Клеточный цикл и его регуляция

Изучение особенностей нарушения клеточного цикла и образование опухолей. Основы регуляция перехода от G1- к S-фазе. Характеристика основных аспектов синтетического периода. Анализ фаз клеточного цикла. Исследование циклин-зависимых киназ и ингибиторов.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 24.02.2014
Размер файла 26,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНЗДРАВ РОССИИ

Государственное бюджетное образовательное учреждение высшего профессионального образования

«Южно-Уральский государственный медицинский университет»

Министерства здравоохранения Российской Федерации

(ГБОУ ВПО ЮУГМУ Минздрава России)

Кафедра Гистологии, эмбриологии и цитологии

РЕФЕРАТ

Тема: Клеточный цикл и его регуляция

Выполнил: Рудных Александра Сергеевна

Группа № 112

Проверил: ст. преподаватель, к.б.н.

Ильиных Марина Анатольевна

Челябинск 2013 год

Введение

Все живые существа состоят из клеток. Клетки, в которых хромосомы расположены в клеточном ядре и отделены мембраной от остальной части клетки, называются эукариотическими. Они появились на земле примерно два миллиарда лет назад. Организмы, состоящие из таких клеток, могут быть как одноклеточными (например, дрожжи и амебы), так и многоклеточными (растения и животные).

У взрослого человека насчитывается около ста тысяч миллиардов клеток, и все они произошли от одной яйцеклетки после длинной цепочки последовательных делений. Процесс этот идет постоянно: старые клетки умирают, а их место занимают молодые. Чтобы клетка смогла разделиться, она должна увеличиться в размере, изготовить копии своих хромосом и отдать их двум дочерним клеткам. Эти стадии составляют единый клеточный цикл.

клеточный опухоль киназа

1. Клеточный цикл

1.1 Клеточный цикл

Клеточный цикл -- это период существования клетки от момента её образования путем деления материнской клетки до собственного деления или гибели.

Клеточный цикл включает строго детерминированный ряд последовательных процессов, согласно позиции Hartwellа, 1995. Клетка должна между двумя последовательными делениями удвоить все свои компоненты и свою массу. Таким образом клеточный цикл составляют два периода:

1) период клеточного роста, называемый " интерфаза "

2) период клеточного деления, называемый " фаза М " (от слова mitosis). В свою очередь, в каждом периоде выделяют несколько фаз.

Обычно интерфаза занимает не меньше 90% времени всего клеточного цикла. Например, у быстро делящихся клеток высших эукариот последовательные деления происходят один раз в 16-24 часа, и каждая фаза М длится 1-2 часа. Большая часть компонентов клетки синтезируется на протяжении всей интерфазы, это затрудняет выделение в ней отдельных стадий по мнению Pardee, 1989. В интерфазе выделяют фазу G1, фазу S и фазу G2. Период интерфазы, когда происходит репликация ДНК клеточного ядра, был назван " фаза S " (от слова synthesis). Период между фазой М и началом фазы S обозначен как фаза G1 (от слова gap - промежуток), а период между концом фазы S и последующей фазой М - как фаза G2. Период клеточного деления (фаза М) включает две стадии: митоз (деление клеточного ядра) и цитокинез (деление цитоплазмы). В свою очередь, митоз делится на пять стадий, In vivo эти шесть стадий образуют динамическую последовательность. Описание клеточного деления базируется на данных световой микроскопии в сочетании с микрокиносъемкой и на результатах световой и электронной микроскопии фиксированных и окрашенных клеток.

Продолжительность клеточного цикла зависит от типа делящихся клеток. Некоторые клетки, например, нейроны человека, после достижения стадии терминальной дифференцировки прекращают свое деление вообще. Клетки легких, почек или печени во взрослом организме начинают делиться лишь в ответ на повреждение соответствующих органов. Клетки эпителия кишечника делятся на протяжении всей жизни человека. Даже у быстро пролиферирующих клеток подготовка к делению занимает около 24 ч.

