Концепции современного естествознания

Современная наука о сущности и источниках человеческого сознания. Взаимосвязь самосознания, рефлексии и языкового общения. Расшифровка генома человека. Анализ достижений молекулярной биологии и химии. Открытия в области физики и лазерных технологий.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 01.05.2014
Размер файла 49,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«МОСКОВСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ВОДНОГО ТРАНСПОРТА»

ФАКУЛЬТЕТ ФНПО

Кафедра Управление персоналом

КОНТРОЛЬНАЯ РАБОТА

Концепции современного естествознания

Выполнил студент 3 курса специальности 080200.62

Храмов А.В.

Проверил

«___»______________2014

Москва 2014

План

Введение

1. Физика - микромир, макромир, мегамир

2. Достижения в основных направлениях современной химии

3. Достижения в области биологии

3.1 Молекулярная биология

3.2 Расшифровка генома человека

4. Звёзды и их эволюция

5. Современная наука о сущности и источниках человеческого сознания

5.1 Сознание, самосознание и рефлексия

5.2 Сознание, язык, общение

Введение

В XX в. естествознание развивалось невероятно быстрыми темпами, что обусловливалось потребностями практики. Промышленность требовала новых технологий, в основе которых лежало естественнонаучное знание.

Естествознание - наука о явлениях и законах природы. Современное естествознание включает множество естественнонаучных отраслей: физику, химию, биологию, физическую химию, биофизику, биохимию, геохимию и др. Оно охватывает широкий спектр вопросов о разнообразных свойствах объектов природы, которую можно рассматривать как единое целое.

Огромное ветвистое древо естествознания медленно произрастало из натурфилософии - философии природы, представляющей собой умозрительное истолкование природных явлений и процессов. Поступательное развитие экспериментального естествознания привело к постепенному перерастанию натурфилософии в естественнонаучные знания, и как результат -- феноменальные достижения во всех областях науки и, прежде всего, в естествознании, которыми так богато ушедшее XX столетие.

1. Физика - микромир, макромир, мегамир

В недрах натурфилософии зарождалась физика - наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира.

Физика - основа естествознания. В соответствии с многообразием исследуемых форм материи, и ее движения она подразделяется на физику элементарных частиц, ядерную физику, физику плазмы и т. д. Она знакомит нас с наиболее общими законами природы, управляющими течением процессов в окружающем нас мире и во Вселенной в целом.

Цель физики заключается в отыскании общих законов природы и в объяснении конкретных процессов на их основе. По мере продвижения к этой цели перед учеными постепенно вырисовывалась величественная и сложная картина единства природы.

Мир представляет собой не совокупность разрозненных, независимых друг от друга событий, а разнообразные и многочисленные проявления одного целого.

Микромир. В 1900г. немецкий физик Макс Планк предложил совершенно новый подход - квантовый, основанный на дискретной концепции. Он впервые ввел Квантовую гипотезу и вошел в историю развития физики как один из основоположников квантовой теории. С введением квантовой концепции начинается - этап современной физики, включающий не только квантовые, но и классические представления.

На основании квантовой механики объясняются многие микропроцессы, происходящие в пределах атома, ядра и элементарных частиц - появились новые отрасли современной физики: квантовая электродинамика, квантовая теория твердого тела, квантовая оптика и многие другие.

В первые десятилетия XX в. исследовалась радиоактивность, и выдвигались идеи о строении атомного ядра.

В 1938г. сделано важное открытие: немецкие радиохимики О. Ган и Ф. Штрассман обнаружили деление ядер урана при облучении их нейтронами. Это открытие способствовало бурному развитию ядерной физики, созданию ядерного оружия и рождению атомной энергетики.

Одно из крупнейших достижений физики XX в. - это, безусловно, создание в 1947г. транзистора выдающимися американскими физиками Д. Бардиным, У. Браттейном и У. Шокли.

С развитием физики полупроводников и созданием транзистора зарождалась новая технология - полупроводниковая, а вместе с ней и перспективная, бурно развивающаяся отрасль естествознания - микроэлектроника.

Представления об атомах и их строении за последние сто лет изменились радикально. В конце XIX -- начале XX вв. в физике были сделаны выдающиеся открытия, разрушившие прежние представления о строении материи.

Открытие электрона (1897г.), затем протона, фотона и нейтрона показали, что атом имеет сложную структуру. Исследование строения атома становится важнейшей задачей физики XX века. После открытия электрона, протона, фотона и, наконец, в 1932 году нейтрона было установлено существование большого числа новых элементарных частиц.

В том числе: позитрон, (античастица электрона); мезоны -- нестабильные микрочастицы; различного рода гипероны -- нестабильные микрочастицы с массами больше массы нейтрона; частицы резонансы, имеющие крайне короткое время жизни (порядка 10-22-10-24 с); нейтрино -- стабильная, не имеющая электрического заряда частица, обладающая почти невероятной проницаемостью; антинейтрино -- античастица нейтрино, отличающаяся от нейтрино знаком лептонного заряда, и др.

Элементарные частицы в настоящее время обычно разделяют на следующие классы:

1. Фотоны -- кванты электромагнитного поля, частицы с нулевой массой покоя, не имеют сильного и слабого взаимодействия, но участвуют в электромагнитном.

2. Лептоны (от греч. leptos -- легкий), к числу которых относятся электроны, нейтрино; все они не обладают сильным взаимодействием, но участвуют в слабом взаимодействии, а имеющие электрический заряд -- также и в электромагнитном взаимодействии.

3. Мезоны -- сильно взаимодействующие нестабильные частицы.

4. Барионы (от греч. barys -- тяжелый), в состав которых входят нуклоны (нестабильные частицы с массами, большими массы нейтрона), гипероны, многие из резонансов.

5. Приблизительно в 1963-1964 годах появилась гипотеза о существовании кварков -- частиц, из которых состоят барионы и мезоны, являющиеся сильно взаимодействующими и по этому свойству объединенными общим названием адронов.

6. Кварки имеют весьма необычные свойства: обладают дробными электрическими зарядами, что не характерно для других микрочастиц, и, по-видимому, не могут существовать в свободном, не связанном виде. Число различных кварков, отличающихся друг от друга величиной и знаком электрического заряда и некоторыми другими признаками, достигает уже нескольких десятков.

