Теории происхождения клетки

Ознакомление с теориями происхождения и эволюции живых организмов: биохимической, ендосимбиотической, инвагинационной. Прямая филиация как гипотеза наследственных изменений, ответственных за дифференцировку эукариотических клеток из прокариотических.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 18.12.2013
Размер файла 126,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Волгоградский Государственный социально-педагогический университет

Реферат по цитологии

на тему:

«Теория происхождения клетки»

Подготовила: студентка I курса

Специальности: Биология, химия

Группы: БХБ-111

Жукова Яна

Руководитель: Мужиченко М.В.

2012г

Оглавление

Введение

1. Теория биохимической эволюции

2. Теория эндосимбиотического происхождения клетки

3. Инвагинационная теория

4. Гипотеза эндосимбиотического происхождения других органелл

5. Прямая филиация

Заключение

Глоссарий

Список использованной литературы

Введение

Вопрос происхождения жизни на Земле интересует учёных в области биологии и геологии уже много столетий, по их мнению, возраст планеты составляет более 5 млрд. лет.

Известно, что в природе организмы бывают одноклеточными (например, бактерии простейшие водоросли) или многоклеточными.

Клетка осуществляет обмен веществ и энергии, растет, размножается, передает свои свойства по наследству, реагирует на внешнюю среду, двигается. Вышеуказанные функции в клетке выполняют органоиды - ядро, митохондрий и др.

Все это и изучает комплексная наука цитология. Этой науке около 100 лет и она связана очень тесно с другими науками.

В настоящее время при изучении клетки используют новейшие физические, химические методы, а также современные электронные микроскопы, дающие увеличение в 1000000. Применяют специальные красители, для изучения химического состава клетки применяют метод центрифугирования. Он основан на неодинаковой плотности разных клеточных органоидов. При быстром вращении в ультрацентрифуге различные органоиды предварительно измельченных клеток располагаются слоями. Плотные слои осаждаются быстрее и оказываются внизу, менее плотные--вверху. Слои разделяют и раздельно изучают.

Такое современное и подробное изучение химической организации клетки привело к выводу, что именно химические процессы лежат в основе ее жизни и ее происхождения

1. Теория биохимической эволюции

ендосимбиотический эукариотический клетка прокариотический

В 1923 году советским биохимиком Алексеем Опариным была разработана теория биохимической эволюции.

Основу этой теории составляла идея о том, что миллиарды лет назад при формировании планеты первыми органическими веществами были углеводороды, которые образовались в океане из более простых соединений.

Соединения углеводорода с азотом и простейших молекул аммиака, воды, метана и водорода с рядом других химических элементов образовывали сложные органические вещества. Энергию для осуществления этих процессов создавали частые грозовые электрические разряды и интенсивная солнечная радиация, выделявшая значительное количество ультрафиолетового излучения, падавшего на Землю до того, как образовался озоновый слой.

Органические вещества, постепенно накапливаясь в океане, создавали прочные молекулярные связи, которые были устойчивы к разрушающему действию ультрафиолетового излучения.

Позднее теория биохимической эволюции получила развитие в трудах английского учёного Джона Холдейна, который сформулировал гипотезу о том, что жизнь явилась результатом длительных эволюционных углеродных соединений. Вещества, близкие по своему химическому составу к белкам и другим органическим соединениям, составляющие основу живых организмов, возникли на основе углеводородов.

Белковые соединения в «первичном бульоне» притягивали и связывали молекулы жиров и воды, что позволяло жирам обволакивать поверхность белковых тел, структура которых напоминала мембрану клеток. Полученные в результате такого взаимодействия тела Опарин назвал коацерватами (коацерватными каплями), а сам процесс - коацервацией.

В дальнейшем поглощая из окружавшей среды белковые вещества, структура коацерватов усложнялась, и они стали похожи на примитивные, но уже живые клетки, а химические соединения внутреннего состава позволяли им расти, видоизменяться, осуществлять обмен веществ и размножаться.

Теория биохимической эволюции, важным этапом которой явилось формирование мембранной структуры, предполагала, что с появлением мембраны ускорился процесс упорядочения и усовершенствования метаболизма, а дальнейшее усложнение обмена веществ происходило с помощью катализаторов.

