Иерархия регуляторных систем

Рассмотрение механизмов внутриклеточной регуляции. Изучение иерархии регуляторных систем. Роль гормонов в регуляции обмена веществ и функций. Определение бактериальной обсемененности шкур. Изучение методов исследования и оценки качества пищевых жиров.

Рубрика Биология и естествознание
Вид дипломная работа
Язык русский
Дата добавления 13.12.2013
Размер файла 4,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Иерархия регуляторных систем. Механизмы внутриклеточной регуляции

Для нормального функционирования многоклеточного организма необходима взаимосвязь между отдельными клетками, тканями и органами. Эту взаимосвязь осуществляют 4 основные системы регуляции (рис. 11-1).

Центральная и периферическая нервные системы через нервные импульсы и нейромедиаторы;

Эндокринная система через эндокринные железы и гормоны, которые секретируются в кровь и влияют на метаболизм различных клеток-мишеней;

Паракринная и аутокринная системы посредством различных соединений, которые секретируются в межклеточное пространство и взаимодействуют с рецепторами либо близлежащих клеток, либо той же клетки (простагландины, гормоны ЖКТ, гистамин и др.);

Иммунная система через специфические белки (цитокины, антитела).

Иерархия регуляторных систем

Системы регуляции обмена веществ и функций организма образуют 3 иерархических уровня.

Первый уровень - ЦНС. Нервные клетки получают сигналы, поступающие из внешней и внутренней среды, преобразуют их в форму нервного импульса и передают через синапсы, используя химические сигналы - медиаторы. Медиаторы вызывают изменения метаболизма в эффекторных клетках.

Второй уровень - эндокринная система. Включает гипоталамус, гипофиз, периферические эндокринные железы (а также отдельные клетки), синтезирующие гормоны и высвобождающие их в кровь при действии соответствующего стимула.

Третий уровень - внутриклеточный. Его составляют изменения метаболизма в пределах клетки или отдельного метаболического пути, происходящие в результате:

изменения активности ферментов путём активации или ингибирования;

изменения количества ферментов по механизму индукции или репрессии синтеза белков или изменения скорости их разрушения;

изменения скорости транспорта веществ через мембраны клеток.

Рис. 11-1 Системы регуляции метаболизма. А - эндокринная - гормоны секретируются железами в кровь, транспортируются по кровеносному руслу и связываются с рецепторами клеток-мишеней; Б - паракринная - гормоны секретируются во внеклеточное пространство и связываются с мембранными рецепторами соседних клеток; В - аутокринная - гормоны секретируются во внеклеточное пространство и связываются с мембранными рецепторами клетки, секретирующей гормон

гормон бактериальный жир

2. Роль гормонов в регуляции обмена веществ и функций

Интегрирующими регуляторами, связывающими различные регуляторные механизмы и метаболизм в разных органах, являются гормоны. Они функционируют как химические посредники, переносящие сигналы, возникающие в различных органах и ЦНС. Ответная реакция клетки на действие гормона очень разнообразна и определяется как химическим строением гормона, так и типом клетки, на которую направлено действие гормона.

В крови гормоны присутствуют в очень низкой концентрации. Для того чтобы передавать сигналы в клетки, гормоны должны распознаваться и связываться особыми белками клетки - рецепторами, обладающими высокой специфичностью.

Физиологический эффект гормона определяется разными факторами, например концентрацией гормона (которая определяется скоростью инактивации в результате распада гормонов, протекающего в основном в печени, и скоростью выведения гормонов и его метаболитов из организма), его сродством к белкам-переносчикам (стероидные и тиреоидные гормоны транспортируются по кровеносному руслу В комплексе с белками), количеством и типом рецепторов на поверхности клеток-мишеней.

Синтез и секреция гормонов стимулируются внешними и внутренними сигналами, поступающими в ЦНС (рис. 11-2). Эти сигналы по нейронам поступают в гипоталамус, где стимулируют синтез пептидных рилизинг-гормонов (от англ, release - освобождать) - либеринов и статинов, которые, соответственно, стимулируют или ингибируют синтез и секрецию гормонов передней доли гипофиза. Гормоны передней доли гипофиза, называемые тройными гормонами, стимулируют образование и секрецию гормонов периферических эндокринных желёз, которые поступают в общий кровоток и взаимодействуют с клетками-мишенями.