1.2 Фазы клеточного цикла

Клеточный цикл эукариот разделяют фазы. В стадии непосредственного деления клеток (митоза) конденсированные метафазные хромосомы поровну распределяются между дочерними клетками (M-фаза клеточного цикла - mitosis). Митоз был первой идентифицированной фазой клеточного цикла, а все остальные события, происходящие в клетке между двумя митозами, были названы интерфазой. Развитие исследований на молекулярном уровне позволило выделить в интерфазе стадию синтеза ДНК, получившую название S-фазы (synthesis). Эти две ключевые стадии клеточного цикла не переходят непосредственно одна в другую. После окончания митоза до начала синтеза ДНК имеет место G1-фаза клеточного цикла (gap), кажущаяся пауза в активности клетки, во время которой внутриклеточные синтетические процессы подготавливают репликацию генетического материала.

Второй перерыв в видимой активности (фаза G2) наблюдается после окончания синтеза ДНК перед началом митоза. В фазе G2 клетка осуществляет контроль за точностью произошедшей редупликации ДНК и исправляет обнаруженные сбои. В ряде случаев выделяют пятую фазу клеточного цикла (G0), когда после завершения деления клетка не вступает в следующий клеточный цикл и длительное время остается в состоянии покоя. Из этого состояния она может быть выведена внешними стимулирующими (митогенными) воздействиями. Фазы клеточного цикла не имеют четких временных и функциональных границ, однако при переходе от одной фазы к другой происходит упорядоченное переключение синтетических процессов, позволяющее на молекулярном уровне дифференцировать эти внутриклеточные события.

1.2.1 Пресинтетический период( G1)

В G1-периоде, наступающем сразу после деления, клетки имеют диплоидное содержание ДНК на одно ядро(2с). После деления в период G1 в дочерних клетках по общему содержанию белков и РНК вдвое меньше, чем в исходной родительской клетке. В период G1 начинается рост клеток главным образом за счёт накопления клеточных белков, что определяется увеличением количества РНК на клетку. Было обнаружено, что подавление синтеза белка или иРНК в G1 периоде предотвращает наступление S-периода, так как в течение G1-периода происходят синтезы ферментов, необходимых для образования предшественников ДНК, ферментов метаболизма РНК и белка. Это совпадает с увеличением синтеза РНК и белка.

1.2.2 Синтетический период(S)

В следующем, S-периоде происходит удвоение количества ДНК на ядро и соответственно удваивается число хроматид. В разных клетках, находящихся в S-периоде, можно обнаружить разные количества ДНК- от 2 до 4с. Это связано с тем, что исследованию подвергаются клетки на разных этапах синтеза ДНК( только приступившие к синтезу и уже завершившие его). S-период является узловым в клеточном цикле. Без прохождения синтеза ДНК неизвестно ни одного случая вступления клеток в митотическое деление. Единственным исключением является второе деление созревания половых клеток в мейозе, когда между двумя делениями нет S-периода.

1.2.3 Постсинтетический период(G2)

В это время происходит синтез иРНК, необходимый для прохождения митоз. Несколько ранее этого синтезируется рРНК рибосом, определяющих деление клетки. Среди синтезирующихся в это время белков особое место занимают тубулины- белки митотического веретена. В конце G2-периода или в митозе синтез РНК резко падает по мере конденсации митотических хромосом и полностью прекращается во время митоза.