В 1953 году американский исследователь Стэнли Миллер провёл ряд экспериментов, в которых смоделировал возможные условия жизни на Земле, существовавшие в тот временной период, ему удалось получить соединения альдегидов, аминокислот, уксусную, молочную и ряд других органических кислот.

В ходе аналогичных исследований и опытов по моделированию предположительных условий первичного океана биохимик Серил Поннаперума успешно добился образования АТФ и нуклеотидов.

Теория биохимической эволюции и происхождения жизни на Земле, высказанная Алексеем Опариным, признана многими ученые, однако из-за большого количества предположений и допущений, она вызывает некоторые сомнения. Тонкие внутренние структуры клеток почти всегда разрушаются, и обычно даже в лучших случаях мы не можем отличить прокариотические клетки от эукариотических. Переход от простой прокариотической к сложной эукариотической клетке с ее многообразными субструктурами остается до сих пор загадкой для биологов. Наиболее остроумная гипотеза возникновения эукариотической клетки принадлежит Саган .

Она предположила, что эукариотическая клетка возникла в результате симбиоза двух или более различных прокариотических клеток.

В основе этой идеи лежит тот факт, что внутри прокариотических клеток нет мембран, способных защитить всю клетку от токсических продуктов, образующихся в процессе метаболизма.

Важнейший из таких ядов - кислород, который выделялся уже у ранних фотосинтезирующих организмов. Ведь кислород, образующийся при фотосинтезе в некоторых участках клетки, способен окислить многие вещества клетки и тем самым погубить ее.

В эукариотических клетках фотосинтез происходит в хлоропластах, и благодаря мембранам кислород уходит из клетки, не причиняя ей вреда. У прокариотических фотосинтезирующих организмов защита от кислорода должна была развиться одновременно с развитием фотосинтеза.

По теории Саган, первым шагом к образованию эукариотической клетки был симбиоз прокариотических организмов двух разных типов. Один из них должен был быть гетеротрофным анаэробом (по новой классификации - фотоорганотрофом), питавшимся органическими веществами.

Однажды он съел - вернее поглотил (в мире микроорганизмов быть съеденным не обязательно означает погибнуть) - организм, способный к дыханию. С этого момента лишний кислород, выделявшийся фотоорганотрофом при фотосинтезе, стал использоваться проглоченным прокариотом для дыхания.

2. Теория эндосимбиотического происхождения клетки

Симбиотическая теория происхождения и эволюции клеток основана на двух концепциях, новых для биологии. Согласно первой из этих концепций, самое фундаментальное разграничение в живой природе - это разграничение между прокариотами и эукариотами, т.е. между бактериями и организмами, состоящими из клеток с истинными ядрами - протистами, животными, грибами и растениями. Вторая концепция состоит в том, что источником некоторых частей эукариотических клеток была эволюция симбиозов, т.е. формирование постоянных ассоциаций между организмами разных видов. Предполагается, что три класса органелл - митохондрии, реснички и фотосинтезирующие пластиды - произошли от свободно живущих бактерий, которые в результате симбиоза были в определенной последовательности включены в состав клеток прокариот - хозяев. Эта теория в большой мере опирается на неодарвинистские представления, развитые генетиками, экологами, цитологами и другими учеными, которые связали Менделевскую генетику с дарвиновской идеей естественного отбора. Она опирается также на совершенно новые или недавно возрожденные научные направления: на молекулярную биологию, особенно на данные о структуре белков и последовательности аминокислот, на микропалеонтологию, изучающую наиболее ранние следы жизни на Земле, и даже на физику и химию атмосферы, поскольку эти науки имеют отношение к газам биологического происхождения. Все организмы, состоящие из клеток, могут быть сгруппированы в пять царств: царство прокариот (Monera, куда относятся бактерии) и четыре царства эукариот (Protoctista, Animalia, Fungi, Plantae). Протоктисты - это эукариотические организмы, не относящиеся к животным, грибам или растениям. В царство протоктистов входят водоросли, протозоа, слизевики и другие эукариотические организмы неясной принадлежности. Протисты определены более ограничительно - как одноклеточные эукариоты. Согласно традиционному представлению о прямой филиации, такие клеточные органеллы, как митохондрии и пластиды, возникли путем компартментализации самой клетки.