Рис. 11-2 Схема взаимосвязи регуляторных систем организма. 1 - синтез и секреция гормонов стимулируется внешними и внутренними сигналами; 2 - сигналы по нейронам поступают в гипоталамус, где стимулируют синтез и секрецию рилизинг-гормо-нов; 3 - рилизинг-гормоны стимулируют (либерины) или ингибируют (статины) синтез и секрецию тройных гормонов.гипофиза; 4 - тройные гормоны стимулируют синтез и секрецию гормонов периферических эндокринных желез; 5 - гормоны эндокринных желез поступают в кровоток и взаимодействуют с клетками-мишенями; 6 - изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов эндокринных желез и гипоталамуса; 7 - синтез и секреция тройных гормонов подавляется гормонами эндокринных желез; ? - стимуляция синтеза и секреции гормонов; ? - подавление синтеза и секреции гормонов (отрицательная обратная связь)

Поддержание уровня гормонов в организме обеспечивает механизм отрицательной обратнойсвязи. Изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов, действуя либо на эндокринные железы, либо на гипоталамус. Синтез и секреция тропных гормонов подавляется гормонами эндокринных периферических желёз. Такие петли обратной связи действуют в системах регуляции гормонов надпочечников, щитовидной железы, половых желёз.

Не все эндокринные железы регулируются подобным образом. Гормоны задней доли гипофиза (вазопрессин и окситоцин) синтезируются в гипоталамусе в виде предшественников и хранятся в гранулах терминальных аксонов нейрогипофиза. Секреция гормонов поджелудочной железы (инсулина и глюкагона) напрямую зависит от концентрации глюкозы в крови.

В регуляции межклеточных взаимодействий участвуют также низкомолекулярные белковые соединения - цитокины. Влияние цитокинов на различные функции клеток обусловлено их взаимодействием с мембранными рецепторами. Через образование внутриклеточных посредников сигналы передаются в ядро, где происходят активация определённых генов и индукция синтеза белков. Все цитокины объединяются следующими общими свойствами:

синтезируются в процессе иммунного ответа организма, служат медиаторами иммунной и воспалительной реакций и обладают в основном аутокринной, в некоторых случаях паракринной и эндокринной активностью;

действуют как факторы роста и факторы дифференцировки клеток (при этом вызывают преимущественно медленные клеточные реакции, требующие синтеза новых белков);

обладают плейотропной (полифункциональной) активностью.

В. Классификация и номенклатура гормонов

Все гормоны классифицируют по химическому строению, биологическим функциям и механизму действия.

1. Классификация гормонов по химическому строению

По химическому строению гормоны делят на 3 группы: пептидные (или белковые), стероидные и непептидные производные аминокислот (табл. 11-1).

2. Классификация гормонов по биологическим функциям

По биологическим функциям гормоны можно разделить на несколько групп (табл. 11-2). Эта классификация условна, поскольку одни и те же гормоны могут выполнять разные функции. Например, адреналин участвует в регуляции обмена жиров и углеводов и, кроме этого, регулирует частоту сердечных сокращений, АД, сокращение гладких мышц. Кортизол не только стимулирует глюконеогенез, но и вызывает задержку NaCl

Таблица 1 Классификация гормонов по химическому строению

Пептидные гормоны

Стероиды

Производные аминокислот

Адренокортикотропный гормон (кортикотропин, АКТГ)

Альдостерон

Адреналин

Гормон роста (соматотропин, ГР, СТГ)

Кортизол

Норадреналин

Тиреотропный гормон (тиреотропин, ТТГ)

Кальцитриол

Трийодтиронин (Т3)

Лактогенный гормон (пролактин, ЛТГ)

Тестостерон

Тироксин (Т4)

Лютеинизирующий гормон (лютропин, ЛГ)

Эстрадиол

Фолликулостимулирующий гормон (ФСГ)

Прогестерон

Меланоцитстимулирующий гормон (МСГ)

Хорионический гонадотропин (ХГ)

Антидиуретический гормон (вазопрессин, АДГ)

Окситоцин

Паратиреоидный гормон (паратгормон, ПТГ)

Кальцитонин

Инсулин

Глюкагон

Таблица 2 Классификация гормонов по биологическим функциям

Регулируемые процессы

Гормоны

Обмен углеводов, липйдов, аминокислот

Инсулин, глюкагон, адреналин, кортизол, тироксин, соматотропин

Водно-солевой обмен

Альдостерон, антидиуретический гормон

Обмен кальция и фосфатов

Паратгормон, кальцитонин, кальцитриол

Репродуктивная функция

Эстрадиол, тестостерон, прогестерон, гонадотропные гормоны

Синтез и секреция гормонов эндокринных желёз

Тропные гормоны гипофиза, либерины и статины гипоталамуса

Изменение метаболизма в клетках, синтезирующих гормон

Эйкозаноиды, гистамин, секретин, гастрин, соматостатин, вазоактивный интестинальный пептид (ВИП), цитокины

3. Фотометрия

Фотометрия - раздел прикладной физики, занимающийся измерениями света. С точки зрения фотометрии, свет - это излучение, способное вызывать ощущение яркости при воздействии на человеческий глаз. Такое ощущение вызывает излучение с длинами волн от ФОТОМЕТРИЯ 0,38 до ФОТОМЕТРИЯ 0,78 мкм, причем самым ярким представляется излучение с длиной волны ок. 0,555 мкм (желто-зеленого цвета). Поскольку чувствительность глаза к разным длинам волн у людей неодинакова, в фотометрии принят ряд условностей. В 1931 Международная комиссия по освещению (МКО) ввела понятие "стандартного наблюдателя" как некоего среднего для людей с нормальным восприятием.На рис. 1 представлен график, построенный по данным этой таблицы, причем на нем указаны интервалы длин волн, соответствующие цветам солнечного спектра. Яркость, измеренная в соответствии с эталоном МКО, называется фотометрической яркостью или просто яркостью.