2. Регуляция клеточного цикла

То, что клетки размножаются делением, известно уже более ста лет, однако молекулярные механизмы, лежащие в основе клеточного цикла, оставались неясными до начала 1970-х годов, когда появились пионерские исследования Ли Хартуэлла. Ему удалось выяснить, какие гены регулируют клеточный цикл обычных пекарских дрожжей Saccharomyces cerevisiae, и получить их мутантные штаммы, которые прекращали деление при изменении температуры. Хартуэлл идентифицировал более ста генов, вовлеченных в регуляцию клеточног цикла, в том числе ген CDC28, называемый "стартовым". Именно этот ген инициирует процесс копирования ДНК на стадии, предшествующей делению клетки. Хартуэлл показал, что хотя разные стадии клеточного цикла контролируются разными генами, между ними существует поразительная взаимосвязь: последующая стадия не начинается, пока не закончена предыдущая. Изучив чувствительность дрожжевых клеток к облучению, Хартуэлл в конце 80-х годов ввел понятие "чекпойнта", то есть контрольной точки, в которой клеточный цикл приостанавливается. Если оказывается, что какой-то участок ДНК имеет дефекты, запускается механизм их устранения, и только после этого цикл возобновляется.

Пол Нерс, как и Хартуэлл, проводил эксперименты с дрожжами, но использовал другую их разновидность, Schizosaccharomyces pombe. Они - весьма отдаленные родственники пекарских дрожжей, их разделение в процессе эволюции произошло более миллиарда лет назад. Применяя генетический подход, разработанный Хартуэллом, Нерс установил, что ген, выполняющий функцию стартового, кодирует фермент из семейства циклинзависимых киназ (CDK). Этот фермент как бы ведет клетку по клеточному циклу, стимулируя химическую модификацию других белков. В 1987 году Нерс выделил соответствующий ген в клетках человека.

2.1 Циклин - зависимые киназы

Циклин зависимые киназы (Cdk) - это клеточные машины, которые запускают события клеточного цикла и являются своеобразными часами этих событий. Кроме того, они выполняют функцию информационных процессоров, которые интегрируют внеклеточные и внутриклеточные сигналы для тонкой координации событий клеточного цикла. Изучение Cdk необходимо для понимания фундаментальных механизмов контроля клеточного цикла.

Каталитическая активность Cdk обеспечивается высокоспецифичными сайтами связывания, что позволяет двум субстратам правильно расположиться относительно друг друга и произвести перенос фосфата АТФ на кислород ОН группы белка-субстрата. Типичная каталитическая субъединица чуть больше, чем минимальный протеинкиназный домен. Члены семейства Cdk состоят из примерно 300 остатков аминокислот. Из них 35-65% идентичны прототипу cdc2/cdc28.

Каталитические субъединицы Cdk не действуют в одиночку. Их способность включать события клеточного цикла полностью зависит от взаимодействия с циклиновыми субъединицами. Отсюда и происходит название cyclin dependent kinase. Хотя связывание с циклином и является определяющим, существуют дополнительные регуляторные субъединицы и протеин киназы, которые модулируют активность CDK, распознавание субстрата и субклеточную локализацию. Cdk определяются как белковые киназные каталитические субъединицы. Продукт cdc2 гена, р34, считается прототипом циклин-киназной единицы и служит эталоном для сравнения других циклин-киназ.

В регуляции клеточного цикла дрожжей участвует всего одна циклин зависимая киназа - р34.

В разные периоды клеточного цикла она активируется присоединением соответствующего циклина и фосфорилирует специфические для этого периода субстраты.

2.2 Циклины

Циклины - семейство белков-активаторов циклин-зависимых протеинкиназ. Циклины получили свое название в связи с тем, что их внутриклеточная концентрация периодически изменяется по мере прохождения клеток через клеточный цикл, достигая максимума на его определенных стадиях.

Каждый тип циклинов, обозначенных от A до H, имеет гомологичный участок. Этот участок отвечает за связывание с CDK (Kobayashi H. et al., 1992; Lees E.M., Harlow E., 1993).В семействе циклинов (циклин A - циклин J) известны 14 белков. Некоторые члены семейства составляют подсемейства. Например, подсемейство циклинов D-типа состоит из трех членов: D1, D2 и D3.Циклины делят на два подсемейства: G1-циклины (C, D и E) и митотические циклины (A и B). Циклины относятся к быстро обменивающимся белкам с коротким временем полужизни, которое составляет у циклинов D-типа 15-20 мин. Это обеспечивает динамизм их комплексов с циклинзависимыми киназами. За внутриклеточную деградацию циклинов отвечает N-концевая последовательность аминокислотных остатков, названная боксом деструкции (destruction box).

