ДВ.
Собранное сырье сушат на воздухе в тени или в сушилках при температуре 50-60 градусов. Подземные органы и кору дуба можно сушить на солнце.
Хранят в сухих, хорошо проветриваемых помещениях без доступа прямых солнечных лучей по общему списку в течение 2-6 лет.
Физические и химические свойства дубильных веществ
ДВ выделяются из растительного сырья в виде смеси полимеров и представляют собой аморфные вещества желтого или желто-бурого цвета, без запаха, вяжущего вкуса, очень гигроскопичные. Хорошо растворяются в воде (особенно в горячей) с образованием коллоидных растворов, растворимы также в этиловом и метиловом спирте, ацетоне, этилацетате, бутаноле, пиридине. Не растворимы в хлороформе, бензоле, диэтиловом эфире и других неполярных растворителях, оптически активны.
Легко окисляются на воздухе. Способны образовывать прочные межмолекулярные связи с белками и другими полимерами (пектиновые вещества, целлюлоза и др.). Под действием фермента таназы и кислот гидролизуемые ДВ распадаются на составные части, конденсированные ДВ - укрупняются.
Из водных растворов осаждаются желатином, алкалоидами, основным ацетатом свинца, бихроматом калия, сердечными гликозидами.
Как вещества фенольной природы, ДВ легко окисляются перманганатом калия в кислой среде и другими окислителями, образуют окрашенные комплексы с солями тяжелых металлов, трехвалентного железа, бромной водой.
Способны легко адсорбироваться на кожном порошке, целлюлозе, клетчатке, вате.
Оценка качества сырья, содержащего дубильные вещества, методы анализа
Для получения суммы ДВ растительное сырье экстрагируют горячей водой в соотношении 1:30или 1:10.
Качественный анализ
Используют качественные реакции (осаждения и цветные) и хроматографическое исследование.
1. Специфической реакцией является реакция осаждения желатином, используют 1%-ный раствор желатина на 10%-ном растворе хлорида натрия. Появляется хлопьевидный осадок или муть, растворимые в избытке желатина. Отрицательная реакция с желатином свидетельствует об отсутствии ДВ.
2. Реакция с солями алкалоидов, используют 1% раствор солянокислого хинина. Появляется аморфный осадок за счет образования водородных связей между гидроксильными группами ДВ и атомами азота алкалоида.
Эти реакции дают одинаковый эффект независимо от группы ДВ, Ряд реакций позволяют определить группу ДВ.
Качественные реакции на ДВ
Реакция с 1%-ным спиртовым раствором железоаммониевых квасцов - эта реакция фармакопейная, проводится как с отваром из сырья (ГФ-XI - кора дуба, корневище змеевика, соплодия ольхи, плоды черники), так и для открытия ДВ непосредственно в сухом сырье (ГФ-XI - кора дуба, кора калины, корневища бадана).
Количественное определение
Известно около 100 различных методов количественного определения ДВ, которые можно разделить на следующие основные группы.
1. Гравиметрические или весовые -- основаны на количественном осаждении ДВ желатином, ионами тяжелых металлов или адсорбцией кожным (гольевым) порошком.
Для технических целей во всем мире стандартным является гравиметрический метод с применением гольевого порошка - весовой единый метод (ВЕМ).
Водный экстракт ДВ делят на две равные части. Одну часть экстракта выпаривают и высушивают до постоянной массы. Другую часть экстракта обрабатывают кожным порошком и фильтруют. ДВ адсорбируются на кожном порошке и остаются на фильтре. Фильтрат и промывные воды выпаривают ивысушивают до постоянной массы. Содержание ДВ рассчитывают по разнице в массе сухих остатков.
Метод неточный, т.к. кожный порошок адсорбирует и низкомолекулярные фенольные соединения, довольно трудоемкий и дорогой.