Рис. 1 Чувствительность глаза к свету разного цвета

Так изменяется доля света, воспринимаемая глазом человека. Свет с длиной волны менее 0,38 мкм называется ультрафиолетовым, а с длиной волны более 0,78 мкм - инфракрасным.

4. Фотометрические величины

Поток световой энергии измеряется в люменах. Определить световой поток в 1 лм невозможно, не обращаясь к светящимся телам, и основной мерой света долгое время была "свеча", которая считалась единицей силы света. Настоящие свечи уже более века не используются в качестве меры света, так как с 1862 стала применяться специальная масляная лампа, а с 1877 - лампа, в которой сжигался пентан. В 1899 в качестве единицы силы ответа была принята "международная свеча", которая воспроизводилась с помощью поверяемых электрических ламп накаливания. В 1979 была принята несколько отличающаяся от нее международная единица, названная канделой (кд). Кандела равна силе света в данном направлении источника, испускающего монохроматическое излучение частоты 540*1012 Гц (l = 555 нм), энергетическая сила светового излучения которого в этом направлении составляет 1/683 Вт/ср. Чтобы дать определение люмена, рассмотрим точечный источник с силой света 1 кд во всех направлениях. Такой источник испускает полный световой поток, равный 4p лм. Если источник с силой света 1 кд освещает обращенную к нему небольшую пластинку, находящуюся на расстоянии 1 м, то освещенность поверхности этой пластинки равна 1 лм/м2, т.е. одному люксу. Протяженный источник света или освещенный предмет характеризуется определенной яркостью (фотометрической яркостью). Если сила света, испускаемого 1 м2 такой поверхности в данном направлении, равна 1 кд, то ее яркость в этом направлении равна 1 кд/м2. (Яркость большинства тел и источников света в разных направлениях неодинакова.)

Виды фотометрических измерений. Основные виды фотометрических измерений таковы: 1) сравнение силы света источников; 2) измерение полного потока от источника света; 3) измерение освещенности в заданной плоскости; 4) измерение яркости в заданном направлении; 5) измерение доли света, пропускаемой частично прозрачными объектами; 6) измерение доли света, отражаемой объектами.

5. Общие методы фотометрии

Существуют два общих метода фотометрии: 1) визуальная фотометрия, в которой при выравнивании механическими или оптическими средствами яркости двух полей сравнения используется способность человеческого глаза ощущать различия в яркости; 2) физическая фотометрия, в которой для сравнения двух источников света используются различные приемники света иного рода - вакуумные фотоэлементы, полупроводниковые фотодиоды и т.д. При обоих методах для того, чтобы результаты имели универсальную значимость, условия наблюдения (или работы приборов) должны быть такими, чтобы фотометр реагировал на разные длины волн в точном соответствии со "стандартным наблюдателем" МКО. Важно также, чтобы световой выход лампы не изменялся в ходе измерений. Для стабилизации и измерения тока и напряжения в таких условиях обычно требуется довольно сложная электрическая аппаратура. В самых точных фотометрических измерениях приходится стабилизировать ток через лампу с точностью до (2 - 3)*10-3%.

Визуальная фотометрия. История визуальной фотометрии начинается с П. Бугера (1698-1758), замечательного ученого, который в 1729 изобрел способ сравнения двух потоков света и сформулировал почти все основные принципы фотометрии. И. Ламберт (1728-1777) далее систематизировал теорию фотометрии, и дальнейшее ее развитие шло в основном по линии совершенствования методов. В настоящее время визуальная фотометрия применяется ограниченно - при измерении весьма слабых световых потоков, когда трудно однозначно интерпретировать результаты физической фотометрии. Дело в том, что при уровнях яркости в диапазоне 0,01-1 кд/м2 спектральная чувствительность глаза плавно изменяется от соответствующей адаптации к свету (дневной, или фотопической) до соответствующей адаптации к темноте (суперечной, или скотопической), а потому здесь невозможно предсказать, какой должна быть спектральная чувствительность физического (электрического) фотометра, чтобы обеспечивалось согласие с возможными результатами визуальной фотометрии. Правильная методика для этого диапазона яркостей состоит в визуальном сравнении с источником света, энергетическое распределение которого соответствует высокотемпературному полому телу, фигурирующему в определении канделы. (Таким источником света может служить электрическая лампа накаливания при некотором значении силы тока.) При очень низких уровнях световых потоков используется второй (сумеречный) эталон, принятый международным соглашением в 1959, что позволяет проводить фотоэлектрические измерения без каких-либо неоднозначностей.