Мегамир. Теория Большого Взрыва. В 1946-1948 гг. Г. Гамов разработал теорию горячей Вселенной (модель Большого Взрыва). Согласно этой модели вся Вселенная 15 млрд. лет назад (по другим оценкам 18 млрд. лет) была сжата в точку с бесконечно большой плотностью (не меньше чем 1093 г/см3). Такое состояние называется сингулярностью, законы физики к нему не применимы.

Причины возникновения такого состояния и характер пребывания материи в этом состоянии остаются неясными. Это состояние оказалось неустойчивым, в результате произошел взрыв и скачкообразный переход к расширяющейся Вселенной.

В момент Большого Взрыва Вселенная мгновенно нагрелась до очень высокой температуры более 1028 К. Уже через 10-4 с после Большого Взрыва плотность во Вселенной падает до 1014 г/см3. При такой высокой температуре (выше температуры центра самой горячей звезды) молекулы, атомы и даже ядра атомов существовать не могут.

Вещество Вселенной пребывало в виде элементарных частиц, среди которых преобладали электроны, позитроны, нейтрино, фотоны, а также в относительно малом количестве протоны и нейтроны. Плотность вещества Вселенной спустя 0,01 секунды после взрыва, несмотря на очень высокую температуру, была огромной: в 4000 миллионов раз больше, чем у воды.

В конце первых трех минут после взрыва температура вещества Вселенной, непрерывно снижаясь, достигла 1 млрд. градусов (109 К). Плотность вещества также снизилась, но еще была близкой к плотности воды. При этой, хотя и очень высокой, температуре начали образовываться ядра атомов, в частности, ядра тяжелого водорода (дейтерия) и ядра гелия.

Однако вещество Вселенной в конце первых трех минут состояло в основном из фотонов, нейтрино и антинейтрино. Только по истечении нескольких сотен тысяч лет начали образовываться атомы, главным образом водорода и гелия.

Силы гравитации превращали газ в сгустки, ставшие материалом для возникновения галактик и звезд.

Таким образом, физика XX века давала все более глубокое обоснование идеи развития.

Макромир. В макрофизике можно выделить достижения в трех направлениях: в области электроники (микросхемы), в области создания лазеров и их применения, области высокотемпературной сверхпроводимости.

Слово “лазер” представляет собой аббревиатуру английской фразы “Light Amplification by Stimulated Emission of Radiation”, переводимой как усиление света в результате вынужденного (индуцированного) излучения. Гипотеза о существовании индуцированного излучения была высказана в 1917 г. А Эйнштейном.

Советские ученые Н.Г. Басов и А.М. Прохоров и независимо от них американский физик Ч. Таунс использовали явление индуцированного излучения для создания микроволнового генератора радиоволн с длинной волны =1,27 см.

Первым квантовым генератором был рубиновый твердотельный лазер. Также были созданы: газовые, полупроводниковые, жидкостные, газодинамические, кольцевые (бегущей волны).

Лазеры нашли широкое применение в науке - основной инструмент в нелинейной оптике, когда вещества прозрачные или нет для потока обычного света меняют свои свойства на противоположные.

Лазеры позволили осуществить новый метод получения объемных и цветных изображений, названный голографией, широко применяются в медицине, особенно в офтальмологии, хирургии и онкологии, способные создать малое пятно, благодаря высокой монохроматичности и направленности.

Лазерная обработка металлов. Возможность получать с помощью лазеров световые пучки высокой мощности до 1012 -1016 вт/см2 при фокусировки излучения в пятно диаметром до 10-100 мкм делает лазер мощным средством обработки оптически непрозрачных материалов, недоступных для обработки обычными методами (газовая и дуговая сварка).

Это позволяет осуществлять новые технологические операции, например, просверливание очень узких каналов в тугоплавких материалах, различные операции при изготовлении пленочных микросхем, а также увеличения скорости обработки деталей.

При пробивании отверстий в алмазных кругах сокращает время обработки одного круга с 2-3 дней до 2 мин.

Наиболее широко применяется лазер в микроэлектронике, где предпочтительна сварка соединений, а не пайка.

Лазерная связь и локация.

По сравнению с существующими средствами радиосвязи и радиолокации лазерные обладают двумя основными преимуществами: узкой направленностью передачи и широкой полосой пропускания передаваемых частот. Сам лазер создает направленный луч (расходимостью ~10'), а применение оптической системы позволяет сформировать еще более параллельный луч (расходимостью ~2-3'').

Один лазерный луч позволяет передавать сигнал в полосе частот ~100 Мгц. Это дает возможность одновременной передачи 200 телевизионных каналов. Лазерная локация применяется также в геофизике для определения высоты облаков, исследовании инверсионных и аэрозольных слоев в атмосфере, турбулентности и т.п.

Лазерные системы навигации и обеспечения безопасности полетов. Одним из основных элементов инерциальных систем навигации, широко используемых в авиации, являются гироскопы, которые в основном и определяют точность системы.

Лазеры успешно применяются как измерители скорости полета (воздушной и путевой), высотомеры. Лазерные курсоглиссадные системы обеспечивают безопасность полетов, связанную с увеличением точности систем посадки, снижения ограничений по метеоусловиям, обеспечением больших удобств работы экипажа при выполнении такого ответственного участка полета, как посадка.

Лазерные системы управления оружием резко повысили точность попадания. Лазерная полуактивная система наведения состоит из лазерного целеуказателя (лазерной системы подсвета цели) и боеприпаса с лазерной головкой самонаведения.

Высокотемпературные сверхпроводники (Высокие Tc) -- семейство материалов (сверхпроводящих керамик) с общей структурной особенностью, относительно хорошо разделёнными медно-кислородными плоскостями. Их также называют сверхпроводниками на основе купратов. Температура сверхпроводящего перехода, которая может быть достигнута в некоторых составах в этом семействе, является самой высокой среди всех известных сверхпроводников.

Нормальное (и сверхпроводящие) состояния показывают много общих особенностей между различными составами купратов; многие из этих свойств не могут быть объяснены в рамках теории БКШ (Теория Бардина, Купера, Шриффера).