2. Титринетрические методы. К ним относятся:
а) Желатиновый метод - основан на способности ДВ образовывать нерастворимые комплексы с белками. Водные извлечения из сырья титруют 1% раствором желатина, в точке эквивалентности комплексы желатино-таннаты растворяются в избытке реактива. Титр устанавливают по чистому таннину. Точку эквивалентности определяют путем отбора наименьшего объема титрованного раствора, вызывающего полное осаждение ДВ.
Метод наиболее точный, т.к. позволяет определить количество истинных ДВ. Недостатки: длительность определения и трудность установления точки эквивалентности.
б) Перманганатометрический метод (метод Левенталя в модификации А. П. Курсанова). Это фармакопейный метод, основан на легкой окисляемости ДВ перманганатом калия в кислой среде в присутствии индикатора и катализатора индигосульфокислоты, которая в точке эквивалентности переходит в изатин, и цвет раствора меняется от синего до золотисто-желтого.
Особенности определения, позволяющие оттитровать только макромолекулы ДВ: титрование проводится в сильно разбавленных растворах (извлечение разбавляется в 20 раз) при комнатной температуре в кислой среде, перманганат калия добавляется медленно, по каплям, при интенсивном перемешивании.
Метод экономичный, быстрый, прост в исполнении, но недостаточно точный, т.к. перманганат калия окисляет частично и низкомолекулярные фенольные соединения.
Описание отдельных Дубильных веществ
При описании Дубильных веществ необходимо подробно остановиться лишь на немногих важнейших для практики и лучше исследованных.
Танин
Танин, галлодубильная кислота или просто дубильная кислота (Gallдpfelgerbsдure, Gallusgerbsдure, acide gallotannique), находится в различных сортах чернильных орешков, патологических кнопперсах, сумахе,альгаробилле, мироболанах; имеет состав C14H10O9; представляет вяжущего вкуса аморфный порошок, растворимый в воде, спирте и уксусном эфире, нерастворимый в эфире, бензоле и др.; оптически недеятелен; даёт с хлорным железом в водном растворе чёрно-синий осадок, что применяется как качественная реакция на соли окиси железа; легко окисляется, поглощая в присутствии щелочей кислород из воздуха и восстанавливая закись меди из солей её окиси и соли серебра; осаждается из водных растворов (в отличие от галловой кислоты) клеем, сырой кожей, алкалоидами, альбуминатами, слабыми соляной и серной кислотами и многими солями (напр., поваренной). По Бёттингеру (1888), соединение танина с клеем содержит около 34 % танина. Танин разлагает углекислые соли, обнаруживая ясно кислотные свойства. Его соли аморфны, в основном нерастворимы и своим составом указывают на присутствие в его частице лишь одного карбоксила (H. Schiff). При нагревании до 210° танин дает пирогаллол; при кипячении с слабой серной кислотой или едким кали превращается нацело в галловую кислоту [Различные сорта продажного танина дают при этом также изменчивые количества глюкозы, что и дало повод Штреккеру и др. рассматривать танин как глюкозид галловой кислоты. Однако вполне чистый танин, полученный, например, экстрагированием уксусным эфиром, не образует ни следов глюкозы (Lцwe). Возможно, что в продажных сортах в виде подмеси находится глюкозид, но не галловой кислоты, а танина (H. Schiff).], при кипячении с водным аммиаком распадается на галламид и галловокислый аммиак (Etti, 1884), подобно тому как ангидрид молочной кислоты даёт амид этой кислоты и её аммиачную соль; при кипячении с уксусным ангидридом образует пятиацетильный эфир C14H5(C2H3O)5O9. Эти реакции определяют строение танина как дигалловой кислоты, представляющей ангидрид галловой
С6H2(OH) 3 СО--О--С 6H2 (ОН) 2 СОНО.
В подтверждение такого строения танина Г. Шиффом (1873) получена из галловой кислоты при нагревании её с хлорокисью фосфора, а также при выпаривании её водного раствора с мышьяковой кислотой, дигалловая кислота по уравнению
2C6H2(OH)3COHO -- H2O = С 6H2 (OH) 3 СО--О--С 6H2 (OH) 2 СОНО
по своим свойствам, реакциям и производным тождественная с танином.