Визуально невозможно определить, насколько яркость одной поверхности больше, чем яркость другой. Но если две поверхности непосредственно примыкают друг к другу, то по исчезновению разграничивающей линии между ними равенство их яркостей можно установить визуально с точностью до 1% и даже еще точнее. Было разработано много различных устройств для образования таких полей сравнения; одно из них, т.н. кубик Люммера - Бродхуна, показано на рис. 2,а. Это две сложенные вместе трехгранные призмы из оптического стекла, причем контактная грань одной призмы слегка закруглена. Вследствие этой закругленности призмы имеют лишь частичный оптический контакт, через который свет может проходить прямо. Но в тех местах, где грани призм не соприкасаются, свет полностью отражается. Часто бывает желательно, чтобы свет от двух источников падал с противоположных сторон, и поэтому применяются схемы типа показанной на рис. 2,б. Наблюдатель, глядя в микроскоп с небольшим увеличением, видит поля сравнения, показанные на рис. 2,в. применяемого для сравнения силы света двух источников. а - две призмы, из которых состоит кубик; б - их расположение в фотометрической головке; в - поля сравнения, видимые в окуляр O.

Рис. 2 Схема кубика люммера - бродхуна

Свет от источника S1 попадает в нее после внутреннего отражения в призме S2. В результате формируется изображение в виде двух соосных эллипсов. 2. В результате формируется изображение в виде двух соосных эллипсов.

Чтобы добиться одинаковой яркости двух полей сравнения, нужно регулировать световой поток хотя бы одного из сравниваемых источников света. В лабораторных измерениях сравниваемые лампы закрепляют в держателях, которые можно перемещать по направляющей. Такая направляющая, прямая и достаточно жесткая, называется фотометрической скамьей. Фотометрическая головка (типа показанной на рис. 2,б) устанавливается неподвижно. Если одна лампа закреплена на расстоянии x1 (рис. 3) от экрана, а другая отодвинута на расстояние x2 и при этом яркость полей сравнения одинакова, то отношение сил света I1 и I2 двух ламп определяется равенством I1 /x12 = I2 /x22.

Рис. 3. Фотометрическая скамья, применяемая в визуальной фотометрии (фотометрическая головка показана на рис. 2,б). Лампа 1 неподвижна, а лампу 2 перемещают, добиваясь, чтобы обе лампы казались наблюдателю одинаково яркими

Это равенство выражает т. н. закон обратных квадратов расстояний И.Кеплера (1604), который является основным законом фотометрии. Согласно этому закону, если яркость двух полей сравнения одинакова, то силы света двух ламп обратно пропорциональны квадратам расстояний от соответствующих ламп до экрана фотометра. В справедливости этого соотношения легко убедиться, рассмотрев световую пирамиду с лампой в вершине (рис. 4). Свет, проходящий через сечение A пирамиды на единичном расстоянии от лампы, будет распределен по площади 4А на удвоенном расстоянии, по площади 9А - на утроенном расстоянии и т.д. Единственное условие применимости этого закона требует, чтобы размеры источника были малы по сравнению с расстоянием.

Рис. 4. Закон обратных квадратов расстояний, основной закон фотометрии

В некоторых специальных измерениях применяются другие средства изменения яркости поля сравнения, например, поляризатор с анализатором, которые поляризуют и ослабляют проходящий световой поток соответственно своей взаимной ориентации, клинья из серого стекла и быстро вращающиеся диски с секторными вырезами ("вращающиеся секторы"). Диски имеют форму плоской крыльчатки вентилятора. Если диск вращается достаточно быстро, так что не заметно никакого мерцания, то свет ослабляется пропорционально доле полного круга, приходящейся на секторные вырезы. Каков бы ни был выбранный способ регулировки яркости, важно, чтобы изменялась только яркость, но не цвет поля. Относительно световых источников разного цвета установлено, что если цвета различаются более или менее заметно, то результаты сравнения приобретают субъективный характер и даже у одного и того же наблюдателя могут меняться. При этом точность визуальной фотометрии сильно снижается.

