Ассимиляция углерода в процессе фотосинтеза

Анализ связи фотосинтетической ассимиляции углекислого газа с фотохимическими реакциями. Восстановление углерода углекислого газа до уровня углеводов. Рассмотрение циклов Кальвина и Хетча-Слэка-Карпилова, САМ-типов метаболизма. Исследование фотодыхания.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 05.05.2014
Размер файла 1014,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

1.Связь фотосинтетической ассимиляции СО2 с фотохимическими реакциями

2.Цикл Кальвина

3.Цикл Хетча-Слэка-Карпилова (С4-путь)

4.САМ-типы метаболизма (по типу толстянковых)

5.Фотодыхание (гликолатный путь, или С2-путь)

1.Связь фотосинтетической ассимиляции СО2 с фотохимическими реакциями

В результате фотохимических реакций в хлоропластах создается необходимый уровень АТР и NADPH. Эти конечные продукты световой фазы фотосинтеза стоят на входе в темновую фазу, где СО2 восстанавливается до углевода:

Сами по себе АТР и NADPH не в состоянии восстановить СО2. Темновая фаза фотосинтеза -- сложный процесс, включающий большое количество реакций.

Фиксация углерода углекислого газа и восстановление его до уровня органических соединений - заключительный этап фотосинтеза. Реакции ассимиляции углерода получили название темновых реакций фотосинтеза. В настоящее время утановлено, что для их прохождения необходим свет, поэтому заключительный этап фотосинтеза принято сейчас называть метаболизмом углерода при фотосинтезе, или углеродными циклами фотосинтеза. При ассимиляции углерода используются продукты световой стадии фотосинтеза - АТФ и НАДФН.

Фиксация углекислого газа из атмосферы и включение его в органические соединения у разных групп растений может происходить по-разному. В соответствии с механизмом первичных реакций фиксации углекислого газа и природой образующихся при этом первичных стабильных продуктов различают: С3-путь фотосинтеза (цикл Кальвина, восстановительный пентозофосфатный цикл = ВПФ-цикл), С4-путь фотосинтеза (цикл Хэтча-Слэка-Карпилова), фотосинтез по типу толстянковых - САМ-фотосинтез и фотодыхание (С2-путь, гликолатный путь).

2.Цикл Кальвина

Восстановление углекислого газа до уровня углеводов практически у всех фотосинтезирующих организмов происходит по единому пути - С3-пути. Цикл Кальвина состоит из трех этапов: карбоксилирования, восстановления и регенерации.

1 ? фосфорибулокиназа,

2 ? рибулозодифосфаткарбоксилаза,

3 ? фосфоглицераткиназа,

4 ? триозофосфатдегидрогеназа,

5 ? триозофосфатизомераза,

6 ? альдолаза,

7 ? фосфатаза,

8 ? транскетолаза,

9 ? альдолаза,

10 ? фосфатаза,

11 ? транскетолаза,

12 ? рибозофосфатизомераза,

13 ? фосфокетопентозоэпимераза

1)Карбоксилирование. Рибулозо-5-фосфат фосфорилируется с участием АТР и фосфорибулозокиназы. Образуются рибулозо-1,5-дифосфат, к которому с помощью рибулозодифосфаткарбоксилазы присоединяется СО2. Полученный продукт расщепляется на две триозы: 2 молекулы 3-фосфоглицериновой кислоты (3-ФГК). 3-фосфоглицериновая кислота (ФГК) является первичным продуктом фотосинтеза.

2)Фаза восстановления. 3-ФГК восстанавливается до 3-фосфоглицеринового альдегида (3-ФГА) в два этапа. На 1 этапе происходит фосфорилирование 3-ФГК при участии АТР и фосфоглицераткиназы до 1,3-дифосфоглицериновой кислоты, а на 2 этапе происходит восстановление 1,3-ФГК с помощью NADPH и дегидрогеназы до фосфоглицеринового альдегида.

3)Фаза регенерации первичного акцептора СО2 и синтеза конечного продукта фотосинтеза. При фиксации трех молекул СО2 и образовании шести молекул восстановленных 3-фосфотриоз пять из них используются затем для регенерации рибулозо-5-фосфата, а один - для синтеза глюкозы.

Для синтеза одной молекулы глюкозы в цикле Кальвина необходимы 12 NADPH и 18 АТР, которые поставляются в результате фотохимических реакций фотосинтеза.

3.Цикл Хетча-Слэка-Карпилова (С4-путь)

Работы Л.А. Незговоровой (1956-1957). Ю.С. Карпилова (1960, 1963), И.А. Тарчевского (1963), Г.П. Корчака (1965) привели к открытию С4-пути углерода в фотосинтезе. С4-путь ассимиляции СО2 впервые описали австралийские ученые М.Д. Хетч и К.Р. Слэк (1966). Специфическая особенность С4-растений (кукуруза, сахарный тростник, ряд злаковых трав, сорго, просо и др.) состоит в том, что первичным стабильным продуктом фотосинтеза, образующимся в результате ассимиляции СО2, является не ФГК, а яблочная и аспарагиновая кислоты. Затем эти соединения через 3-ФГК и гексозофосфаты превращаются в сахара.