2.3 Игибиторы

В клеточном цикле имеются две основные стадии (точки перехода, контрольные точки R - restriction points), на которых могут быть реализованы негативные регуляторные воздействия, останавливающие продвижение клеток через клеточный цикл. Одна из этих стадий контролирует переход клетки к синтезу ДНК, а другая - начало митоза. Имеются и другие регулируемые этапы клеточного цикла. Переход клеток от одной фазы клеточного цикла к другой контролируется на уровне активации CDK их циклинами с участием ингибиторов циклинзависимых киназ CKI. По мере необходимости эти ингибиторы могут активироваться и блокировать взаимодействие CDK со своими циклинами, а следовательно, и клеточный цикл как таковой. После изменения внешних или внутренних условий клетка может продолжить пролиферацию или вступить на путь апоптоза.

Имеется две группы CKI: белки семейств p21 и INK4 (inhibitor of CDK4), члены которых внутри семейств обладают похожими структурными свойствами. Семейство ингибиторов p21 включает в себя три белка: p21, p27 и p57. Поскольку эти белки были описаны независимо несколькими группами, до сих пор используются их альтернативные названия. Так, белок p21 известен также под именами WAF1 (wild-type p53 activated fragment 1), CIP1 (CDK2 interacting protein 1), SDI1 (senescent derived inhibitor 1) и mda-6 (melanoma differentiation associated gene). Синонимами p27 и p57 являются соответственно KIP1 (kinase inhibiting proteins 1) и KIP2 (kinase inhibiting proteins 2). Все эти белки обладают широкой специфичностью действия и могут ингибировать различные CDK. В отличие от этого группа ингибиторов INK4 более специфична. В нее входят четыре белка: p15INK4B, p16INK4A, p18INK4C и p19INK4D. Ингибиторы семейства INK4 функционируют во время фазы G1 клеточного цикла, подавляя активность киназы CDK4, однако второй белковый продукт гена INK4A - p19ARF, взаимодействует с регуляторным фактором MDM2 белка p53 и инактивирует фактор. Это сопровождается увеличением стабильности белка p53 и остановкой клеточного цикла.

3. Контрольные точки клеточного цикла

Для определения завершения каждой фазы клеточного цикла необходимо наличие в нем контрольных точек. Если клетка «проходит» контрольную точку, то она продолжается «двигаться» по клеточному циклу. Если же какие-либо обстоятельства, например повреждение ДНК, мешают клетке пройти через контрольную точку, которую можно сравнить со своего рода контрольным пунктом, то клетка останавливается и другой фазы клеточного цикла не наступает по крайней мере до тех пор, пока не будут устранены препятствия, не позволявшие клетке пройти через контрольный пункт. Существует как минимум четыре контрольных точки клеточного цикла: точка в G1, где проверяется интактность ДНК, перед вхождением в S-фазу, сверочная точка в S-фазе, в которой проверяется правильность репликации ДНК, сверочная точка в G2, в которой проверяются повреждения, пропущенные при прохождении предыдущих сверочных точек, либо полученные на последующих стадиях клеточного цикла. В G2 фазе детектируется полнота репликации ДНК, и клетки, в которых ДНК недореплицирована, не входят в митоз. В контрольной точке сборки веретена деления проверяется, все ли кинетохоры прикреплены к микротрубочкам.