Физическая фотометрия. Начало физической фотометрии положили Ю.Эльстер и Г. Гейтель, открывшие в 1889 фотоэффект. В 1908 Ш. Фери разработал электрический фотометр, чувствительность которого к разным длинам волн была близка к чувствительности человеческого глаза. Но лишь в 1930-х годах, после усовершенствования вакуумных фотоэлементов и изобретения селенового фотодиода, физическая (электрическая) фотометрия стала широко применяемым методом, особенно в промышленных лабораториях. Электрические фотоприемники, используемые в физической фотометрии, реагируют на свет с разными длинами волн не в точном соответствии с эталоном МКО. Поэтому для них требуется светофильтр - тщательно изготовленная пластинка из цветного стекла или окрашенного желатина, которая пропускала бы свет разных длин волн так, чтобы фотоприемник со светофильтром по возможности точно соответствовал "стандартному наблюдателю". Следует учитывать, что если световые потоки, различающиеся цветом, сравниваются с применением такого устройства, то результаты сравнения верны лишь условно. На самом деле невозможно гарантировать, что источники, яркость которых одинакова по оценке, основанной на эталоне МКО, покажутся одинаково яркими любому человеку. Выделение признака яркости из общего внешнего вида по-разному окрашенных источников света есть акт мысленного абстрагирования, который даже у одного и того же индивидуума протекает по-разному в разное время, а потому в тех случаях, когда требуются численные оценки, необходима стандартизованная методика измерений. Фотодиод (иногда называемый вентильным фотоэлементом) представляет собой металлическую пластинку, на которую нанесен тонкий слой полупроводникового материала (например, селена с напыленной поверх него тонкой пленкой золота или другого неокисляющегося металла) (рис. 5). Толщина пленки подобрана так, что она проводит электричество, но прозрачна и пропускает свет. Свет, падающий на селен, вызывает дрейф свободных электронов, которые заряжают металлическую пленку отрицательно относительно селена.

Рис. 5 Полупроводниковый фотодиод. Свет, падающий на слой селена, создает поток электронов, который может быть измерен гальванометром или микроамперметром. 1 - слой селена; 2 - металлическая подложка; 3 - прозрачный слой золота; 4 - металлическое кольцо

Если к такому фотодиоду присоединить микроамперметр с малым сопротивлением, то показываемый им ток будет почти строго пропорционален освещенности фотодиода. Если же сопротивление цепи велико, то это соотношение прямой пропорциональности нарушается, и в лабораторных условиях применяют специальные схемы, имитирующие нулевое внешнее сопротивление. Простая комбинация фотодиода с микроамперметром используется в фотографических экспонометрах. На фотометрической скамье рис. 3 вместо визуального фотометра можно установить фотодиод. Более того, можно установить рядом два фотодиода, обращенных в противоположные стороны, и измерять разность их токов. В таком варианте лампа 1 служит лампой сравнения и остается на своем месте в ходе эксперимента, а лампа, которую требуется сравнить, устанавливается в положение 2, после чего ее перемещают так, чтобы разность токов была равна нулю. Существуют люксметры, состоящие из фотодиода, корректирующего светофильтра и микроамперметра, широко применяемые инженерами по освещению и другими специалистами. В частности, фотодиод с корректирующим светофильтром используется для повседневных фотометрических измерений всех видов в заводских лабораториях. Если точность 1-2% приемлема, а сила света достаточно велика, то с такими устройствами можно работать без каких-либо затруднений. В случае слабых источников света, а также в тех случаях, когда требуются повышенная точность и более надежная калибровка, фотометристы обращаются к вакуумным фотоэлементам. Такой фотоэлемент имеет фотокатод в виде металлической пластинки, обычно покрываемой одним или несколькими тонкими слоями металлов и их оксидов, и второй электрод - анод, причем оба они находятся в стеклянном высоковакуумном баллоне. Когда на фотокатод падает свет с длиной волны, превышающей некоторое "пороговое" значение (зависящее от материала фотокатода), из него выбиваются электроны. Если фотоэлемент включить последовательно с батареей и чувствительным измерительным прибором, как показано на рис. 6, то электроны, высвобождающиеся с катода, будут притягиваться анодом. Поток таких электронов, а следовательно, и ток в цепи пропорциональны освещенности.

Рис. 6. Вакуумный фотоэлемент. Фотокатод покрыт калием или цезием, который испускает электроны под действием падающего света. Возникающий при этом ток может быть измерен чувствительным прибором. 1 - анод; 2 - микроамперметр; 3 - фотокатод; 4 - фотоэлемент

Вместо измерительного прибора можно использовать электронный усилитель, и тогда слабые токи будут усиливаться. Можно также добавить дополнительные усилительные каскады; тщательно спроектированная аппаратура такого рода позволяет измерять свет звезд, слишком слабый, чтобы его можно было видеть простым глазом. Для повышения чувствительности и стабильности измерений перед фотоэлементом можно установить вращающийся прерыватель света и усиливать полученный переменный ток. Такой метод особенно эффективен, если усиливаемый ток выпрямляется в точном синхронизме с прерывателем. Это позволяет подавить шумы электронной схемы и прочие помехи. Для усиления тока можно обойтись без внешнего усилителя, если использовать явление вторичной электронной эмиссии. Соответствующие устройства называются фотоэлектронными умножителями (ФЭУ); некоторые типы ФЭУ схематически изображены на рис. 7. Электроны, высвобождающиеся с фотокатода, притягиваются к первому из ряда электродов, называемых динодами. Каждый из них находится под более высоким напряжением, чем предыдущий. Электрон, падающий на динод, высвобождает несколько вторичных электронов; вторичные электроны идут к следующему диноду, и каждый высвобождает еще несколько электронов и т.д. Среднее отношение числа испущенных электронов к числу падающих (коэффициент усиления) можно легко регулировать, изменяя напряжение между соседними динодами. Коэффициент усиления может достигать миллиона и более, причем предел обусловлен только тем обстоятельством, что некоторое количество электронов высвобождается с фотокатода даже в темноте и они умножаются так же, как и другие.