Листья С4-растений содержат два разных типа хлоропластов: хлоропласты обычного вида ? в клетках мезофилла и большое количество крупных хлоропластов, часто без гран, ? в клетках, окружающих проводящие пучки (обкладка). СО2, диффундирующий в лист через устьица, попадает в цитоплазму клеток мезофилла, где при участии ФЕП-карбоксилазы вступает в реакцию с ФЕП, образуя щавелево-уксусную кислоту (оксалоацетат). Затем в хлоропластах ЩУК восстанавливается до яблочной кислоты (малата) за счет NADPH, образующего в ходе световой фазы фотосинтеза. ЩУК в присутствии NH4+ может превращаться также в аспартат. Затем малат (или аспартат) переносится в хлоропласты клетки обкладки сосудистого пучка, где он декарбоксилируется малик-энзимом (малатдегидрогеназой декарбоксилирующей) до пирувата и СО2.

Экологическая роль С4-пути: 1) пространственная разобщенность процессов позволяет растениям с С4-путем осуществлять фотосинтез даже при закрытых устьицах, так как хлоропласты клеток обкладки используют малат (аспартат), образовавшийся ранее, как донор СО2; 2) Закрывание устьичных отверстий в наиболее жаркое время дня сокращает потери воды за счет испарения (транспирации) ? к С4-растениям относятся многие виды засушливой тропической зоны. фотосинтез углерод фотодыхание

4.САМ-типы метаболизма (по типу толстянковых)

Для суккулентов (роды Crassula, Bryophyilum и др.) характерен суточный цикл метаболизма С4-кислот с образованием яблочной кислоты ночью. От английского выражения crassulacean acid metabolism этот тип фотосинтеза сокращенно называют СAM-метаболизм. Устьица этих растений днем обычно закрыты, что предотвращает потерю воды, и открываются ночью. СО2 поступает в листья, где при участии содержащейся в цитоплазме ФЕП-карбоксилазы взаимодействует с фосфоенолпируватом, образуя оксалоацетат. Источником ФЕП служит крахмал. То же самое происходит и с СО2, который освобождается в клетках в процессе дыхания. Образовавшийся оксалоацетат восстанавливается под действием NADH-зависимой малатдегидрогеназы до яблочной кислоты, которая накапливается в вакуолях клеток листа. Это приводит к закислению клеточного сока в ночное время.

Днем в условиях высокой температуры, когда устьица закрыты, малат транспортируется из вакуолей в цитоплазму и там декарбоксилируется при участии малатдегидрогеназы декарбоксилирующей (малик-энзима) с образованием СО2 и пирувата. СО2 поступает в хлоропласты и включается в них в цикл Кальвина, участвуя в синтезе сахаров.

Таким образом, у растений с фотосинтезом по типу толстянковых много общего с С4-путем фотосинтеза. Однако при САМ-метаболизме фиксация СО2 с образованием малата (ночью) и декарбоксилирование малата с высвобождением СО2 и пирувата (днем) разделены во времени. При достаточном количестве воды ряд растений с метаболизмом по типу толстянковых могут вести себя как С3-растения. В свою очередь некоторые растения с С3-путем фотосинтеза при недостатке воды проявляют черты САМ-метаболизма.

5.Фотодыхание (гликолатный путь, или С2-путь)

Фотодыхание ? активируемый светом процесс высвобождения СО2 и поглощения О2 (отличается от «темнового» дыхания митохондрий). Так как при этом первичным продуктом является гликолевая кислота, то этот путь получил название гликолатного. У С3-растений с малой эффективностью фотосинтеза интенсивность фотодыхания может достигать 50% от интенсивности фотосинтеза.

Фотодыхание у С3-растений усиливается при низком содержании СО2 и высоких концентрациях О2. В этих условиях РДФ-карбоксилаза (рибулозодифосфат карбоксилаза) в хлоропластах может функционировать как оксигеназа, катализируя окислительное расщепление рибулозо-1,5-дифосфата на 3-ФГК и 2-фосфогликолевую кислоту, которая затем дефосфорилируется в гликолевую кислоту. Молекулы СО2 и О2 конкурируют между собой в каталитическом центре РДФ-карбоксилазы: при относительно высоких концентрациях СО2 и низких О2 преобладает карбоксилирование, а высокие концентрации О2 и низкое содержание СО2 благоприятствуют окислению и образованию фосфогликолевой кислоты. В том же направлении действует и повышение температуры.

Фотодыхание осуществляется в результате взаимодействия хлоропластов, пероксисом и митохондрий. Гликолат из хлоропласта поступает в пероксисому и там окисляется гликолатоксидазой до глиоксилата. Возникающая перекись водорода устраняется каталазой пероксисомы. Глиоксилат аминируется, превращаясь в глицин (в качестве донора аминогруппы функционирует глутамат).

Глицин транспортируется в митохондрию. Здесь из двух молекул глицина образуется серии и освобождается СО2. Теперь цикл замыкается: серии может снова поступать в пероксисому и там передать свою аминогруппу на пируват. При этом из пирувата возникает аланин, из серина -- гидрокси-пируват, который сразу после этого восстанавливается в глицерат. Затем глицерат может снова попасть в хлоро-пласты и благодаря фосфорилированию включиться в цикл Кальвина.

Последовательность реакций фотодыхания не обязательно образует цикл. Гликолатный путь С3-растений может завершиться в митохондриях. Конечными продуктами в этом случае являются серин и СО2. Освобождение СО2 объясняет, почему нетто-фотосинтез (чистая продуктивность) при интенсивном фотодыхании снижается.

У С4-растений СО2, выделяющийся в результате фотодыхания, перехватывается в клетках мезофилла, где из ФЕП и СО2 образуются оксалоацетат и малат. Затем малат «отдает» свой СО2 хлоропластам обкладки, где функционирует цикл Кальвина. В связи с этим становится понятным высокий нетто-фотосинтез С4-растений.

Физиологическое значение фотодыхания: гликолатный путь приводит к синтезу глицина и серина, в пероксисомах происходит восстановление NADP+; в процессе образования серина может генерироваться АТР. Показано, что С3-растения, помещенные в атмосферу с низким парциальным давлением О2 и высокой концентрацией СО2, ведут себя подобно С4-растениям, т. е. имеют низкий уровень фотодыхания.

Вывод: термин «фотодыхание» имеет лишь формальный смысл (О2 потребляется, СО2 выделяется), но к дыханию этот процесс прямого отношения не имеет.

Размещено на Allbest.ru


Подобные документы

  • Процесс превращения углекислого газа и воды в углеводы и кислород под действием энергии солнечного света. История открытия фотосинтеза и его уравнение. Связывание углекислого газа с пятиуглеродным сахаром рибулезодифосфатом. Значение фотосинтеза.

    презентация [206,5 K], добавлен 08.12.2013

  • История открытия фотосинтеза. Образование в листьях растений веществ, выделение кислорода и поглощение углекислого газа на свету и в присутствии воды. Роль хлоропластов в образовании органических веществ. Значение фотосинтеза в природе и жизни человека.

    презентация [1,4 M], добавлен 23.10.2010

  • История открытия фотосинтеза - превращения углекислого газа и воды в углеводы и кислород под действием энергии солнечного света. Описание способности хлорофилла поглощать и трансформировать солнечную энергию. Световая и темновая фазы фотосинтеза.

    презентация [533,1 K], добавлен 18.03.2012

  • Сущность процесса фотосинтеза – процесса превращения углекислого газа и воды в углеводы и кислород под действием энергии солнечного света. Зелёный пигмент – хлорофилл, и органы растений его содержащие – хлоропласты. Световая и темновая фазы фотосинтеза.

    презентация [298,6 K], добавлен 30.03.2011

  • Характер и направления процессов, происходящих в глубинах Мирового океана, их глобальном изменении окружающей среды. Циркуляция углерода за счет физических и химических, биологических процессов. Модель глобального круговорота углекислого газа в воде.

    реферат [107,2 K], добавлен 14.12.2014

  • Углеводы – группа органических соединений. Строение и функции углеводов. Химический состав клетки. Примеры углеводов, их содержание в клетках. Получение углеводов из двуокиси углерода и воды в процессе реакции фотосинтеза, особенности классификации.

    презентация [890,0 K], добавлен 04.04.2012

  • Исследование процесса образования органических веществ из углекислого газа и воды за счет энергии света. Особенности световой и темновой фаз фотосинтеза. Реакции пластического и энергетического обменов. Фотоавтотрофный и хемоавтотрофный типы питания.

    презентация [1,9 M], добавлен 16.04.2015

  • Источники, резервы углерода в природе. Биогеохимический цикл (кругооборот) элемента. Закон бережливости природы. Сущность процессов хемосинтеза, фотосинтеза, углефикации, разложения, минерализации, вулканической деятельности. Проблема парникового эффекта.

    презентация [194,6 K], добавлен 02.02.2015

  • Анализ возможных путей расщепления глюкозы. Определение составляющих и принципа функционирования аэробного метаболизма. Процессы образования органических кислот и биотрансформации исходных субстратов, отличных от углеводов по своей химической природе.

    реферат [3,3 M], добавлен 09.06.2015

  • Значение фотосинтеза и причины его дневных изменений. Факторы, влияющие на образование хлорофилла. Механизм фотосинтеза и световые его реакции. Поглощение двуокиси углерода фотосинтезирующими тканями. Общий фотосинтез и характер его сезонных изменений.

    реферат [866,4 K], добавлен 05.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.