Последовательной теории сверхпроводимости в купратах в настоящее время не существует; однако, проблема привела ко многим экспериментальным и теоретическим результатам, и интерес в этой области -- не только в достижении сверхпроводимости при комнатной температуре. За экспериментальное открытие первого высокотемпературного сверхпроводника в 1987 была присуждена Нобелевская премия.

2. Достижения в основных направлениях современной химии

Химию принято подразделять на пять разделов: неорганическая, органическая, физическая, аналитическая и химия высокомолекулярных соединений.

Основными задачами неорганической химии являются: изучение строения соединений, установление связи строения со свойствами и реакционной способностью, разработка методов синтеза и глубокой очистки веществ. Большое внимание уделяется кинетике и механизму неорганических реакций, их каталитическому ускорению и замедлению. Для синтезов все чаще применяют методы физического воздействия: сверхвысокие температуры и давления, ионизирующее излучение, ультразвук, магнитные поля.

Химические реакции часто сочетают с получением волокнистых, слоистых и монокристаллических материалов, с изготовлением электронных схем. Неорганические соединения применяются как конструкционные материалы для всех отраслей промышленности, включая космическую технику, как удобрение и кормовые добавки, ядерное и ракетное топливо, фармацевтические материалы.

Органическая химия -- наиболее крупный раздел химической науки. Если число известных неорганических веществ исчисляется тысячами, то органических веществ известно несколько миллионов. Общепризнано огромное значение химии полимеров.

Так, еще в 1910 году С.В. Лебедев разработал промышленный способ получения бутадиена, а из него каучука. В 1936 году У. Карозерс синтезирует «найлон», открыв новый тип синтетических полимеров -- полиамиды. В 1938 году Р. Планкет случайно открывает тефлон, создавший эпоху синтеза фторполимеров с уникальной термостабильностью, создаются «вечные» смазочные масла (пластмассы и эластомеры), широко используемые космической и реактивной техникой, химической и электротехнической промышленностью. Благодаря этим и многим другим открытиям из органической химии выросла химия высокомолекулярных соединений (или полимеров).

Начавшиеся в 30-40-е годы широкие исследования фосфорорганических соединений (А.Е. Арбузов) привели к открытию новых типов физиологически активных соединений -- лекарственных препаратов, отравляющих веществ, средств защиты растений и др.

Химия красителей практически дала начало химической индустрии. Например, химия ароматических и гетероциклических соединений создала первую отрасль химической промышленности, продукция которой ныне превосходит 1 млрд. тонн, и породила новые отрасли -- производство душистых и лекарственных веществ. Проникновение органической химии в смежные области -- биохимию, биологию, медицину, сельское хозяйство -- привело к изучению свойств, установлению структуры и синтезу витаминов, белков, нуклеиновых кислот, антибиотиков, новых средств ускорения роста растений и средств борьбы с вредителями.

Роль органической химии в биохимии трудно переоценить. Так, в 1963 году В. Виньо синтезировал инсулин, также были синтезированы окситоцин (пептидный гормон), вазопрессин (гормон обладает антидиуретическим действием), брадикинин (обладает сосудорасширяющим действием). Разработаны полуавтоматические методы синтеза полипептидов (Р. Мерифилд, 1962).

Вершиной достижений органической химии в генной инженерии явился первый синтез активного гена (X. Корана, 1976). В 1977 году синтезирован ген, кодирующий синтез человеческого инсулина, а в 1978-м -- ген соматостатина (способен угнетать секрецию инсулина, пептидный гормон).

Физическая химия объясняет химические явления и устанавливает их общие закономерности. Физическая химия последних десятилетий характеризуется следующими чертами: в результате развития квантовой химии (использует идеи и методы квантовой физики для объяснения химических явлений) многие проблемы химического строения веществ и механизма реакций решаются на основании теоретических расчетов; наряду с этим широко используются физические методы исследования -- рентгеноструктурный анализ, дифракция электронов, спектроскопия, методы, основанные на применении изотопов и др.

Аналитическая химия рассматривает принципы и методы изучения химического состава вещества.

Включает количественный и качественный анализ. Современные методы аналитической химии связаны с необходимостью получения полупроводниковых и других материалов высокой частоты. Для решения этих задач были разработаны чувствительные методы: активационный анализ, химикоспектральный анализ и др.

Современная химия предстает перед нами как исключительно многогранная и разветвленная система знаний, для которой характерно интенсивное развитие. Важнейшим стратегическим ориентиром этого процесса является все более тесный синтез химии как науки и химии как технологии промышленного производства.

наука биология физика сознание

3. Достижения в области биологии

Современная биология основывается на тех достижениях, которые были сделаны в этой науке во второй половине XIX в.: создание Ч. Дарвином эволюционного учения, основополагающие работы К. Бернара в области физиологии, важнейшие исследования Л. Пастера, Р. Коха и И.И. Мечникова в области микробиологии и иммунологии, работы И.М. Сеченова и И.И. Павлова в области высшей нервной деятельности и, наконец, блестящие работы Г. Менделя, хотя и не получившие известности до начала XX в., но уже выполненные их выдающимся автором.

Развитие генетики после этого происходило быстро. Был принят принцип дискретности в явлениях наследственности, открытый еще Менделем; опыты по изучению закономерностей наследования потомками свойств и признаков родителей были значительно расширены.

Было принято понятие «ген», введенное известным датским биологом Вильгельмом Иогансоном (1857-1927) в 1909 г. и означающее единицу наследственного материала, ответственного за передачу по наследству определенного признака.

Утвердилось понятие хромосомы как структурного ядра клетки, содержащего дезоксирибонуклеиновую кислоту (ДНК)

--высокомолекулярное соединение, носитель наследственных признаков.

Дальнейшие исследования показали, что ген является определенной частью ДНК и действительно носителем только определенных наследуемых свойств, в то время как ДНК -- носитель всей наследственной информации организма.

Развитию генетики способствовали в большой мере исследования известного американского биолога, одного из основоположников этой науки, Томаса Ханта Моргана (1866-- 1945). Он сформулировал хромосомную теорию наследственности. Хромосомная теория наследственности сделала более понятными явления расщепления в наследовании признаков.