танин находит обширное применение в медицине, в производстве чернил, красильном деле, для получения галловой кислоты и пирогаллола, но для дубления кож не применяется). Кроме дигалловой кислоты, Шиффом получены искусственно ангидриды и других многоатомных фенолокислот, а также сульфофенолокислот, со свойствами дубильных веществ и близкие к танину. Сюда относятся: динитрогалло- и дифлороглюцинкарбоновые кислоты, полученные (1888) при действии хлорокиси фосфора на соответствующие изомеры галловой кислоты и имеющие состав C14H10O9.
При кипячении протокатеховой кислоты с мышьяковой получена (1882) дипротокатеховая кислота C14H10O7 = 2C7H6O4 -- H2O, показывающая все реакции, свойственные танину, также при кипячении с минеральными кислотами дающая обратно протокатеховую кислоту, с аммиаком её амид и аммиачную соль, но с хлорным железом в отличие от танина дающая зелёное окрашивание. При действии хлорокиси фосфора протокатеховая кислота образует ещё тетрапротокатеховую кислоту C28H18O13 = 4С7H6O4 -- 3Н2O, по окрашиванию с хлорным железом и др. свойствам сходную с предыдущей.
Эллагогендубильная кислота
Стоит в близком отношении к таннину, являясь, как и он, производным галловой кислоты, и часто встречается вместе с ним в растениях. Она составляет главную массу дубильного вещества мироболанов, альгаробилл, диви-диви и, вероятно, коры корней граната (Lцwe 1875, Zцllfel 1891), а также найдена вместе с дубодубильной кислотой C16H14O9 в древесине черешчатого дуба (Etti 1889). Высушенная при 100°, она представляет состав C14H10O10 и вид буроватой аморфной массы; растворима в воде, спирте и уксусном эфире; образует чёрно-синий осадок с уксуснокислым железом и осадки с клеем, белком, алкалоидами и рвотным камнем; при нагревании с водой до 110° переходит в эллаговую кислоту, теряя при этом 2Н2О, и образует с уксусным ангидридом пятиацетильный эфир. Zцllfel приписывает ей строение, выражаемое формулой С6Н2(ОН) 3 СО--О--О--С 6 Н2 (ОН) 2 СООН = 2C 6H2(OH) З COHO -- H2. Эллаговая кислота C14H6O8 +2Н2О добывается из предыдущей или непосредственно из диви-диви; найдена во многих дубильных материалах, где, быть может, образуется на счет эллагогендубильной кислоты, получается искусственно из галловой кислоты при разнообразных условиях по уравнению: 2C7H6O5 = C14H6O8 + 2H2O + H2, напр., при нагревании её с мышьяковой к. (Lцwe 1868, H. Schiff 1873), при нагревании её этилового эфира с раствором соды (Н. Schiff 1879) и мн. др. Она представляет желтоватый кристаллический порошок; трудно растворима в воде и спирте, нерастворима в эфире; теряет при 100° всю кристаллизационную воду, поглощая её обратно во влажном воздухе, если не была нагрета выше 120°; с хлорным железом даёт сперва зелёное и затем чёрно-синее окрашивание, а с азотной и азотистой кислотами в присутствии воды -- кроваво-красное (характерно); образует четырёхацетильный (H. Schiff, Zцllfel) и такой же бензольный (Goldschmidt u. Jahoda 1892) эфиры; хотя ей и отвечают разнообразного состава труднорастворимые микрокристаллические или аморфные соли, однако кислотные её свойства выражены слабо, и угольную кислоту из углекислых солей она вытесняет с трудом; при восстановлении амальгамой натрия даёт как конечный продукт г-гексаоксидифенил С12Н4(ОН)6, который образуется из неё также вместе с в-гексаоксидифенилом при плавлении седким натром; при кипячении с концентрированным раствором едкого кали превращается в гексаоксидифениленкетон C13H8O7, а при перегонке с цинковой пылью во флуорен С13Н10. Строение её не вполне выяснено.