Митохондрии и пластиды:

· имеют две полностью замкнутые мембраны. При этом внешняя сходна с мембранами вакуолей, внутренняя -- бактерий.

· размножаются бинарным делением (причем делятся иногда независимо от деления клетки), никогда не синтезируются de novo.

· генетический материал -- кольцевая ДНК, не связанная с гистонами (По доле ГЦ ДНК митохондрий и пластид ближе к ДНК бактерий, чем к ядерной ДНК эукариот)

· имеют свой аппарат синтеза белка -- рибосомы и др.

· рибосомы прокариотического типа -- c константой седиментации 70S. По строению 16s рРНК близки к бактериальной.

· некоторые белки этих органелл похожи по своей первичной структуре на аналогичные белки бактерий и не похожи на соответствующие белки цитоплазмы.

Проблемы

· ДНК митохондрий и пластид, в отличие от ДНК большинства прокариот, содержат интроны.

· В собственной ДНК митохондрий и хлоропластов закодирована только часть их белков, а остальные закодированы в ДНК ядра клетки. В ходе эволюции происходило «перетекание» части генетического материала из генома митохондрий и хлоропластов в ядерный геном. Этим объясняется тот факт, что ни хлоропласты, ни митохондрии не могут более существовать (размножаться) независимо.

· Не решён вопрос о происхождении ядерно-цитоплазматического компонента (ЯЦК), захватившего протомитохондрии. Ни бактерии, ни археи не способны к фагоцитозу, питаясь исключительно осмотрофно. Молекулярно-биологические и биохимические исследования указывают на химерную архейно-бактериальную сущность ЯЦК.

3. Инвагинационная гипотеза происхождения эукариотической клетки

Инвагинационная гипотеза происхождения эукариотической клетки исходит из того, что предковой формой был аэробный прокариот. Он содержал несколько геномов, каждый из которых прикреплялся к клеточной оболочке. Корпускулярные органеллы, имеющие ДНК, а также ядро, возникли в результате впячивания и отшнуровки фрагментов оболочки вместе с геномом с последующей функциональной специализацией в ядро, митохондрий, хлоропласты, усложнением ядерного генома, развитием цитоплазматических мембран. Эта гипотеза удовлетворительно объясняет наличие 2 мембран в оболочке ядра, митохондрий и хлоропластов. Она встречается с трудностями в объяснении различий в деталях процесса биосинтеза белка в корпускулярных органеллах и цитоплазме эукариотической клетки. В митохондриях и хлоропластах этот процесс в точности соответствует таковому в современных прокариотических клетках. Симбиотическая и инвагинационная гипотезы не исчерпывают все точки зрения на происхождение эукариотического типа клеточной организации. Эволюционные возможности эукариотического типа клеточной организации превосходят таковые у прокариот. Указанную особенность объясняют, прежде всего, увеличением размеров ядерного генома. Количество генов в геноме бактерии и клетки человека соотносится как 1:100--1000. Известное значение могли иметь наличие в клетке двух аллелей каждого гена (диплоидность), многократное повторение некоторых генов. Все это расширяет масштабы мутационной изменчивости, совместимой с выживанием, и способствует образованию резерва наследственной изменчивости. При переходе к эукариотическому типу усложнился также механизм регуляции жизнедеятельности клетки. На уровне генетического материла - это проявилось в увеличении относительного числа регуляторных генов, замене единичных «голых» молекул ДНК множественными хромосомами, в которых ДНК комплексируется с белками. В итоге оказалось возможным считывать информацию по частям с разных блоков генов в разных клетках и в разное время. В бактериальной клетке, например, одновременно транскрибируется 80--100% информации генома. В клетках человека в зависимости от органа считывается от 8--10% (печень, почка, селезенка) до 44% (головной мозг). Использованию информации по частям принадлежит исключительная роль в образовании многоклеточных живых форм. Определенное значение для перехода к многоклеточности имело, по-видимому, и приобретение клетками эукариотического типа эластичной оболочки, что позволяет образовывать стабильные комплексы клеток. В условиях усложнения генетического аппарата эукариот важным эволюционным приобретением стал митоз как механизм воспроизведения в поколениях генетически сходных клеток. Возникший путем эволюции митоза мейотический процесс интенсифицировал комбинативную изменчивость. Благодаря отмеченным особенностям за 1 млрд. лет своего существования эукариотическая клетка обеспечила развитие разнообразных живых форм от простейших до млекопитающих и человека. Симбиотическая и инвагинационная гипотезы возникновения эукариотической клетки:

Рис. 1 Симбиотическая (левый ряд) и инвагинационная (правый ряд) гипотезы: а - ДНК прокариотической клетки, б - ядро эукариотической клетки, в - митохондрия, г - хлоропласт, д - жгутик; 1 - анаэробный прокариот (хозяин), 2 - аэробный прокариот (митохондрия), 3 - аэробный прокариот (родоначальница), 4 - цианобактерия (хлоропласт), 5 - спирохетоподобная бактерия (жгутик), 6 - прокариоты имеющие митохондрии, 7 - примитивный эукариот со жгутиком, 8 - животная клетка со жгутиком, 9 - растительная клетка, 10 - инвагинации клеточной оболочки, давшие ядро и митохондрии, 11 - примитивный эукариот, 12 - вворачивание клеточной оболочки, давшее хлоропласт, 13 - растительная клетка

4. Гипотезы эндосимбиотического происхождения других органелл

В то время как эндосимбиоз является наиболее принятой версией происхождения митохондрий и пластид, попытки применения теории симбиогенеза к другим органеллам и структурам клетки не находят достаточных доказательств и наталкиваются на обоснованную критику.

Клеточное ядро, нуклеоцитоплазма

Смешение у эукариот многих свойств, характерных для архей и бактерий, позволило предположить симбиотическое происхождение ядра от метаногенной архебактерии, внедрившейся в клетку миксобактерии. Гистоны, к примеру, обнаружены у эукариот и некоторых архей, кодирующие их гены весьма схожи. Другая гипотеза, объясняющая сочетание у эукариот молекулярных признаков архей и эубактерий, состоит в том, что на некотором этапе эволюции похожие на архей предки нуклеоцитоплазматического компонента эукариот приобрели способность к усиленному обмену генами с эубактериями путём горизонтального переноса генов

В последнее десятилетие сформировалась также гипотеза вирусного эукариогенеза (англ. viral eukaryogenesis). В ее основании лежит ряд сходств устройства генетического аппарата эукариот и вирусов: линейное строение ДНК, её тесное взаимодействие с белками и др. Было показано сходство ДНК-полимеразы эукариот и поксивирусов, что сделало именно их предков основными кандидатами на роль ядра.

Жгутики и реснички

Линн Маргулис в книге Symbiosis in Cell Evolution (1981) предположила в том числе происхождение жгутиков и ресничек от симбиотических спирохет. Несмотря на сходство размеров и строения указанных органелл и бактерий и существование Mixotricha paradoxa, использующей спирохет для движения, в жгутиках не было найдено никаких специфически спирохетных белков. Однако известен общий для всех бактерий и архей белок FtsZ, гомологичный тубулину и, возможно, являющийся его предшественником. Жгутики и реснички не обладают такими признаками бактериальных клеток, как замкнутая наружная мембрана, собственный белоксинтезирующий аппарат и способность к делению. Данные о наличии ДНК в базальных тельцах, появившиеся в 1990-е годы, были впоследствии опровергнуты. Увеличение числа базальных телец и гомологичных им центриолей происходит не путем деления, а путем достраивания нового органоида рядом со старым.

Пероксисомы

Кристиан де Дюв обнаружил пероксисомы в 1965 году. Ему же принадлежит предположение, что пероксисомы были первыми эндосимбионтами эукариотической клетки, позволившими ей выживать при нарастающем количестве свободного молекулярного кислорода в земной атмосфере. Пероксисомы, однако, в отличие от митохондрий и пластид, не имеют ни генетического материала, ни аппарата для синтеза белка. Было показано, что эти органеллы формируются в клетке de novo в ЭПР и нет никаких оснований считать их эндосимбионтами.

5. Прямая филиация

Традиционный взгляд на происхождение и эволюцию эукариотических клеток заключается в том, что все живые организмы произошли прямым путем от единственной предковой популяции в результате накопления мутаций под действием естественного отбора. Точечные мутации, дупликации, делении и другие наследственные изменения, как известно игравшие роль в эволюции животных и растений, ответственны и за дифференцировку эукариотических клеток из прокариотических - теория прямой филиации, т.е. представление о не симбиотическом происхождении клеток. Возможно, зеленые водоросли являются потомками родоначальников всех растений. Многие особенности этих водорослей наводят на мысль, что они и растения имеют общего предка. Филогения животных сложнее, но концепция прямой филиации вероятно приложила также и к их путям эволюции. Губки очевидно произошли от протистов, независимо от остальных групп животных. Итак, по крайней мере для животных и растений гипотеза, по которой сложные эукариотические организмы развились из более просто устроенных эукариот путем накопления отдельных мутаций под действием естественного отбора, вполне правомерна. Эволюционные новшества опираются на сохранение высокосовершенных благоприятных генов. Итак, новые организмы с повышенной способностью контролировать свою среду обитания развивались больше благодаря сохранению дупликации и рекомбинации высоко адаптированных генов, чем путем приобретения новых свойств в результате простых, случайных точечных мутаций. Гипотеза прямой филиации не позволяет объяснить происхождение эукариот от прокариот. Например, хиатус между неспособными к митозу цианобактериями, и такими формами с вполне развитым митозом, как красные водоросли, трудно понять с позиций прямой филиации, но он естественно вытекает из симбиотической теории. Согласно теории прямой филиации и теории симбиоза, все организмы на Земле произошли от биохимических однотипных бактериальных предков, а растениям и животным дали начало эукариотические микробы. Фотосинтезирующие бактерии дали начало водорослям, и в конце концов растениям, а некоторые водоросли утратили свои пластиды и превратились в предков грибов и животных. Теоретики прямой филиации согласны в том, что пластиды и другие органеллы эукариот, включая ядро, сформировались путем дифференциации внутри самих клеток и называют это ботаническим мифом.

Заключение

Наиболее популярной и обоснованной гипотезой происхождения эукариотических клеток является в настоящее время представление об их образовании путем многократно происходившего в процессе эволюции в течение первых 1.5 - 2 млрд. лет существования на Земле живых клеток эндосимбиоза различных прокариот, относящихся к бактериям и археям. Решающие доказательства эндосимбиотического происхождения хлоропластов и митохондрий были получены ведущими биологами мира при изучении структуры рибосомальных РНК. Эти данные достаточно ясно свидетельствуют в пользу большой вероятности эндосимбиотического происхождения эукариотических клеток из гораздо меньших по объему (на несколько порядков) клеток прокариот.

Глоссарий

Коацерватные капли -- это сгустки подобно водным растворам желатина. Образуются в концентрированных растворах белков и нуклеиновых кислот. Коацерваты способны адсорбировать различные вещества. Из раствора в них поступают химические соединения, которые преобразуются в результате реакций, проходящих в коацерватных каплях, и выделяются в окружающую среду.

Коацервация -- расслоение коллоидной системы с образованием коллоидных скоплений (коацерватов) в виде двух жидких слоев или капель. Коацервация может возникать в результате частичной дегидратации дисперсной фазы коллоида, являясь начальной стадией коагуляции.

Сущность явления коацервации заключается в отмешивании из однородного коллоидного раствора слоя или капель, связанном с переходом от полного смешивания к ограниченной растворимости.

Органотрофы-микроорганизмы, использующие органические вещества в качестве доноров водорода для получения восстановителя (фотоорганотрофы-несерные пурпурные бактерии), а также энергии (хемоорганотрофы - большинство бактерий, грибов, простейших). Значительная часть О. использует органические вещества и как источник энергии, и как источник углерода. Термин О. употребляют иногда как синоним термина гетеротрофы.

Протоктисты-царство протоктистов (Protoctista), ранее называвшееся царством протистов (Protista), которое включает такие сильно разнящиеся группы организмов, как ВОДОРОСЛИ (в том числе морские), АМЕБЫ и другие простейшие организмы, например, СЛИЗЕВИКИ, или миксомицеты, и некоторые разновидности плесени.

Принцип компартментализации клеток эукариот постулирует о том, что биохимические процессы в клетке локализованы в определённых отсеках, покрытых оболочкой из бислоя липидов. Большинство органоидов в эукариотической клетке являются компартментами -- митохондрии, хлоропласты, пероксисомы, лизосомы, ядро клетки и аппарат Гольджи.

Интрон -- участок ДНК, который является частью гена, но не содержит информации о последовательности аминокислот белка

Кариогенез-образование и развитие ядра

Список использованной литературы

1. Альбертс Б. Молекулярная биология клетки. М. 2004 т.1

2. Геннис, Биомембраны. Молекулярная структура и функции. М., 2002 г.

3. Маргелис Л. Роль симбиоза в эволюции клетки. М. 2001 г.

4. Основы микробиологии. М. “Медицина “ 2001 г.

5. Образовательный журнал. Биология, Химия, Науки о земле, Физика, Математика. N 5 2005 г.

6. Хахина Л.Н. Концепция А.С. Фаминцына о значении симбиоза в эволюции. М. Наука, 2002, стр. 165 - 181.

7. Энциклопедия "Биология" М. 2007 г.

8. «Изучение явлений жизни, Биогеохимические очерки». М., 2001 г.

9. Л. Гумелевский, Веpнадский «Биология», М., 2006 г.

Размещено на Allbest.ru


Подобные документы

  • Методика и задачи проведения урока биологии на тему: "Строение клеток", а также формы работы с учащимися. Сравнительная характеристика прокариотических и эукариотических клеток. Структура, назначение и функции основных органоидов клеток живых организмов.

    конспект урока [34,4 K], добавлен 16.02.2010

  • Определение эукариотов и прокариотов (ядерных и безядерных организмов). Ознакомление с характеристиками растительной, животной, грибной клеток. Изучение органоидов и включений как структурных компонентов клетки. Строение плазматической мембраны.

    презентация [3,9 M], добавлен 09.11.2014

  • Основные разновидности живых клеток и особенности их строения. Общий план строения эукариотических и прокариотических клеток. Особенности строения растительной и грибной клеток. Сравнительная таблица строения клеток растений, животных, грибов и бактерий.

    реферат [5,5 M], добавлен 01.12.2016

  • Авторы создания клеточной теории. Особенности архей и цианобактерий. Филогения живых организмов. Строение эукариотической клетки. Подвижность и текучесть мембран. Функции аппарата Гольджи. Симбиотическая теория происхождения полуавтономных органелл.

    презентация [1,6 M], добавлен 14.04.2014

  • Изучение клеточной теории строения организмов, основного способа деления клеток, обмена веществ и преобразования энергии. Анализ признаков живых организмов, автотрофного и гетеротрофного питания. Исследование неорганических и органических веществ клетки.

    реферат [39,6 K], добавлен 14.05.2011

  • Сущность гипотезы биохимической эволюции, предположений внеземного происхождения жизни (Панспермии), теории стационарного состояния жизни. Их основатели и сторонники. Источники и течения философско-теистической концепции креационизма христианских ученых.

    презентация [1,4 M], добавлен 27.02.2011

  • Теории эволюции — система естественнонаучных идей и концепций о прогрессивном развитии биосферы Земли, составляющих её биогеоценозов, отдельных таксонов и видов. Гипотезы биохимической эволюции, панспермии, стационарного состояния жизни, самозарождения.

    презентация [1,4 M], добавлен 08.03.2012

  • Клетка как единая система сопряженных функциональных единиц. Гомологичность клеток. Размножение прокариотических и эукариотических клеток. Роль отдельных клеток во многоклеточном организме. Разнообразие клеток в пределах одного многоклеточного организма.

    реферат [28,6 K], добавлен 28.06.2009

  • Первая классификация живых организмов, предложенная Карлом Линнеем. Три этапа Великих биологических объединений. Концепция эволюции органического мира Жан-Батиста Ламарка. Основные предпосылки возникновения теории Дарвина. Понятие естественного отбора.

    реферат [762,6 K], добавлен 06.09.2013

  • Методы изучения клетки, их зависимость от типа объектива микроскопа. Положения клеточной теории. Клетки животного и растительного происхождения. Фагоцитоз - поглощение клеткой из окружающей среды плотных частиц. Подходы к лечению наследственных болезней.

    презентация [881,2 K], добавлен 12.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.