Важным событием в развитии генетики стало открытие мутаций -- возникающих внезапно изменений в наследственной системе организмов и потому могущих привести к устойчивому изменению свойств гибридов, передаваемых и далее по наследству.

Своим возникновением мутации обязаны либо случайным в развитии организма событиям (их обычно называют естественными или спонтанными мутациями), либо искусственно вызываемым воздействиям (такие мутации часто именуют индуцированными).

Все виды живых организмов (как растительных, так и животных) способны мутировать, т.е. давать мутации. Это явление -- внезапное возникновение новых, передающихся по наследству свойств -- известно в биологии давно.

Однако систематическое изучение мутаций было начато голландским ученым Хуго де Фризом, установившим и сам термин «мутации». Было обнаружено, что индуцированные мутации могут возникать в результате радиоактивного облучения организмов, а также могут быть вызваны воздействием некоторых химических веществ. В дальнейшем было установлено, что не только рентгеновское, но и любое ионизированное облучение вызывает мутации.

Достижения генетики (и биологии в целом) за прошедшее после выхода в свет книги Дарвина «Происхождение видов» время так значительны, что было бы удивительно, если бы все это никак не повлияло на дарвиновскую теорию эволюции.

Два фактора: изменчивость и наследственность, которым Дарвин придавал большое значение, получили более глубокое толкование.

Итак, дальнейшее развитие биологии и входящей в нее составной частью генетики, во-первых, еще более укрепило дарвиновскую теорию эволюции живого мира и, во-вторых, дало более глубокое толкование (соответствующее достигнутым успехам в биологии) понятиям изменчивости и наследственности, а следовательно, всему процессу эволюции живого мира. Более того, можно сказать, что успехи биологии выдвинули эту науку в ряды лидеров естествознания, причем наиболее поразительные ее достижения связаны с изучением процессов, происходящих на молекулярном уровне.

3.1 Молекулярная биология

Прогресс в области изучения макромолекул до второй половины нашего века был сравнительно медленным, но благодаря технике физических методов анализа, скорость его резко возросла.

У. Астбери ввел в науку термин «молекулярная биология» и провел основополагающие исследования белков и ДНК. Хотя в 40-е г. почти повсеместно господствовало мнение, что гены представляют собой особый тип белковых молекул, в 1944 г. О. Эвери, К. Маклеод и М. Маккарти показали, что генетические функции в клетке выполняет не белок, а ДНК. Установление генетической роли нуклеиновых кислот имело решающее значение для дальнейшего развития молекулярной биологии, причем было показано, что эта роль принадлежит не только ДНК, но и РНК (рибонуклеиновой кислоте).

Расшифровку молекулы ДНК произвели в 1953 г. Ф. Крик (Англия) и Д. Уотсон (США). Уотсону и Крику удалось построить модель молекулы ДНК, напоминающую двойную спираль. Наряду с изучением нуклеиновых кислот и процессом синтеза белка в молекулярной биологии большое значение с самого начала имели исследования структуры и свойств самих белков. Параллельно с расшифровкой аминокислотного состава белков проводились исследования их пространственной структуры. Несмотря на молодость молекулярной биологии, успехи, достигнутые ею в этой области, ошеломляющи. За сравнительно короткий срок были установлены природа гена и основные принципы его организации, воспроизведения и функционирования.

Полностью расшифрован генетический код, выявлены и исследованы механизмы и главные пути образования белка в клетке. Полностью определена первичная структура многих транспортных РНК. Установлены основные принципы организации разных субклеточных частиц, многих вирусов, и разгаданы пути их биогенеза в клетке. Другое направление молекулярной генетики -- исследование мутации генов. Современный уровень знаний позволяет не только понять эти тонкие процессы, но и использовать их в своих целях. Разрабатываются методы генной инженерии, позволяющие внедрить в клетку, желаемую генетическую информацию. В 70-е гг. появились методы выделения в чистом виде фрагментов ДНК с помощью электрофореза.

В 1981 г. процесс выделения генов и получения из них различных цепей был автоматизирован. Генная инженерия в сочетании с микроэлектроникой предвещают возможности управлять живой материей почти так же, как неживой. В последнее время в средствах массовой информации активно обсуждаются опыты по клонированию и связанные с этим нравственные, правовые и религиозные проблемы. Еще в 1943 году журнал «Сайенс» сообщил об успешном оплодотворении яйцеклетки в «пробирке». Далее события развивались следующим образом:1973 г. -- профессор Л. Шетлз из Колумбийского университета в Нью-Йорке заявил, что он готов произвести на свет первого «бэби из пробирки», после чего последовали категорические запреты Ватикана и пресвитерианской церкви США; 1978 г. -- рождение в Англии Луизы Браун, первого ребенка «из пробирки»; 1997 г. - 27 февраля «Нейчур» поместил на своей обложке -- на фоне микрофотографии яйцеклетки -- знаменитую овечку Долли, родившуюся в институте Рослин в Эдинбурге.

1997 г. -- в самом конце декабря журнал «Сайенс» сообщил о рождении шести овец, полученных по рослинскому методу. Три из них, в том числе и овечка Долли, несли человеческий ген «фактора IX», или кровоостанавливающего белка, который необходим людям, страдающим гемофилией, то есть несвертываемостью крови; 1998 г.- начало марта -- французские ученые объявили о рождении клонированной телочки.

Все это открывает уникальные перспективы для человечества. Клонирование органов и тканей -- это задача номер один в области трансплантологии, травматологии и в других областях медицины и биологии. При пересадке клонированного органа не надо думать о подавлении реакции отторжения и возможных последствиях в виде рака, развившегося на фоне иммунодефицита. Клонированные органы станут спасением для людей, попавших в автомобильные аварии или какие-нибудь иные катастрофы, или для людей, которым нужна радикальная помощь из-за заболеваний пожилого возраста (изношенное сердце, больная печень и т. д.).

3.2 Расшифровка генома человека

Первоначально (в 1988 г.) средства на изучение генома человека выделило министерство энергетики США, и одним из руководителей программы «Геном человека» стал профессор Чарлз Кэнтор.