Дубодубильные кислоты
Находятся в молодой коре (Eichenrindegerbs д ure), древесине (Eichenholzgerbs д ure) и листьях различных видов дуба. Кислоте (из коры), содержащей в круглых числах 56 % углерода и 4 % водорода и дающей с хлорным железом синее окрашивание, Этти (1880, 1883) даёт формулу C17H16O9, а Беттингер (1887) C19H16O10 [Аналитические данные Леве (1881) хорошо согласуются с формулой Этти.]. Из одной дубовой коры Этти получил дубильную кислоту состава C18H18O9, из коры Quercus pubescens C20H20O9, из экстракта древесины черешчатого дуба (Qu. pedunculata) C16H14O9, a из этой последней действием соляной кисл. C15H12O9 (1889). К группе дубодубильных кислот Этти причисляет также дубильную кислоту из коры красного бука состава C20H22O9 и из шишек хмеля состава C22H26O9. дубильное вещество чайных листьев, по Рохледеру, есть также дубодубильная кисл. Дубодубильные кислоты представляют аморфные порошки различных оттенков от буро-красного до светло-красного цвета (C15H12O9 желт.), растворимые в воде (за исключением кислоты C16H14O9, которая почти не растворима), спирте, смеси спирта с эфиром, уксусном эфире и трудно растворимые в чистом эфире; имеют в водном растворе кислую реакцию; растворяются в щелочах; с уксуснокислым свинцом дают желтовато-белые осадки свинцовых соединений; с окисью магния образуют растворимые в воде средние и кислые соли (Etti); с хлорным железом кислоты C17H16O9 (или C19H16O10, по Беттингеру) и C16H14O9 дают синие осадки, прочие зелёные; осаждаются клеем (осадок, по Беттингеру, содержит около 43 % дубодубильной кислоты) и по действию на кожу являются типическими дубильными веществами.
Весьма характерна для дубодубильных кислот способность, вполне отсутствующая у таннина, образовать ангидриды при нагревании до 130°--140° и при кипячении со щелочами и разведенными минеральными кислотами. При этом, по Этти, две частицы дубильной кислоты теряют одну или более частиц воды (до пяти, смотря по условиям и числу незамещенных водных остатков в частице кислоты). Кислота C17H16O9, например, даёт 4ангидрида C34H30O17 (флобофен), C34H28O16, C34H26O15 (дубовое красное) и C34H24O14 [Но не даёт ни следов какого-либо сахаристого вещества ни при кипячении с H2SO4, ни при действии эмульсии (Etti, Lцwe).].
Некоторые из этих ангидридов находятся готовыми в дубовой коре (флобофен и дубовое красное, Eichenroth), составляя такое же дубильное начало её, как и сами кислоты. Они имеют вид аморфных, в основном красных или буро-красных порошков, трудно или нерастворимы в чистой воде, но растворимы в ней в присутствии дубодубильной кислоты, а также в спирте и щелочах. Ангидриды, представляющие предел дегидратации дубильных кислот, в спирте и щелочах не растворяются. Флобофен и дубовое красное к хлорному железу, клею, коже, уксуснокислому свинцу относятся одинаково с самой дубильной кислотой и подобно ей восстановляют Фелингову жидкость. Ангидриды эти обратно воды не присоединяют ни при каких условиях (Etti). Кислота C17H16O9 при сухой перегонке дает пирокатехин и вератрол С6Н4(ОСН3)2, при плавлении с едким кали пирокатехин, протокатеховую кислоту и флороглюцин, при кипячении с слабой H2SO4 галловой кислоты не образует (отличие от таннина) и лишь с трудом и в малом количестве при нагревании с нею в запаянной трубке до 130°--140°, с крепкой соляной кислотою при 150°--180° отщепляет метильные группы в виде хлористого метила (Etti). Эти реакции в основном свойственны и др. дубодубильным кислотам. Кислота C16H14O9 с соляною кислотой, отщепляя СН3, переходит отчасти в кислоту C15H13O9 с одним СН3 в составе, который и выделяется в виде йодистого метила при кипячении с йодистым водородом (Etti [Замечательно, что ангидриды дубодубильных кислот, в противоположность самим кислотам, не способны отщеплять CH3 J при действии HJ (Etti).]). Для этой же кислоты C16H14O9 получены гидроксиламинное и фенилгидразинное производные, что указывает на присутствие в её составе карбонильной группы СО. Ацетильные производные дубодубильных кислот изучены недостаточно. Получение их в чистом состоянии затрудняется, по-видимому, легкостью, с которою дубодубильные кислоты переходят в ангидриды в кислой среде. Ацетильному производному кислоты из экстракта дубовой древесины Беттингер даёт состав С15Н7(СН3О)5О9, что находится в согласии с данными Этти для строения полученных им кислот C16H14O9 и C15H12O9.
Кинодубильная кислота
Кинодубильная кислота (Kin oroth) составляет главную массу кино и представляет ангидрид киноина , из кот. может быть получена нагреванием при 120°--130°. Киноинтакже находится в кино, бесцветен, кристалличен и растворим в воде, спирте и немного в эфире. Он клеем не осаждается, а с хлорным железом даёт красное окрашивание и, следовательно, не обладает характерными свойствами дубильных веществ. Наоборот, в ангидриде его они явственно развиты и обусловливают применение кино как дубла. Кинодубильная кислота представляет красное аморфное смолистое вещество, растворимое в спирте и трудно растворимое в холодной воде, дающее осадок с клеем и грязно-зелёное окрашивание с . При нагрвании до 160°--170° или при кипячении с слабыми серной или соляной кислотами она переходит в ангидрид с подобными же свойствами. Как сам киноин, так и кинодубильная кислота с соляной кислотой в запаянной трубке при 120°--130° распадаются на пирокатехин, галловую кислоту и хлористый метил. На основании этой реакции Этти считает киноин за метиловый эфир пирокатехингалловой кислоты (1878).
Катехудубильные кислоты
Находятся вместе с катехинами близкого между собою состава в различных сортах катеху и в гамбире . Они представляют ангидриды катехинов, из которых могут быть получены и искусственно простым нагреванием до 130--170°, кипячением с содой или нагреванием с водой при 110°. Состав катехинов, высушенных при температуре около 100° (они содержат до 5 паев кристаллизационной воды, которую и теряют при этой температуре), выражается формулами (Liebermann u. Teuchert 1880), , (Etti, Hlasiwetz) и др. Катехины кристаллизуются в форме очень мелких иголочек светло-жёлтого цвета, дают с зелёное окрашивание, но клеем не осаждаются, при плавлении с КНО распадаются на флороглюцин и протокатеховую кислоту, а при сухой перегонке образуют пирокатехин. Для катехина получены двуацетильный и двубензоильный эфиры (Lieb. u. Teuch.). Катехин при 140° с разведенной серной кислотой распадается на флороглюцин и пирокатехин. С он реагирует подобно пирокатехину, а с древесиной сосны -- подобно флороглюцину, представляя как бы молекулярное соединение этих двух фенолов (Etti). Катеху-Д. кислоты, по Этти (1877--81), имеют состав , и и представляют красновато-бурые аморфные порошки с характерными свойствами дубильных веществ. Нагреванием катехинов до более высокой температуры или с минеральными кислотами получены ангидриды, образованные с ещё большею потерею воды (Etti).
Маклурин
Маклурин, или моринодубильная кислота, (Hiasiwetz 1863, Benedict 1877) и морин (Lцwe 1875, Benedict u. Hazura 1884) находятся в жёлтом дереве (Morus tinctoria или Maclura aurantiaca, применяется в красильном деле), откуда их извлекают кипячением с водой и разделяют, пользуясь меньшею растворимостью морина в воде. Маклурин, светло-жёлтый кристаллический порошок, из свойств, характеризующих дубильные вещества, обладает лишь способностью давать с железом (смесью закиси и окиси) чёрно-зелёный осадок и осаждаться клеем, алкалоидами и альбуминатами, но для дубления неприменим. Подобно многим дубильным веществам, он распадается на флороглюцин и протокатеховую кислоту по уравнению:
.