3.1 Регуляция перехода от G1- к S-фазе

До начала клеточного цикла белок p27, находясь в высокой концентрации, предотвращает активацию протеинкиназ CDK4 или CDK6 циклинами D1, D2 или D3. В таких условиях клетка остается в фазе G0 или ранней фазе G1 до получения митогенного стимула. После адекватной стимуляции происходит уменьшение концентрации ингибитора p27 на фоне возрастания внутриклеточного содержания циклинов D. Это сопровождается активацией CDK и, в конечном счете, фосфорилированием белка pRb, освобождением связанного с ним фактора транскрипции E2F и активацией транскрипции соответствующих генов.

На этих ранних стадиях фазы G1 клеточного цикла концентрация белка p27 все еще остается довольно высокой. Поэтому после прекращения митогенной стимуляции клеток содержание этого белка быстро восстанавливается до критического уровня и дальнейшее прохождение клеток через клеточный цикл блокируется на соответствующем этапе G1. Эта обратимость возможна до тех пор, пока фаза G1 в своем развитии не достигает определенной стадии, называемой точкой перехода, после прохождения которой клетка становится коммитированной к делению, и удаление факторов роста из окружающей среды не сопровождается ингибированием клеточного цикла. Хотя с этого момента клетки становятся независимыми от внешних сигналов к делению, они сохраняют способность к самоконтролю клеточного цикла.

Ингибиторы CDK семейства INK4 (p15, p16, p18 и p19) специфически взаимодействуют с киназами CDK4 и CDK6. Белки p15 и p16 идентифицированы как супрессоры опухолевого роста, и их синтез регулируется белком pRb. Все четыре белка блокируют активацию CDK4 и CDK6, либо ослабляя их взаимодействие с циклинами, либо вытесняя их из комплекса. Хотя оба белка p16 и p27 обладают способностью ингибировать активность CDK4 и CDK6, первый имеет большее сродство к этим протеинкиназам. Если концентрация p16 повышается до уровня, при котором он полностью подавляет активность киназ CDK4/6, белок p27 становится основным ингибитором киназы CDK2.

На ранних стадиях клеточного цикла здоровые клетки могут распознавать повреждения ДНК и реагировать на них задержкой прохождения клеточного цикла в фазе G1 до репарации повреждений. Например, в ответ на повреждения ДНК, вызванные ультрафиолетовым светом или ионизирующей радиацией, белок p53 индуцирует транскрипцию гена белка p21. Повышение его внутриклеточной концентрации блокирует активацию CDK2 циклинами E или A. Это останавливает клетки в поздней фазе G1 или ранней S-фазе клеточного цикла. В это время клетка сама определяет свою дальнейшую судьбу - если повреждения не могут быть устранены, она вступает в апоптоз.

Существуют две разнонаправленные системы регуляции G1/S - перехода: положительная и отрицательная (O`Connor D.J., Lam E., ea., 1995). Система положительно регулирующая вход в S-фазу, включает гетеродимер E2F-1/DP-1 и активирующие его циклин-киназные комплексы. Другая система тормозит вход в S-фазу. Она представлена опухолевыми супрессорами р53 и pRB, которые подавляют активность гетеродимеров E2F-1/DP-1. Нормальная пролиферация клеток зависит от точного баланса между этими системами. Соотношение между этими системами может изменяться, приводя к изменению скорости пролиферации клеток.

Ответ клетки на повреждения ДНК может наступить перед началом митоза. Тогда белок p53 индуцирует синтез ингибитора p21, который предотвращает активацию киназы CDK1 циклином B и задерживает дальнейшее развитие клеточного цикла. Прохождение клетки через митоз жестко контролируется - последующие стадии не начинаются без полного завершения предыдущих. Некоторые из ингибиторов были идентифицированы у дрожжей, но их гомологи у животных пока остаются неизвестными. Например, описаны белки дрожжей BUB1 (budding uninhibited by benomyl) и MAD2 (mitotic arrest deficient), которые контролируют присоединение конденсированных хромосом к митотическому веретену в метафазе митоза. До завершения правильной сборки этих комплексов белок MAD2 образует комплекс с протеинкиназой CDC20 и инактивирует ее. CDC20 после активации фосфорилирует белки и в результате блокирует те их функции, которые препятствуют расхождению каждой из двух гомологичных хроматид во время цитокинеза.

3.2 Сверочная (контрольная) точка рестрикции в G2-фазе

Повреждения ДНК и другие нарушения вызывают остановку клеток не только в G1- и S-, но и в G2-фазе клеточного цикла. При этом выявляются повреждения, пропущенные при прохождении предыдущих сверочных точек либо полученные на последующих стадиях клеточного цикла. Кроме того, в G2-фазе детектируется полнота репликации ДНК и клетки, в которых ДНК недореплицирована, не входят в митоз.

4. Нарушения клеточного цикла и образование опухолей

Нарушение нормальной регуляции клеточного цикла является причиной появления большинства твердых опухолей. В клеточном цикле, как уже говорилось, прохождение контрольных пунктов его возможно только в случае нормального завершения предыдущих этапов и отсутствия поломок. Для опухолевых клеток характерны изменения компонентов сверочных точек клеточного цикла. При инактивации сверочных точек клеточного цикла наблюдается дисфункция некоторых опухолевых супрессоров и протоонкогенов, в частности p53. Белок p53 является одним из факторов транскрипции, который инициирует синтез белка p21, являющегося ингибитором комплекса CDK-циклин, что приводит к остановке клеточного цикла в G1 и G2 периоде. Таким образом клетка, у которой повреждена ДНК, не вступает в S-фазу. При мутациях, приводящих к потере генов белка p53, или при их изменениях, блокады клеточного цикла не происходит, клетки вступают в митоз, что приводит к появлению мутантных клеток, большая часть из которых нежизнеспособна, другая -- дает начало злокачественным клеткам.

Заключение

В заключение подведем итоги:

Клеточный цикл - согласованная однонаправленная последовательность событий, в ходе которой клетка последовательно проходит его разные периоды без их пропуска или возврата к предыдущим стадиям. Клеточный цикл заканчивается делением исходной клетки на две дочерние клетки.

Длительность клеточного цикла у разных клеток варьирует. У быстро размножающихся клеток взрослых организмов таких как кроветворные или базальные клетки эпидермиса и тонкой кишки могут входить в клеточный цикл каждые 12-36 ч. Короткие клеточные циклы около 30 мин наблюдаются при быстром дроблении яиц иглокожих и земноводных. В экспериментальных условиях короткий клеточный цикл 20ч имеют многие линии клеточных культур. У большинства клеток длительность периода между митозами составляет примерно 10-24 ч.

Клеточный цикл эукариот состоит из интерфазы, во время которой идет синтез ДНК и белков и осуществляется подготовка к делению клетки и собственно само деление клетки, митоз. Интерфаза состоит из нескольких периодов: G1-фазы начального роста, во время которой идет синтез мРНК, белков, других клеточных компонентов, S-фазы (синтетической фазы), во время которой идет удвоение молекул ДНК и G2-фазы во время которой идет подготовка к митозу. У дифференцировавшихся клеток, которые более не делятся в жизненном цикле может отсутствовать G1 фаза. Такие клетки находятся в фазе покоя G0.

Закономерная последовательность смены периодов клеточного цикла осуществляется при взаимодействии таких белков, как циклин-зависимые киназы и циклины. Клетки, находящиеся в G0 фазе могут вступать в клеточный цикл при действии на них гормонов роста. Разные факторы роста, такие как тромбоцитарный, эпидермальный, фактор роста нервов связываясь со своими рецепторами запускают внутриклеточный сигнальный каскад, приводящий в итоге к транскрипции генов циклинов и циклин-зависимых киназ.

Для определения завершения каждой фазы клеточного цикла необходимо наличие в нем контрольных точек. Если клетка «проходит» контрольную точку то она продолжается «двигаться» по клеточному циклу.

Литература

1. Информация на сайте www.humbio.ru предназначена исключительно для образовательных и научных целей. М., 2008.

2. Статья Кель О., Кель А.: Межгенные взаимоотношения в регуляции клеточного цикла. Молекулярная биология 31, 1997, стр 650- 668.

3. Кольман Я., Рем К., Вирт Ю., (2000). `Наглядная биохимия', М., 2000.

4. Ченцов Ю.С., (2004). `Введение в клеточную биологию'. М.: ИКЦ «Академкнига».

5. Копнин Б.П., `Механизмы действия онкогенов и опухолевых супрессоров'. М. 2004.

6. Википедия. Словарь свободной энциклопедии. М. 2008.

Размещено на Allbest.ru


Подобные документы

  • Периоды и фазы клеточного цикла. Последовательное прохождение клеткой периодов цикла без пропуска или возврата к предыдущим стадиям. Деление исходной клетки на две дочерние клетки. Циклины и циклин-зависимые киназы; деление эукариотической клетки; митоз.

    контрольная работа [25,0 K], добавлен 21.11.2009

  • Сущность клеточного цикла - периода жизни клетки от одного деления до другого или от деления до смерти. Биологическое значение митоза, его основные регуляторные механизмы. Два периода митотического деления. Схема активации циклинзависимой киназы.

    презентация [823,0 K], добавлен 28.10.2014

  • Основные регуляторы клеточного цикла. Строение микротрубочки веретена деления. Регуляция сборки белков в синаптонемальном комплексе. Мутации индискриминантного синапсиса. Реципрокная рекомбинация, основные закономерности процесса конверсии в генах.

    контрольная работа [494,0 K], добавлен 14.02.2016

  • Регуляция клеточного редокс-статуса в норме и при патологии. Низкомолекулярные антиоксиданты. Роль глутатиона и глутатион-зависимых ферментов в редокс-зависимых механизмах формирования лекарственной устойчивости опухолевых клеток. Окисление липидов.

    презентация [2,5 M], добавлен 25.10.2016

  • Биохимические изменения в тканях при зимней спячке. Ишемический инсульт и нейрогенез. Исследование экспрессии белков клеточного цикла и не связанной с клеточным циклом циклинзависимой киназы в мозге сусликов на разных стадиях гибернационного цикла.

    курсовая работа [737,1 K], добавлен 29.11.2009

  • Клеточный цикл как период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или гибели. Принципы и методы его регуляции. Этапы и биологическое значение митоза, мейоза, обоснование данных процессов.

    презентация [1,1 M], добавлен 07.12.2014

  • Клеточный цикл как период жизни клетки, его этапы и протекающие процессы, значение в выживании организма. Методы регуляции репликации клетки. Программируемая клеточная гибель (апоптоз) и порядок влияния на нее. Биологическая роль процесса апоптоза.

    лекция [284,6 K], добавлен 21.07.2009

  • Исследование основных фаз процесса образования микротрубочек. Изучение особенностей их строения и функций. Анализ структур, образуемых системой микротрубочек и организующих их центров. Центросома - регулятор хода клеточного цикла в клетках эукариот.

    презентация [564,8 K], добавлен 13.04.2013

  • Формы, механизмы, органы, регуляция иммунитета. Субпопуляции Т-лимфоцитов, их функции. История открытия регуляторных Т-клеток. Эффективность микробиологической диагностики. Иммунная регуляторная система. Будущее трансплантологии, технические трудности.

    контрольная работа [1,7 M], добавлен 11.05.2016

  • Основные этапы и общая схема клеточного иммунного ответа. Презентация процессированного антигена. Активация Т-хелпера первого типа. Схема взаимодействия клеток в ходе клеточного иммунного ответа (по А.А. Воробьеву). Дефрагментация ДНК при апоптозе.

    реферат [1,6 M], добавлен 01.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.