В 1990 г. Нобелевский лауреат Джеймс Уотсон начал лоббирование конгресса США, и вскоре конгресс распорядился выделить сразу сотни миллионов долларов на изучение генома человека. Эти средства были добавлены к бюджету министерства здравоохранения, оттуда они перетекли в ведение дирекции сети институтов, объединенных под общим названием -- Национальные институты здоровья (National Institutes of Health, сокращенно NIH). В составе NIH появился новый институт -- Национальный институт исследования генома человека (NHGRI, директор Фрэнсис Коллинз).

В мае 1992 г. ведущий сотрудник NIH Крэйг Вентер подал заявление об уходе и объявил, о создании нового, частного исследовательского учреждения -- Института геномных исследований (The Institute for Genomic Research, сокращенно - TIGR, или ТИГР).При первоначальном объявлении сроков завершения проекта в 2003 г. предполагалось, что точность исследования генома составит 99,99%. Потом сроки подвинули, основываясь на том, что для биологов и медиков хватит и 90% -ой точности, зато отрапортовать о завершении генома можно будет к концу 2000 г.

2 декабря 1999 г. журнал «Nature» обнародовал данные, касающиеся крупного прорыва в исследовании генома человека: в основном усилиями английских ученых при активном участии других европейских, японских и американских лабораторий был завершен полный анализ одной из хромосом человека (правда, одной из самых маленьких) -- хромосомы 22. Описание генома человека ученым удалось получить значительно раньше планировавшихся сроков (2005--2010 гг.). Уже в канун нового, XXI в. были достигнуты сенсационные результаты в деле реализации указанного проекта. Оказалось, что в геноме человека -- от 30 до 40 тысяч генов (вместо предполагавшихся ранее 80--100 тысяч). Это ненамного больше, чем у червяка (19 тысяч генов) или мухи-дрозофилы (13,5 тысячи).

Расшифровка генома человека дала огромную, качественно новую научную информацию для фармацевтической промышленности. Вместе с тем оказалось, что использовать это научное богатство фармацевтической индустрии сегодня не по силам. Нужны новые технологии, которые появятся, как предполагается, в ближайшие 10-15 лет. Именно тогда станут реальностью лекарства, поступающие непосредственно к больному органу, минуя все побочные эффекты. Выйдет на качественно новый уровень трансплантология, получат развитие клеточная и генная терапия, радикально изменится медицинская диагностика и т. д.

4. Звезды и их эволюция

Звезда начинает свое существование как сжимающийся под действием собственного тяготения сгусток вещества. В ходе сжатия давление, температура и плотность в центральной области звезды достигают больших значений, и возникает термоядерная реакция, которая является источником энергии, излучаемой звездой. После того как ядерные источники энергии в ней оказываются исчерпанными, в зависимости от массы звезды (точнее массы ее ядра т3) существует три возможности ее дальнейшей эволюции.

Если т3 < 1,4111с (тс - масса Солнца), то сжатие звезды прекращается, когда ее плотность достигает 109 кг/м3 и возникает белый карлик - звезда размером с Землю и светимостью в тысячу и более раз, ниже светимости Солнца.,

Если 1,4П1с < т3 < 2 тс, то сжатие звезды прекращается, когда ее плотность достигает 1018 кг/м3 и возникает нейтронная звезда - звезда диаметром около 20 км и состоящая в основном из нейтронов.

Если т, > (2 - 3) тс, то стремительное сжатие ведет к неограниченно большой плотности и неограниченно малым размером звезды и возникает черная дыра. Хотя по человеческой шкале времени звезды и кажутся вечными, они, подобно всему сущему в природе, рождаются, живут и умирают. Согласно общепринятой гипотезе газопылевого облака звезда зарождается в результате гравитационного сжатия межзвездного газопылевого облака.

По мере уплотнения такого облака сначала образуется протозвезда, температура в ее центре неуклонно растет, пока не достигает предела, необходимого для того, чтобы скорость теплового движения частиц превысила порог, после которого протоны способны преодолеть макроскопические силы взаимного электростатического отталкивания и вступить в реакцию термоядерного синтеза. В результате многоступенчатой реакции термоядерного синтеза из четырех протонов в конечном итоге образуется ядро гелия (2 протона + 2 нейтрона) и выделяется целый фонтан разнообразных элементарных частиц.

В конечном состоянии суммарная масса образовавшихся частиц меньше массы четырех исходных протонов, а значит, в процессе реакции выделяется свободная энергия. Из-за этого внутренне ядро новорожденной звезды быстро разогревается до сверхвысоких температур, и его избыточная энергия начинает выплескиваться по направлению к ее менее горячей поверхности -- и наружу.

Одновременно давление в центре звезды начинает расти.

Таким образом, «сжигая» водород в процессе термоядерной реакции, звезда не дает силам гравитационного притяжения сжать себя до сверхплотного состояния, противопоставляя гравитационному коллапсу непрерывно возобновляемое внутреннее термическое давление, в результате чего возникает устойчивое энергетическое равновесие.

О звездах на стадии активного сжигания водорода говорят, что они находятся на «основной фазе» своего жизненного цикла или эволюции.

Превращение одних химических элементов в другие внутри звезды называют ядерным синтезом или нуклеосинтезом. В частности, Солнце находится на активной стадии сжигания водорода в процессе активного нуклеосинтеза уже около 5 миллиардов лет, и запасов водорода в ядре для его продолжения нашему светилу должно хватить еще на 5,5 миллиарда лет.

Чем массивнее звезда, тем большим запасом водородного топлива она располагает, но для противодействия силам гравитационного коллапса ей приходится сжигать водород с интенсивностью, превосходящей по темпу роста темп роста запасов водорода по мере увеличения массы звезды.

Таким образом, чем массивнее звезда, тем короче время ее жизни, определяемое исчерпанием запасов водорода, и самые крупные звезды в буквальном смысле сгорают за «какие-то» десятки миллионов лет. Рано или поздно, однако, любая звезда израсходует весь пригодный для сжигания в своей термоядерной топке водород. Что дальше? Это также зависит от массы звезды. Солнце (и все звезды, не превышающие его по массе более чем в восемь раз) заканчиваю свою жизнь весьма банальным образом.

По мере истощения запасов водорода в недрах звезды силы гравитационного сжатия, терпеливо ожидавшие этого часа с самого момента зарождения светила, начинают одерживать верх -- и под их воздействием звезда начинает сжиматься и уплотняться. Этот процесс приводит к двоякому эффекту: Температура в слоях непосредственно вокруг ядра звезды повышается до уровня, при котором содержащийся там водород вступает, наконец, в реакцию термоядерного синтеза с образованием гелия. В то же время температура в самом ядре, состоящем теперь практически из одного гелия, повышается настолько, что уже сам гелий -- своего рода «пепел» затухающей первичной реакции нуклеосинтеза -- вступает в новую реакцию термоядерного синтеза: из трех ядер гелия образуется одно ядро углерода.

Этот процесс вторичной реакции термоядерного синтеза, топливом для которого служат продукты первичной реакции, -- один из ключевых моментов жизненного цикла звезд. При вторичном сгорании гелия в ядре звезды выделяется так много энергии, что звезда начинает буквально раздуваться.

В частности, оболочка Солнца на этой стадии жизни расширится за пределы орбиты Венеры. При этом совокупная энергия излучения звезды остается примерно на том же уровне, что и в течение основной фазы ее жизни, но, поскольку излучается эта энергия теперь через значительно большую площадь поверхности, внешний слой звезды остывает до красной части спектра.

Звезда превращается в красный гигант. Для звезд класса Солнца после истощения топлива, питающего вторичную реакцию нуклеосинтеза, снова наступает стадия гравитационного коллапса -- на этот раз окончательного. Температура внутри ядра больше не способна подняться до уровня, необходимого для начала термоядерной реакции следующего уровня. Поэтому звезда сжимается до тех пор, пока силы гравитационного притяжения не будут уравновешены следующим силовым барьером.

В его роли выступает давление вырожденного электронного газа. Электроны, до этой стадии игравшие роль безработных статистов в эволюции звезды, не участвуя в реакциях ядерного синтеза и свободно перемещаясь между ядрами, находящимися в процессе синтеза, на определенной стадии сжатия оказываются лишенными «жизненного пространства» и начинают «сопротивляться» дальнейшему гравитационному сжатию звезды.

Состояние звезды стабилизируется, и она превращается в вырожденного белого карлика, который будет излучать в пространство остаточное тепло, пока не остынет окончательно.

Звезды более массивные, нежели Солнце, ждет куда более зрелищный конец. После сгорания гелия их масса при сжатии оказывается достаточной для разогрева ядра и оболочки до температур, необходимых для запуска следующих реакций нуклеосинтеза -- углерода, затем кремния, магния -- и так далее, по мере роста ядерных масс. При этом при начале каждой новой реакции в ядре звезды предыдущая продолжается в ее оболочке.

На самом деле, все химические элементы вплоть до железа, из которых состоит Вселенная, образовались именно в результате нуклеосинтеза в недрах умирающих звезд этого типа. Но железо -- это предел; оно не может служить топливом для реакций ядерного синтеза или распада, ни при каких температурах и давлениях, поскольку как для его распада, так и для добавления к нему дополнительных нуклонов необходим приток внешней энергии. В результате массивная звезда постепенно накапливает внутри себя железное ядро, не способное послужить топливом ни для каких дальнейших ядерных реакций.

Как только температура и давление внутри ядра достигают определенного уровня, электроны начинают вступать во взаимодействие с протонами ядер железа, в результате чего образуются нейтроны. И за очень короткий отрезок времени -- некоторые теоретики полагают, что на это уходят считанные секунды, -- свободные на протяжении всей предыдущей эволюции звезды электроны буквально растворяются в протонах ядер железа, всё вещество ядра звезды превращается в сплошной сгусток нейтронов и начинает стремительно сжиматься в гравитационном коллапсе, поскольку противодействовавшее ему давление вырожденного электронного газа падает до нуля. Внешняя оболочка звезды, из под которой оказывается, выбита всякая опора, обрушивается к центру.

Энергия столкновения обрушившейся внешней оболочки с нейтронным ядром столь высока, что она с огромной скоростью отскакивает и разлетается во все стороны от ядра -- и звезда буквально взрывается в ослепительной вспышке сверхновой звезды. За считанные секунды при вспышке сверхновой может выделиться в пространство больше энергии, чем выделяют за это же время все звезды галактики вместе взятые.

После вспышки сверхновой и разлета оболочки у звезд массой порядка 10-30 солнечных масс продолжающийся гравитационный коллапс приводит к образованию нейтронной звезды, вещество которой сжимается до тех пор, пока не начинает давать о себе знать давление вырожденных нейтронов -- иными словами, теперь уже нейтроны (подобно тому, как ранее это делали электроны) начинают противиться дальнейшему сжатию, требуя себе жизненного пространства.

Это обычно происходит по достижении звездой размеров около 15 км в диаметре. В результате образуется быстро вращающаяся нейтронная звезда, испускающая электромагнитные импульсы с частотой ее вращения; такие звезды называются пульсарами. Наконец, если масса ядра звезды превышает 30 солнечных масс, ничто не в силах остановить ее дальнейший гравитационный коллапс, и в результате вспышки сверхновой образуется черная дыра.

5. Современная наука о сущности и истоках человеческого сознания

Сознание -- одна из форм проявления нашей души, при этом очень существенная форма, преисполненная глубокого содержания. В жизни мы часто употребляем эти понятия как синонимы. Однако понятие «душа» шире понятия «сознание». Например, чувства -- это состояние души. Их нельзя отождествлять с сознанием. Как синоним понятия «душа» мы можем употреблять понятие «психика».

Сознание -- это высшая, свойственная только людям и связанная с речью функция мозга, заключающаяся в обобщенном и целенаправленном отражении действительности, в предварительном мысленном построении действий и предвидении их результатов, в разумном регулировании и самоконтролировании поведения человека за счет рефлексии.

Будучи адекватным осмыслением реальности, сознание реализуется в виде различного рода практической и теоретической деятельности. Эта реализация предполагает формулирование замысла, цели или идеи.

Потребности, отражаясь в голове человека, приобретают характер цели.

Цель -- это идеализированная и нашедшая свой предмет потребность человека, такой субъективный образ предмета деятельности, в идеальной форме которого предвосхищается результат этой деятельности.

Цели формируются на основе всего совокупного опыта человечества и поднимаются до высших форм своего, проявления в виде индивидуальных, социальных, этических и эстетических идеалов.

Способность к целеполаганию -- специфически человеческая способность, составляющая кардинальную характеристику сознания. В основе целеполагающей деятельности человека лежит потребность изменить мир, придать ему формы, необходимые человеку, обществу. Следовательно, и цели человека порождены личной и общественной практикой, объективным миром и предполагают его.

Но человеческая мысль способна не только отражать непосредственно существующее, но и отрываться от него. Бесконечно многообразный объективный мир всеми своими красками и формами как бы светится, отражаясь в зеркале нашего « Я» и образуя не менее сложный, многообразный и удивительно изменчивый мир.

В сознании людей возникают и верные, и иллюзорные представления. Мысль и движется по готовым шаблонам, и прокладывает новые пути, ломая устаревшие нормы. Она обладает чудесной способностью новаторства, творчества.

Сознание неоднородно. В широком смысле слова под ним имеют в виду психическое отражение действительности независимо от того, на каком уровне оно осуществляется -- биологическом или социальном, чувственном или рациональном, тем самым подчеркивается его отношение к материи без выявления специфики его структурной организации.

В более узком и специальном значении под сознанием подразумевают не просто психическое состояние, а высшую, собственно человеческую форму психического отражения действительности. Сознание здесь структурно организовано, представляет собой целостную систему, состоящую из различных элементов, находящихся между собой в закономерных отношениях.

В структуре сознания наиболее отчетливо выделяются, прежде всего, такие моменты, как: осознание вещей, а также переживание, т.е. определенное отношение к содержанию того, что отражается. Развитие сознания предполагает, прежде всего, обогащение его новыми знаниями об окружающем мире и самом человеке.

Познание, осознание вещей имеет различные уровни, глубину проникновения в объект и степень ясности понимания. Отсюда обыденное, научное, философское, эстетическое и религиозное осознание мира, а также чувственный и рациональный уровни сознания. Ощущения, восприятия, представления, понятия, мышление в целом образуют ядро сознания. Оно включает в себя и акт внимания как свой необходимый компонент. Именно благодаря сосредоточенности внимания определенный круг объектов находится в фокусе сознания.

Воздействующие на нас предметы, события вызывают в нас не только познавательные образы, мысли, идеи, но и эмоциональные «бури», заставляющие нас трепетать, волноваться, бояться, плакать, восхищаться, любить и ненавидеть. Познание и творчество -- это не холодно-рассудочное, а страстное искание истины.

Богатейшая сфера эмоциональной жизни человеческой личности включает в себя собственно чувства, представляющие собой отношения к внешним воздействиям (удовольствие, радость, горе и др.), настроения, или эмоциональное самочувствие (веселое, подавленное и т.д.), и аффекты (ярость, ужас, отчаяние и т.п.).

В силу определенного отношения к объекту познания знания получают различную значимость для личности, что находит свое наиболее яркое выражение в убеждениях, они проникнуты глубокими и устойчивыми чувствами. А это является показателем особой ценности для человека знаний, ставших его жизненным ориентиром. Чувства, эмоции суть компоненты структуры сознания.

Человеческие чувства -- это факт сознания, отражение мира и выражение отношения человека к удовлетворению или неудовлетворению его потребностей, интересов, соответствия или несоответствия чего-либо его представлениям и понятиям.

Ничто в нашем сознании не совершается вне эмоциональной окраски, имеющей громадный жизненный смысл. Эмоциональный стимул определенным образом организует наши мысли и действия для достижения конкретной цели.

Сознание не ограничивается познавательными процессами и эмоциональной сферой. Наши намерения претворяются в дело благодаря усилиям воли. Сознание -- это не сумма множества составляющих его элементов, а их интегральное, сложно-структурированное целое.

В основе всех психических процессов лежит память -- способность мозга запечатлевать, сохранять и воспроизводить информацию.

Движущей силой поведения и сознания людей является потребность -- состояние неустойчивости организма как системы, его нужды в чем-то. Такое состояние вызывает влечение, поисковую активность, волевое усилие. Когда потребность находит свой предмет, то влечение переходит в хотение, желание.

Воля -- это не только умение хотеть, желать, это психический процесс, выражающийся в действиях, направленных на удовлетворение потребности. Качественные сдвиги в характере потребностей -- это основные вехи в эволюции психики от ее элементарных форм до высшего уровня сознания.

Для регуляции поведения у животных нет никаких оснований, кроме биологической полезности. У человека возникают социально обусловленные потребности и запросы к жизни и совершенно новые идеальные побудительные силы -- жажда познания истины, чувство прекрасного, моральное наслаждение, стремление совершить подвиг во имя блага народа, человечества и др.

Причина поступка лежит в потребностях людей. Цель есть отраженная в сознании потребность. Но потребность -- это не конечная, а производная причина человеческих поступков. В возникновении потребностей, стремлений и желаний определяющую роль играет внешний мир. Он обусловливает поведение людей не только непосредственно, но и опосредованно -- через сложную сеть прошлых поступков, мыслей, чувств, и не только своих, но и других людей.

5.1 Сознание, самосознание и рефлексия

Человек есть не только сам в себе, он есть и для себя, что проявляется в обращенности на самого себя: он осознает себя. Человек мыслит и знает себя. Он отдает себе отчет в том, что делает, думает, чувствует. И исторически, и в ходе индивидуального развития человек первоначально осознает предметы и свои практические действия, а на более высоком уровне развития -- и свои мысли о предметах и действиях.

Он осознает себя как личность. Самосознание предполагает выделение и отличение человеком самого себя, своего Я от всего, что его окружает. Самосознание -- это осознание человеком своих действий, чувств, мыслей, мотивов поведения, интересов, своего положения в обществе. В формировании самосознания существенную роль играют ощущения человеком своего собственного тела, движений, действий.