Такое распадение происходит количественно при кипячении его с крепким раствором едкого кали или при 120°C с слабою серною кислотою и указывает на эфирную натуру этого вещества. Морин, составляющий красящее начало жёлтого дерева и кристаллизующийся из водного раствора в форме длинных блестящих игл, за исключением зелёного окрашивания с хлорным железом, типических свойств дубильных веществ не представляет. При плавлении с едким кали в качестве главных продуктов распадения он даёт резорцин и флороглюцин, при восстановлении амальгамой натрия образует флороглюцин, причём сперва переходит в изоморин (пурпурно-красные призмы), легко превращающийся обратно в морин. Как морин, так и маклурин образуют с металлами частью кристаллические, частью аморфные соли, состав которых нельзя считать установленным
Значение
Практически во всех растениях встречаются дубильные вещества. Характерной особенностью их является способность образовывать соединения с металлами, белками. Существуют некоторые растения, в которых содержание этих веществ достигает 30%, к таким растениям относятся бадан, кора дуба, корневище кровохлебки, ягоды черемухи, черники.
Особенное применение подобные соединения получили в фармацевтической промышленности, медицине. Вяжущие, кровоостанавливающие, противовоспалительные, бактерицидные свойства этих соединений позволяют избавиться от заболеваний желудочно-кишечного тракта, отравлений растительными ядами, солями тяжелых металлов. Широко распространено применение дубильных веществ для наружного применения при воспалениях слизистых оболочек, различных кровотечениях, сильных ожогах. Целебные свойства этих веществ основаны на обеззараживании бактерий, поселившихся на поврежденной поверхности кожи или слизистой оболочке. Они лишают бактерии их пищи, тем самым значительно ускоряют процесс заживления ран.
Вообще, вещества, обладающие дубильными свойствами, объединяются в разнообразные, довольно сложные по своему составу, растворимые соединения ароматического ряда. Они имеют своеобразный вкус, несколько вяжущий. Такие соединения могут осаждаться из водного раствора или из водно-спиртового раствором специального клея. При наличии соединения с солями окиси железа появляется оттенок зеленого цвета, иногда осадок может иметь синее окрашивание. Дубильные вещества являются довольно легко окисляющимися соединениями. В щелочном составе они буреют, поглощая кислород воздуха, иногда действуют, как восстановители, например, на соли благородных металлов.
Другое известное название таких соединений - это таниды. Увидеть наличие танидов можно при чистке картофеля. Вы заметите потемнение, если не поместите картофель сразу в водный раствор. Такое же свойство танидов происходит при разрезании или чистке яблок. По своему химическому составу вещества, имеющие дубильные свойства, представляют собой смесь производных многоатомных фенолов, таких как пирогаллол, пирокатехин, флороглюцин. У некоторых растений таниды скапливаются преимущественно в коре или самой древесине, в других случаях наличие танидов замечено в наростах, которые называют галлами. Есть разновидности растений, в которых дубильные вещества содержатся в листьях, также в молодых побегах, стеблях.
Исключительные свойства танидов человечество знало на протяжении многих веков. Использовались эти соединения для дубления кожи. В этом случае происходило соединение танидов с белками, составляющими основу шкуры животного. Воздействие веществ, имеющих дубильную основу, превращали шкуру животного в кожу совершенно непромокаемую, эластичную, чрезвычайно прочную. В России для дубления кожи использовали в основном кору дуба, именно поэтому метод обработки шкуры животного стал называться дубильным, а одежда, произведенная из натуральной кожи подобным способом - дубленкой.
Необыкновенные способности танидов используют медики. Всем известно благотворное воздействие отваров, компотов, киселей, приготовленных из черники при заболеваниях желудка. Своими целебными свойствами эти народные средства, помогающие человеку, обязаны именно дубильным веществам, входящим с состав ягод черники.