Рис. 7. Фотоэлектронные умножители, которые при одной и той же интенсивности падающего света дают гораздо больший ток, чем фотоэлемент, представленный на рис. 6. Коэффициент усиления, зависящий от напряжения на соседних динодах, может достигать f7. 1 - фотокатод; 2 - диноды; 3 - коллектор; 4 - фокусирующая сетка; 5 - падающий свет; 6 - слюдяной экран

Ни у одного фотоэлемента или фотоэлектронного умножителя кривая спектральной чувствительности не соответствует в точности кривой чувствительности для глаза. Спектральная чувствительность зависит от материала фотокатода. Поэтому в тех случаях, когда приходится сравнивать световые потоки разного цвета, необходим светофильтр, а расчет и градуировка светофильтра для точной фотометрии могут составить основную часть затрат на аппаратуру.

Измерение светового потока. Одна из характеристик лампы или осветительной арматуры, необходимая инженеру по освещению, - это испускаемое ею полное количество света. Только измерив эту величину, можно определить относительную эффективность осветительных устройств. Имеются два существенно различающихся способа измерения полного светового потока: гониометрический метод и метод "интегрирующей сферы" ("сферы Ульбрихта"). Гониометр - это приспособление, позволяющее измерять освещенность, создаваемую лампой, в любом желаемом направлении. Лампа либо неподвижна, либо вращается вокруг вертикальной оси так, чтобы распределение света лампы не изменялось. Поэтому фотометр (обычно фотоэлектрический) закрепляют на конце длинного качающегося держателя, или используют подвижные зеркала. Во избежание больших поправок расстояние от лампы до фотометра выбирают на порядок больше максимального размера лампы; поэтому гониометр для больших люминесцентных ламп занимает много места. После того как измерена освещенность во многих направлениях, вычисляют полный световой поток. Интегрирующая сфера (рис. 8) представляет собой полый шар, выкрашенный изнутри матовой белой краской. Внутри сферы подвешивается лампа или арматура с экраном, закрывающим ее со стороны небольшого окошка из опалового стекла (освещенность которого измеряется). Внутри подвешивается также эталонная лампа (световой поток которой точно измерен при помощи гониофотометра), закрытая экранами со стороны первой лампы и окошка. Освещенность окошка при включенной той или другой лампе пропорциональна ее полному световому потоку (если не считать поправок, которые существенны, когда лампы имеют разные размеры или форму либо заметно различаются цветом испускаемого света).

Рис. 8 Интегрирующая сфера для измерения полного количества света, испускаемого лампой во всех направлениях. За окошком снаружи расположен фотометр, который сравнивает полные световые потоки двух ламп, включаемых по очереди

Специальные фотометры. Кроме рассмотренных приборов, существуют специальные фотометры для измерения яркости поверхностей, коэффициентов пропускания и отражения разных образцов, характеристик световозвращающих отражателей (дорожно-маркировочной краски, дорожных знаков), освещенности улиц и пр.

6. Определение бактериальной обсемененности шкур

Определить степень гнилостного разложения сырых шкур можно с помощью микробиологических, физических, биохимических, гистологических и органолептических показателей.

В промышленных условиях гниение шкур легче всего обнаружить органолептическим путем. Признаками гнилостного разложения считают зеленовато-серую, тёмную и скользкую поверхность кожевой ткани, наличие запаха, характерного для загнивающих белков, слабую связь волосяного покрова с кожевой тканью, наличие между корнями выдернутых волос кусочков эпидермиса, обнаруживаемого при перегибе шкуры, уменьшение массы и объёма шкуры, образование сквозных отверстий. Кроме того, такая кожа имеет запах, типичный для загнивающих белков.

Кожи из шкур в начальной стадии разложения имеют, как правило, расширенные отверстия волосяных мешочков, отдушистое, пятнистое лицо. Из шкур, более сильно поражённых гнилостными процессами, получают кожи с безличинами или пятнистым, сильно отдушистым лицом, пустоватые, дряблые. Из сырья сильно поражённого гнилостными процессами, получают малопрочные, дряблые кожи с безличинами, иногда кожевая ткань при выделке полностью разрушается.

Существует ряд методов, с помощью которых можно определить количество микроорганизмов в шкуре. Один из таких методов -- гистолого бактериоскопический, его применяют в соответствии с ГОСТом 13106-67.При этом методе требуется значительное количество времени, а также специальное оборудование и различные химические реактивы.

Другой метод определения бактериальности сырья -- микробиологический. Данный метод трудоемок и требует определенных знаний микробиологии.

Также можно определить бактериальную обсемененность сырья по редуктазной пробе с помощью резазурина. Редуктазная проба применительна к сырью животного происхождения и дает возможность быстро и достаточно объективно определить степень бактериальной обсемененности кожевенного сырья.

Существуют нормы для оценки обсемененности сырья.

Таблица Нормы оценки качества кожевенного сырья

Состояние сырья

Биохимические методы

Бальная оценка

Реакция среды

Число Неслера

Количество микроорганизмов

Состояние ткани

Органолеп. оценка

Общий балл

Для яловки (м/с)

нормальное

6,2-6,4

10,0-20,0

0,1-1,2

0,1-1,8

0,0-1,0

0,2-4,0

удовлетв.

6,2-6,4

10,0-20,0

1,2-2,5

1,8-2,5

1,0-2,5

4,0-7,5

Плохое

6,4-7,7

25,0-90,0

2,5-5,0

2,5-5,0

2,5-5,0

7,5-15,0

Для опойка (м/с)

нормальное

6,4-7,0

15,0-25,0

0,3-1,7

0,1-1,3

0,1-1,0

0,5-4,0

удовлетв.

6,4-7,0

15,0-25,0

1,7-2,8

1,3-2,2

1,0-2,5

4,0-7,5

Плохое

6,8-7,4

15,0-66,0

2,8-5,0

2,2-5,0

2,5-5,0

7,5-15,0

7. Цветовые показатели. Рассмотрим их на примере различных пород кроликов

Сегодня насчитывается более 90 пород кроликов - от совсем маленьких, карликовых, выведенных на радость любителям домашних питомцев, до крупных, весом до 8 килограмм. Несмотря на такое разнообразие для разведения в хозяйственных целях подходит не более 15 пород, в особенности с учетом суровых климатических условий в нашей стране.

Мех, хоть не отличается высокой носкостью, недорог и отличается многообразием окраса. А кроличий пух во многом превосходит сорта шерсти ангорских коз и мериносовых овец.

Разные породы кроликов в одном месте - это бывает часто в обычном домашнем хозяйстве

Существует условная хозяйственная классификация пород кроликов - меховые и пуховые. Опытные кролиководы знают, что существует особый индекс сбитости, указывающий на продуктивность кролика, высчитав который легко можно узнать, к какому типу относится особь. Вычислить его несложно, для этого надо измерить кролику обхват груди за лопатками, разделить на длину туловища и умножить на сто. Для мясных и пуховых пород идеальный результат - 64 и более. От 60 до 64 - для мясо - шкурковых пород. Вот почему в описаниях пород встречаются размеры грудной клетки и длины туловища. Еще одно важное качество для разведения - плодовитость и темпы роста крольчат.

Цена на разные породы кроликов может колебаться в зависимости от продуктивности породы, а также от экстерьера каждой отдельной особи.

Меховые породы кроликов

Меховые породы подразделяют на шкурковые, мясо - шкурковые и мясные породы, в зависимости от получаемой продукции. Также меховых кроликов классифицируют на нормальношерстных и короткошерстных. Большинство мясо - шкурковых пород нормальношерстные.

Пуховые породы кроликов

Кроличий пух - замечательное сырье для легкой промышленности. Он не уступает по толщине козьему и овечьему, обладает большей теплостойкостью, к тому же, весьма прочен. Считается, что кроличий пух обладает лечебными свойствами, при радикулитах и невралгиях. Вместе с растущей популярностью растет и интерес к разведению пуховых пород кроликов. Родиной пуховых кроликов считают Турцию, откуда они попали в Европу в начале 17 века. Продуктивность кроликов пуховых пород зависит от многих факторов - от питания, условий содержания, техники сбора пуха, возраста кролика и времени года.

Ангорский пуховый кролик

Кролик породы Ангорский пуховый

Свое название кролики получили за схожесть пуха с шерстью ангорской козы. Считается, что эта кролики попали в Европу из Турции и сразу стали модным домашними питомцами богатой знати. Эти милые игривые создания, похожие на пушистый шар, и сейчас популярны не в качестве домашней зверушки. Живой вес этих кроликов - 3 кг, длина туловища, обхват груди за лопатками. Плодовитость самок невысокая -6 - 8 крольчат, которые не отличаются высокими темпами роста. Двухкилограммового веса они достигают лишь к 6 месяцам. Требовательны в условиях содержания - обязательны просторные клетки, теплые и сухие, а также необходима регулярная стрижка.

Белый пуховый кролик

Кролик породы Белый пуховый

Порода пуховых кроликов полученная отечественными селекционерами путем скрещивания ангорских кроликов с местными низкопродуктивными кроликами пуховых пород. Средний вес этой породы 4 кг, длина туловища 54 см. Крепкая конституция, прочный костяк. Отличительная особенность - отсутствие кисточек на ушах. Окрол в среднем 7 крольчат. Порода обладает высоким показателем продуктивности - за год с одного кролика получают 300 - 750 грамм пуха, а от крольчих до 1 кг. Нежный пух этой породы отличается эластичностью, легкостью и прочностью. Кроме того, кролики выносливы, хорошо акклиматизируются.

Вот, в общем, и все основные породы кроликов. Есть и декоративные породы кроликов, но их в основном содержат просто как домашних животных, а не как промышленную живность для получения мяса, пуха или шкурки. Для разведения кроликов в домашних условиях, я вам советую выбирать породы кроликов, неприхотливых в обслуживании и тогда ваше хозяйство, ваша кроличья ферма будет прибыльной, пусть не в денежном эквиваленте, но своё вы от них возьмёте. Стоит сказать, что важнее выбора породы мало что может быть.

Электризуемость способность материалов в определенных условиях генерировать и накапливать на поверхности статическое электричество. Э. непосредственно связана с природой материалов, их строением, влажностью. С повышением влажности Э. снижается. Синтетические, ацетатные и триацетатные волокна и нити, имеющие низкие показатели гигроскопичности, обладают способностью сильно электризоваться. Ткани и текстильные изделия из этих волокон и нитей при эксплуатации также способны накапливать электростатические заряды. Электрическое поле, возникающее на коже человека под действием большинства синтетических волокон, может нарушать обмен веществ, изменять артериальное давление, повышать утомляемость и способствовать ощущению дискомфорта. Поэтому важное значение имеет разработка способов снижения Э. материалов. Одним из таких способов является обработка изделий из ацетатных и синтетических волокон антистатиками, которые, поглощая влагу или вступая с ней во взаимодействие, образуют на поверхности материала слой, способствующий рассеиванию зарядов и тем самым снижающих Э. материала. Другим способом снижения Э. материалов является поверхностная компенсация зарядов. При изготовлении текстильных полотен компоненты волокнистого состава подбирают таким образом, чтобы при трении на поверхности волокон образовывались заряды противоположных знаков, в результате чего происходила бы их взаимная нейтрализация. Так, сочетание гидрофильных и гидрофобных волокон, волокон, накапливающих заряды противоположных знаков, снижает Э.

8. Методы исследования и оценки качества пищевых жиров

При гигиенической оценке жиров учитывают в первую очередь, органолептические показатели: цвет, консистенцию, вкус и запах, а для растительных масел -- прозрачность и отстой. При расследовании случаев фальсификации жиров животного происхождения применяют простые методики, направленные на обнаружение в сливочном и топленом маслах примесей маргарина, животных топленых жиров, растительных масел, творога и крахмала. В сомнительных случаях, когда органолептические методы недостаточны для принятия решения об использовании исследуемых продуктов в питании военнослужащих, используют лабораторные методы: определяют перекисное и кислотное число, ставят пробы на альдегиды и кетоны.

Отбор проб производят после наружного осмотра состояния тары. Для этого в зависимости от величины партии отбирают и вскрывают 10--15% от общего числа мест. От твердых жиров пробу отбирают масляным щупом, имеющим вид желоба с рукояткой. С помощью этого щупа из разных мест вскрытой упаковки отбирают 50--100 г жира. Пробу жидких масел отбирают металлической трубкой диаметром 2,5 см, снабженной на одном конце пробкой для плотного закрывания после заполнения, либо с помощью насоса. Из каждой осмотренной бочки (предварительно несколько раз перекатанной для смешивания содержимого) или цистерны отбирается в среднем 500 мл содержимого. Пробы из разных бочек смешивают и из среднего образца выделяют для проведения лабораторных исследований 200--300 мл масла.

Органолептическне исследования. Цвет твердых жиров определяется на свежем разрезе, а растительного масла -- в стаканчике из бесцветного стекла в проходящем или отраженном дневном свете (диаметр стакана должен быть 5 см, а высота столбика масла в нем -- 10 см).

Неоднородный цвет, неравномерная посолка, наличие кристаллов нерастворившейся соли, крошливая консистенция сливочного масла -- пороки, снижающие сортность масла. При обнаружении плесени на таре, пергаменте или на поверхности масло подвергают зачистке и быстрой реализации, если не выявляются другие порочащие признаки.

Животные жиры должны иметь естественный цвет, обусловленный их природными особенностями. Цвет говяжьего жира -- от бледно-желтого до желтого, бараньего -- от белого до бледно-желтого, свиного -- чисто белый, костного -- от белого до насыщенного желтого. Цвет жира может служить одним из показателей глубины окислительной порчи. