Антивитамины: общая характеристика

Антивитамины как вещества, нарушающие биохимическое использование витаминов живой клеткой: знакомство с историей появления, особенности влияния на организм человека. Способы лечения различных заболеваний, обусловленных повышенной свертываемостью крови.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 25.03.2014
Размер файла 25,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Витамины, это катализаторы биохимических процессов, которые, попадая в организм, превращаются в коферменты, вступают во взаимодействие со специфическими белками и ускоряют обмен веществ. При этом каждый фермент и соответствующий ему витамин специфичны, т.е. витамины могут встраиваться только в соответствующий им белок (фермент). А ферменты в свою очередь могут выполнять только определенную им функцию и не могут заменять друг друга.

Антивитамины имеют схожую структуру с соответствующими им витаминами. В организме превращаются в ложный кофермент и занимают место настоящего витамина. Специфические белки не замечают отличия и пытаются выполнять свои функции, но из-за антивитамина уже ничего не получается. Соответствующий ферменту биохимический процесс остановлен.

Специалисты не исключают, что возникший псевдофермент начинает играть свою не менее важную биохимическую роль. Например, подобные изменения структуры нарушают в микобактериях туберкулеза обменные процессы, в результате задерживают размножение и рост возбудителей заболевания. Подобные процессы наблюдаются и в действии противомалярийных препаратов. Но далеко не все антивитамины находят применение в медицинской практике. Химики синтезировали уже тысячи различных производных витаминов, некоторые из которых с антивитаминными свойствами, но большинство из них имеют слабую фармакобиологическую активность. Хотя вполне возможно, что именно антагонисты витаминов станут основным средством борьбы с заболеваниями.

Антивитаминами называют вещества, которые различными способами нарушают биохимическое использование витаминов живой клеткой, что приводит к состоянию недостаточности какого-либо определенного витамина или группы витаминов. Развитие исследований в области химиотерапии, питания микроорганизмов, животных и человека, установление химической структуры витаминов создали реальные возможности для уточнения наших представлений об антагонизме веществ также в области витаминологии. Вместе с тем открытие антивитаминов способствовало более полному и углубленному изучению физиологического действия самих витаминов, так как применение в эксперименте антивитамина приводит к выключению действия витамина и соответствующим изменениям в организме; это в известной степени расширяет наши познания о функциях, которые тот или другой витамин несет в организме.

1.Антивитамины

Антивитамины можно разделить на две основные группы.

· К первой группе относятся химические вещества, которые инактивируют витамин путем его расщепления, разрушения или связывания его молекул в неактивные формы.

· Ко второй группе относятся химические вещества структурно-подобные или структурно-родственные витаминам. Эти вещества вытесняют витамины из биологически активных соединений и, таким образом, делают их неактивными.

В результате действия антивитаминов обеих групп нарушается нормальное течение процесса обмена веществ в организме.

В качестве примера действия антивитаминов первой группы можно привести следующее. Как указывалось выше, определенная альбуминовая фракция сырого яичного белка, называемая авидином, обладает способностью связываться с витамином Н (биотином); при этом образуется биологически неактивное, т.е. уже не имеющее свойств витамина Н, вещество, называемое биотин-авидином. Это вещество не растворимо в воде и не всасывается кишечником, значит не может быть использовано организмом. Следовательно, авидин является антивитамином по отношению к биотину.

Другим примером могут служить различные "витаминазы", которые разрушают, расщепляют соответствующие витамины; так, термолабильный фермент тиаминаза разрушает витамин В1 отделяя от его структуры два кольца - пиримидиновое и тиазольное.

Тиаминаза была выделена из сырых внутренностей рыб: карпа, форели, макрели, трески и сельди. Для человека реальную опасность в этом отношении представляют сырые моллюски, например устрицы, используемые в пищу в некоторых странах, так как они содержат тиаминазу.

Другой фермент - аскорбиназа - разрушает аскорбиновую кислоту, а фермент липоксидаза, содержащийся в некоторых соевых бобах, катализирует деструкцию каротина. Таким образом, ферменты - тиаминаза, аскорбиназа, липоксидаза - являются соответственно антивитаминами по отношению к тиамину, аскорбиновой кислоте, каротину.

Антивитамины второй группы, т. е. структурные аналоги витаминов могут оказывать существенное влияние на процессы обмена в организме. Развитие учения об антивитаминах было начато в исследованиях Woods и Fildes, которые на примерах антагонистического действия между сульфаниламидными препаратами и пара-аминобензойной кислоты разработали теорию, сущность которой заключается в следующем.

В каждом организме находятся вещества, которые входят в состав живой клетки и регулируют нормальный ход обменных реакций организма, поэтому данные вещества совершенно необходимы для организма. К ним относятся витамины, гормоны, аминокислоты, минеральные соединения. Однако известно большое число химически родственных веществ (большей частью изготовленных искусственно), которые не обладают биологически активными свойствами, а, наоборот, во многих случаях ограничивают или совершенно уничтожают действие витаминов, т. о. обладают антагонистическим действием. По отношению к витамину эти вещества являются антивитаминами. Антагонизм между витамином и антивитамином может иметь конкурирующий и неконкурирующий характер. При конкурирующем антагонизме родственные по своей химической структуре вещества - антивитамины - вытесняют витамины из их соединений со специфическими ферментами.

Примером конкурирующего антагонизма являются взаимоотношения между пара-аминобензойной кислотой и сульфаниламидами.

Известно, что пара-аминобензойная кислота является для ряда микроорганизмов важным метаболитом и образует в качестве коэнзима со специфическим белком фермента биологически активную ферментную систему. Сульфаниламиды, обладающие химической структурой, сходной с пара-аминобензойной кислотой, вытесняют ее из этой ферментной системы, замещают собой и в результате образуют с теми же специфическими белками ферментов новые системы, однако уже биологически неактивные. Этим объясняется бактериостатическое действие сульфаниламидов на некоторые бактерии.

При добавлении к культуре бактерий, выращиваемых на определенной среде сульфаниламидов, наблюдается остановка или задержка роста бактерий. Если после этого к "инактивированным" бактериям добавить пара-аминобензойную кислоту, то рост бактерий возобновляется. Таким образом, проявляется, по-видимому, конкурентное действие между витамином и антивитамином за обладание биологически активными ферментными системами. При этом следует учитывать, что если микроорганизмы способны сами синтезировать в достаточном количестве пара-аминобензойную кислоту, то бактериостатического действия на них сульфаниламидов не проявляется. Этим, возможно, объясняется тот факт, что некоторые микробы не чувствительны к сульфаниламидным препаратам. Аналогичными антагонистическими свойствами обладают амид никотиновой кислоты и пиридин-3-сульфоновая кислота (также ацетил-3-пиридин), тиамин и пиритиамин и многие другие.

Некоторые антивитамины обладают слабым антагонистическим действием по отношению к витаминам. Так, упомянутая пиридин-3-сульфоновая кислота оказывает слабое бактериостатическое действие на золотистого стафилококка, рост которого стимулируется никотиновой кислотой или ее амидом. Другой антивитамин - ацетил-3-пиридин, наоборот, обладает выраженным антагонистическим действием по отношению к никотиновой кислоте. В опытах, проводимых на собаках и мышах, введение ацетил-3-пиридина вызывало у животных отчетливые симптомы РР-витаминной недостаточности, которые предупреждались или ликвидировались при дополнительном введении препаратов никотиновой кислоты. В наблюдениях Aykroyd и Swaminathan (цит. по С.М. Рыссу) было подтверждено, что содержащийся в некоторых злаках ацетил-3-пиридин может вызывать пеллагру у людей. В этом наблюдении одна группа лиц, получавшая определенную диету без злаков и 5 мг никотиновой кислоты, не заболевала пеллагрой. Другая группа получала к той же диете 15 мг никотиновой кислоты с добавлением злаков и заболевала пеллагрой. Из злаков был выделен ацетил-3-пиридин, который является аналогом никотиновой кислоты и действовал в качестве фактора, провоцировавшего развитие пеллагры.

Другой антивитамин - пиритиамин - производное тиамина (в котором тиазоловое кольцо замещено пиридиновой группировкой), при добавлении к пище вызывает явления B1-авитаминоза. При дополнении витамина В1 к диете, содержащей пиритиамин, явления В1-авитаминоза не развиваются; вместе с тем витамин В1 излечивал животных, у которых в результате введения пиритиамина развивался тяжелый B1-авитаминоз. Из других химических аналогов витамина В1, которые способны также действовать как антивитамины, следует указать на окситиамин, хлордиметилтиамин и бутилтиамин, которые представляют собой модификацию тиаминового кольца и соединения, в которых тиазоловое кольцо замещено пиридиновым, более или менее видоизмененным.

Установлено, что ауэромицин и террамицин, химическая формула которых близка к рибофлавину, способны замещать этот витамин в реакциях обмена и, таким образом, инактивировать его действие и вызывать гипо- или арибофлавиноз.

Существует ряд антивитаминов, которые угнетают действие рибофлавина, обладая сходной с ним химической структурой, например изорибофлавин, диэтилрибофлавин, дихлорорибофлавин и др. Вместе с тем некоторые вещества с противомалярийным действием, в особенности акрихин, хинин и близкие им соединения, хотя и не обладают структурным сходством с рибофлавином, все же угнетают его влияние на рост некоторых бактерий. Обнаружено, что акрихин и хинин угнетают активность рибофлавиновых энзимных систем, что позволяет предположить наличие и в этом случае конкурентных взаимоотношений между упомянутыми противомалярийными веществами и витамином В2. Возможно, что в данном случае проявляется другая форма антагонизма (неконкурентная). Некоторые вещества угнетают ферментные системы, которые способствуют фосфорилированию рибофлавина (например, монойодуксусная кислота, рибофлавин-5-фосфорная кислота и др.). Существует предположение, что антивитаминные свойства акрихина и хинина зависят от этого свойства.

Известны также антивитамины пиридоксина - 4-дезоксипиридоксаль, 5-дезоксипирндоксаль и метаоксипиридоксаль.

Ряд противотуберкулезных препаратов, представляющих собой гидразид изоникотиновой кислоты и его производные (тубазид, фтивазид, салюзид, метазид и др.), обладает антагонистическими свойствами по отношению к пиридоксину. Вызываемое этими препаратами побочное действие устраняется введением витамина В6. Имеются данные (Makino) об антагонистическом действии пиримидиновой части тиамина на пиридоксин. Введение этого вещества вызывает явления тяжелой интоксикации, ведущей к гибели животных. Это токсическое действие устраняется, если животным ввести пиридоксин. Особенно сильным антагонистом пиридоксальфосфата является фосфорилированный пиримидин.

Структурным аналогом аскорбиновой кислоты является глюкоаскорбиновая кислота, которая инактивирует ее. Мыши, как известно, не нуждаются в витамине С (он синтезируется у них в организме) и не болеют цингой. Однако введение мышам с пищей глюкоаскорбиновой кислоты вызывает у животных цингу, излечиваемую аскорбиновой кислотой.

Примером неконкурирующего антагонизма может служить следующее. Для абсорбции витамина В12 необходим внутренний антианемический фактор Касла. Обнаружено, что свинец угнетает активность этого фактора. Вследствие блокирования фактора Касла у экспериментальных животных при введении свинца развивается сначала гипохромная, а затем гиперхромная анемия, т. е. В12-авитаминоз. Введение витамина В12 в короткий срок восстанавливает у животных нормальный состав крови (при одновременном прекращении дачи свинца). Аналогичный антагонизм наблюдается между свинцом и фолиевой кислотой.

Другим примером неконкурирующего антагонизма являются витамин К и дикумарин. Первый, как известно, повышает способность крови свертываться, второй, наоборот, снижает эту способность крови. Оба свойства этих антагонистов - витамина и антивитамина - широко используются в медицинской практике.

Познание веществ, которые способны различными методами нарушать нормальную функцию витаминов в живой клетке, привело к более глубокому пониманию межуточного обмена у человека. Выяснение вопросов, относящихся к проблеме антиметаболитов, открывает большие перспективы в медицинской практике - возможность изыскания и получения новых химических веществ, специфически действующих при определенных патологических состояниях.

2.История антивитаминов

История антивитаминов началась лет пятьдесят назад с одной, поначалу казалось бы, неудачи. Химики решили синтезировать витамин Вс (фолиевую кислоту) и заодно несколько усилить его биологические свойства. Этот витамин, как известно, участвует в биосинтезе белка и активизирует процессы кроветворения. Следовательно, в процессах жизнедеятельности ему отводится далеко не второстепенная роль.

А химический аналог полностью утратил витаминную активность. Но оказалось, что новое соединение тормозит развитие клеток, прежде всего раковых. Оно вошло в реестр эффективных противоопухолевых средств для лечения больных некоторыми злокачественными новообразованиями.

Стремясь понять механизм лечебного эффекта препарата, биохимики установили, что он является... антагонистом витамина Вс. Его лечебное действие обусловлено тем, что он, вторгаясь в сложную цепочку химических реакций, нарушает превращение фолиевой кислоты в кофермент.

Соединения, противоборствующие некоторым витаминам, обнаружились и в ряде пищевых продуктов. Специалисты обратили внимание на то, что включение в рацион лисиц сырого карпа вызывало у животных развитие типичного состояния В1-авитаминоза. Позже было установлено, что в тканях сырого карпа содержится фермент тиаминаза, расщепляющий молекулу витамина В1(тиамина) до неактивных соединений.

Этот фермент затем был обнаружен и в других рыбах, причем не только пресноводных. Так, обследуя жителей Таиланда, врачи выявили у многих дефицит тиамина. Но почему? Ведь с пищей витамина поступало вполне достаточно. Последующие исследования показали, что виновница в недостаточности -- все та же тиаминаза. Она содержится в рыбе, которую население в больших количествах использует в питании в сыром виде.

Более широкие исследования позволили обнаружить и другие В-антивитаминные факторы в продуктах растительного происхождения. Например, из ягод черники выделена так называемая 3,4-дигидрооксикоричная кислота. 1,8 миллиграмма ее достаточно для нейтрализации 1 миллиграмма тиамина. Выяснилось, что антитиаминовые факторы содержатся и в других пищевых продуктах: рисе, шпинате, вишне, брюссельской капусте и т.д. Впрочем, интенсивность их антивитаминного действия настолько незначительна, что существенного значения в развитии В-гиповитаминоза они практически не имеют. Несомненный интерес представляет открытие антивитаминного фактора в кофе. Причем в отличие, скажем, от тиаминазы рыб он не разрушается при нагревании.

В овощах и фруктах, больше всего в огурцах, кабачках, цветной капусте и тыкве, содержится аскорбатоксидаза. Этот фермент ускоряет окисление витамина С до практически неактивной дикетогулоновой кислоты. А так как выяснилось, это происходит вне организма, то витамин С разрушается в растительных продуктах при их длительном хранении и во время кулинарной обработки. Например, только за счет действия аскорбатоксидазы смесь сырых размельченных овощей за 6 часов хранения теряет более половины содержащегося в ней витамина С, причем потери его тем выше, чем больше измельчены овощи.

Соевый белок, особенно в сочетании с кукурузным маслом, способен нейтрализовать действие витамина Е (токоферола). Происходит это в связи с тем, что в сое содержатся пока еще невыделенные в чистом виде антивитамины токоферола. Подобный эффект наблюдается и при употреблении сырой фасоли. Термическая обработка этих продуктов приводит к разрушению соперника витамина Е. Очевидно, такого рода факты следует учитывать тем, кто пропагандирует и увлекается "сыроедением"!.. Антивитамины обнаружены сравнительно недавно, и неизвестно, все ли "антисоединения" уже найдены в сырых натуральных продуктах.

В частности, в экспериментах на животных установлено, что в составе соевых бобов имеется белковое соединение, которое способствует развитию рахита даже при нормальном поступлении с пищей витамина D, кальция и фосфора. Оказалось, что нагревание соевой муки разрушает антивитамины, при этом, естественно, его отрицательных свойств можно не опасаться.

Отрицательных ли? А нельзя эти свойства использовать в медицинской практике при лечении D-гипервитаминозных состояний? Это еще предстоит доказать.

А вот антивитамин К уже вошел в арсенал лекарственных средств. Интересна история его создания. Специалисты выясняли причину так называемой болезни сладкого клевера у сельскохозяйственных животных, один из симптомов которой - плохая свертываемость крови. Оказалось, что в клеверном сене содержится антивитамин К - дикумарин. Витамин К способствует свертыванию крови, а дикумарин нарушает этот процесс. Так возникла идея, воплощенная затем в жизнь, использовать дикумарин для лечения различных заболеваний, обусловленных повышенной свертываемостью крови.

Незначительно изменив структуру витамина В5 (пантотеновой кислоты), химики получили вещество с противоположными витамину свойствами. В процессе длительного экспериментального изучения нового соединения была выявлена не присущая пантотеновой кислоте психотропная активность. Оказалось, что антивитамин В3 - пантогам обладает умеренным успокаивающим действием и способен оказывать противосудорожный эффект.

Соединив две молекулы витамина В6, специалисты синтезировали вещество, которое может рассматриваться как его антагонист. Затем выяснилось, что вновь полученное соединение (его называют пиридитол, энцефабол и т.д.) благоприятно влияет на некоторые ключевые обменные процессы в тканях головного мозга. Под воздействием пиридитола улучшается утилизация глюкозы клетками головного мозга, нормализуется транспорт фосфатов через гематоэнцефалический барьер, повышается их содержание в головном мозгу. В результате и этот антивитамин нашел применение в клинической практике.

В ходе изучения антивитаминов и использования их в качестве лекарственных средств возник вопрос: а каков же механизм действия такого рода химических соединений? О витаминах известно, что они в организме человека превращаются в более активные в биологическом отношении коферменты, которые, в свою очередь, вступая во взаимодействие со специфическими белками, образуют ферменты - катализаторы разнообразных биохимических процессов. А антивитамины?

Имея близкое с витаминами структурное сходство, эти соперники витаминов, возможно, трансформируются в организме человека по тем же законам, что и их "родоначальники", превращаясь в ложный кофермент. В дальнейшем он, вступая во взаимодействие со специфическим белком, подменяет собой истинный кофермент соответствующего витамина. Заняв его место, антивитамин в то же время не занял биологической роли витаминов

Фермент "обманут". Он не замечает отличия между истинным коферментом и его соперником и по-прежнему стремится выполнить свою функцию катализатора. Но это ему уже не удается. Соответствующие процессы обмена веществ остановлены--они не могут протекать без участия катализатора. Не исключено при этом, что возникший псевдофермент начинает играть присущую уже только ему биохимическую роль, и это обусловливает спектр фармакотерапевтического действия антивитамина.

Возможно, именно подобные изменения структуры лежат в основе терапевтического действия "универсальных" антивитаминов, какими являются эффективные противотуберкулёзные средства изониазид и фтивазид. Они нарушают в микобактериях туберкулеза обменные процессы не только витамина В6, но и тиамина, витаминов В3, РР и В2, благодаря чему задерживают рост и размножение возбудителей заболевания. Аналогичный механизм, очевидно, определяет и действие некоторых противомалярийных препаратов--акрихина и хинина, являющихся антагонистами рибофлавина (витамина В2).

Означают ли приведенные примеры, что каждый из синтетических антивитаминов может найти применение в медицинской практике? Нет.

К настоящему времени химики различных стран синтезировали сотни, а может быть, тысячи разнообразных производных витаминов, среди которых многие имеют антивитаминные свойства. Но далеко не все из них оказались в арсенале лекарственных средств: мала фармакобиологическая активность. Однако целесообразность дальнейших исследований свойств витаминов и их производных не вызывает сомнений. И как знать, может быть именно среди антагонистов витаминов будут обнаружены новые средства борьбы с заболеваниями.

Заключение

биохимический витамин заболевание

В заключение одна необходимая оговорка. В продуктах питания соотношение витаминов и антивитаминов сохраняется, как правило, в пользу первых. Прием антивитаминов как лекарственных средств это соотношение может нарушить. Поэтому, при необходимости, врачи наряду с антивитаминами назначают дополнительно и соответствующий витамин или коферментные препараты. К слову, это еще один довод против самолечения: ведь закономерности действия антивитаминов, их противоборства витаминам известны только врачу.

В продуктах питания все вещества, в том числе витамины и антивитамины находятся в оптимальном соотношении - дополняют друг друга. С одной стороны, антивитамины являются естественным регулятором, т.е. соперничая с витаминами, они практически исключают гипервитаминоз, даже если дневная норма витаминов будет значительно превышена. С другой стороны, антивитамины участвуют в биохимических процессах, т.е. как и витамины, предотвращают некоторые заболевания. Поэтому если начать принимать дополнительные искусственные витамины, можно нарушить баланс. Витамины, как и другие препараты, следует принимать по назначению врача, когда уже произошли нарушения в ту или иную сторону (гипо или гипервитаминоз).

Размещено на Allbest.ru


Подобные документы

  • История открытия витаминов. Влияние на организм, признаки и последствия недостатка, основные источники витаминов А, С, D, Е. Характеристика витаминов группы В: тиамина, рибофлавина, никотиновой и пантотеновой кислот, пиридоксина, биотина, холина.

    презентация [3,4 M], добавлен 24.10.2012

  • Классификация витаминов, их содержание в продуктах. Необходимость низкомолекулярных органических соединений с высокой биологической активностью для нормальной жизнедеятельности. Особенности витаминов различных групп, их применение и действие на организм.

    презентация [1,5 M], добавлен 16.11.2013

  • Физиологическое значение витаминов, их классификация, пути поступления в организм человека. Ассимиляция и диссимиляция витаминов, их способность регулировать течение химических реакций в организме. Особенности жирорастворимых и водорастворимых витаминов.

    реферат [744,1 K], добавлен 24.07.2010

  • Биосистемы различных уровней организации. Живой организм как кибернетическая система. Биологические ритмы. Нижняя поверхность полушария, главные борозды и извилины. Локализация функций связанных с первой сигнальной системой. Филогенез. Проводящий путь.

    реферат [747,2 K], добавлен 31.10.2008

  • Особенности влияния рентгеновского излучения на гематологические показатели крови крыс на фоне приема различных штаммов спирулины и смеси витаминов. Влияние пищевых добавок на гематологические показатели крови у лабораторных животных при облучении.

    курсовая работа [189,4 K], добавлен 22.09.2011

  • Ферменты: история их открытия, свойства, классификация. Сущность витаминов, их роль в жизни человека. Физиологическое значение витаминов в процессе обмена веществ. Гормоны - специфические вещества, которые регулируют развитие и функционирование организма.

    реферат [44,4 K], добавлен 11.01.2013

  • Обзор процесса циркуляции крови по организму, уничтожения болезнетворных организмов. Изучение состава и форменных элементов крови. Описания классификации групп крови, зависимости группы ребенка от группы родителей, лечения заболеваний переливание крови.

    презентация [1,9 M], добавлен 23.09.2011

  • Открытие витаминов. Голландский врач Христиан Эйкман. Биохимик Карл Петер Хенрик Дам. Установление структуры и синтеза каждого витамина. Исследование роли витаминов в организме. Артур Харден. Применение синтетических витаминов. Сбалансированное питание.

    реферат [53,9 K], добавлен 07.06.2008

  • История открытия витаминов. Их классификация, содержание в организме и основные источники поступления. Своцства и функции витаминоподобных веществ. Минеральные элементы и вещества, их биологическое действие роль в процессах жизнедеятельности организма.

    дипломная работа [1,8 M], добавлен 11.07.2011

  • Классификация токсинов природного происхождения на химические компоненты растительного и животного происхождения. Ингибиторы ферментов пищеварения, антивитамины, гликоалкалоиды, цианогенные гликозиды, токсины растений и грибов. Клиника отравления.

    реферат [20,4 K], добавлен 24.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.