Человек может стать самим собой лишь во взаимодействии с другими людьми, с миром через свою практическую деятельность, общение. Общественная обусловленность формирования самосознания заключается не только в непосредственном общении людей друг с другом, в их оценочных отношениях, но и в формулировании требований общества, предъявляемых к отдельному человеку, в осознании самих правил взаимоотношения. Человек осознает себя не только посредством других людей, но и через созданную ими материальную и духовную культуру. Продукты труда являются как бы зеркалами, из которых навстречу нам сияют наши сущности: ребенок, говорит Гегель, бросает камни в реку и восхищается расходящимися на воде кругами как неким делом, в котором он получает возможность созерцать свое собственное творение.

Познавая себя, человек, по мысли Т. Манна, никогда не остается вполне таким же, каким он был прежде. Самосознание возникло не в качестве духовного зеркала для праздного самолюбования человека. Оно появилось в ответ на зов общественных условий жизни, которые с самого начала требовали от каждого человека умения оценивать свои поступки, слова и мысли. Жизнь своими строгими уроками научила человека осуществлять самоконтроль и саморегулирование. Регулируя свои действия и предусматривая результаты этих действий, самосознающий человек берет на себя полную ответственность за них.

Самосознание тесно связано с феноменом рефлексии, как бы расширяя его смысловое поле. Рефлексия -- размышление личности о самой себе, когда она вглядывается в сокровенные глубины своей внутренней духовной жизни. Не рефлексируя, человек не может полностью осознать того, что происходит в его душе, в его внутреннем духовном мире. Здесь важны постоянные подытоживания содеянного. Поскольку человек понимает себя как разумное существо, рефлексия принадлежит его природе, его социальной наполненности через механизмы коммуникации: она не может зародиться в недрах обособленной личности, вне коммуникации, вне приобщения к сокровищам цивилизации и культуры человечества.

Уровни рефлексии могут быть весьма разнообразными -- от элементарного самосознания до глубоких раздумий над смыслом своего бытия, его нравственным содержанием. Осмысливая собственные духовные процессы, человек нередко критически оценивает негативные стороны своего духовного мира, дурные привычки и т.п. Познавая себя, он никогда не остается таким же, каким был прежде.

Говоря о сознании и самосознании, мы должны оттенить такой их аспект, как сознательность. Что значит сознательный поступок? Поступок обладает качеством сознательности, поскольку он есть выражение замысла, намерения, цели, предвосхищающих результат действия. Нет абсолютной меры сознательности. Масштабы осознания субъектом своей психической деятельности простираются от смутного понимания того, что происходит в душе, до глубокого и ясного самосознания. Сознательность суть нравственно-психологическая характеристика действий личности, которая основывается на сознании и оценке себя, своих возможностей, намерений и целей.

Рассудок и разум. По способу умственной деятельности мыслящее сознание личности можно разделить на два основных типа: рассудок и разум. Первым из мыслителей, кто уловил разнотипность характера мышления, был Гераклит, который показал, что, мысля одним способом, менее совершенно, ограниченно, рассудочно, человек не поднимается до всеобщего. Разум же состоит в возможности воспринять природу целостно, в ее движении и взаимосвязи.


Подобные документы

  • Требования образовательных стандартов по дисциплине "Концепции современного естествознания". Изучение и понимание сущности фундаментальных законов природы, составляющих каркас современных физики, химии и биологии. Методология современного естествознания.

    лекция [26,7 K], добавлен 24.11.2017

  • Цель и предмет курса "Концепции современного естествознания", основные термины и понятия. Специфические черты науки, виды культуры. История становления научных знаний. Естественнонаучная картина мира. Внутреннее строение Земли. Законы химии и биологии.

    шпаргалка [136,9 K], добавлен 12.02.2011

  • Релятивистская космология. Достижения в основных направлениях современной химии. Предпосылки развития современной биологии. Молекулярная биология. Расшифровка генома человека. Атомная энергия в народном хозяйстве. Этапы развития жизни на Земле.

    контрольная работа [262,2 K], добавлен 28.10.2008

  • Наука как часть культуры, ее критерии и структура. Методы и подходы научного познания. Сущность современных концепций физики, химии и космологии. Земля как предмет естествознания. Теории происхождения жизни, эволюции органического мира. Феномен человека.

    учебное пособие [3,2 M], добавлен 21.09.2010

  • Исаак Ньютон как основатель классической физики. Открытия в области естествознания, которые широко используются в разнообразных областях нашей жизни. Свойства кварков, короткодействующие типы взаимодействия, суть идеи корпускулярно-волнового дуализма.

    контрольная работа [38,8 K], добавлен 04.01.2011

  • Ч. Дарвин - основатель теории биологической эволюции. Преемственность в психической организации животных. Установление структуры молекулы ДНК и расшифровка генома человека. Стволовые клетки: популяция клеток-предшественников. Прионы и клонирование.

    контрольная работа [36,2 K], добавлен 14.06.2009

  • Цели и задачи курса "Концепции современного естествознания", место данной дисциплины в системе других наук. Классификация наук, предложенная Ф. Энгельсом. Взаимосвязь физических, химических и биологических знаний. Виды атмосферных процессов в природе.

    контрольная работа [28,8 K], добавлен 13.06.2013

  • Характеристика современной естественно-научной картины мира. Междисциплинарные концепции как важнейшие элементы структуры научной картины мира. Принципы построения и организации современного научного знания. Открытия XX века в области естествознания.

    контрольная работа [21,9 K], добавлен 18.08.2009

  • Электрофорез как один из наиболее важных методов для разделения и анализа компонентов веществ в химии, биохимии и молекулярной биологии. Электрофорез белков в полиакриламидном и агарозном геле. Оборудование для проведения капиллярного электрофореза.

    реферат [25,5 K], добавлен 31.08.2014

  • Определение естествознания как отрасли научного познания, его отличие от других наук, разделы естествознания. Наука как одна из форм общественного сознания. Описание и объяснение различных процессов и явлений действительности как основные цели науки.

    реферат [19,6 K], добавлен 16.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.