Иногда наличие танидов оказывает нежелательное воздействие на растительное сырье, предназначенное для извлечения других необходимых полезных веществ. Существуют специальные технологии, позволяющие в этом случае удалять таниды.
Вещества, содержащие дубильные свойства, довольно часто оказывают воздействие на вкусовые качества некоторых плодов. К таким плодам относятся: кизил, хурма, айва,черная смородина, груша, черника. Таниды непременно участвуют в формировании ароматов вышеперечисленных плодов. Чрезвычайно важно влияние дубильных соединений на вкус чайных листочков. Многие разновидности дубильных соединений обладают Р-витаминными свойствами.
Порой люди даже не осознают постоянное присутствие танидов в повседневной жизни. Именно дубильные компоненты непосредственно обуславливают применение трав, необходимых для полоскания горла, при ангине, для воздействия на десна при пародонтозе, в качестве средства против поноса. Таниды - уникальный подарок природы.
Размещено на Allbest.ru
Подобные документы
Биоактивные вещества хурмы, изменение содержания дубильных веществ в процессе роста и созревания. Регулирование созревания плодов хурмы. Использование плодов хурмы, их сока, настоя коры и порошка из сухих листьев. Особенности процесса сушки плодов хурмы.
контрольная работа [37,9 K], добавлен 18.01.2016Нуклеиновые кислоты, их структура, функциональные группы. Осмотическое давление различных клеток и тканей растения. Роль пигментов в жизни растений. Биосинтез углеводов, ферменты углеводного обмена. Роль аденозинтрифосфорной кислоты в обмене веществ.
контрольная работа [843,8 K], добавлен 12.07.2010История открытия фотосинтеза. Образование в листьях растений веществ, выделение кислорода и поглощение углекислого газа на свету и в присутствии воды. Роль хлоропластов в образовании органических веществ. Значение фотосинтеза в природе и жизни человека.
презентация [1,4 M], добавлен 23.10.2010Описание основных функций, выполняемых процессами выделения веществ у растений. Понятие аллелопатии, экскреции и секреции. Функции специализированных секреторных структур у растений. Группы эпидермальных образований, участвующих в выделении веществ.
презентация [3,0 M], добавлен 15.03.2011Вещества, задерживающие прорастание из плодов и семян и их роль в расселении растений. Корневые выделения и их роль в аллелопатии. Природа аллелапатически активных веществ. Физиологическое и биохимическое действие аллелопатически активных веществ.
реферат [24,5 K], добавлен 25.02.2016Растения как биологическое царство, одна из групп многоклеточных организмов, принципы и механизмы их питания. Роль жилок в процессе насыщения растений питательными веществами. Принципы транспорта веществ внутри растения, ответственные за него органы.
презентация [619,8 K], добавлен 05.06.2014Прокариоты и эукариоты, строение и функции клетки. Наружная клеточная мембрана, эндоплазматическая сеть, их основные функции. Обмен веществ и превращения энергии в клетке. Энергетический и пластический обмен. Фотосинтез, биосинтез белка и его этапы.
реферат [20,8 K], добавлен 06.07.2010Ферменты: история их открытия, свойства, классификация. Сущность витаминов, их роль в жизни человека. Физиологическое значение витаминов в процессе обмена веществ. Гормоны - специфические вещества, которые регулируют развитие и функционирование организма.
реферат [44,4 K], добавлен 11.01.2013Пищевая ценность дикорастущих растений. Характеристика биогологически активных веществ лекарственных растений. Распределение дикорастущих пищевых, лекарственных и ядовитых растений по природным зонам. Правила сбора и употребления пищевых растений.
реферат [24,3 K], добавлен 22.03.2010Обмен веществ со средой как специфическое свойство жизни. Общее значение продуцентов, консументов и редуцентов. Полный цикл редукции органического вещества. Уровни организации живой материи. Малый круговорот веществ в биосфере. Круговорот углерода и серы.
реферат [28,4 K], добавлен 01.01.2010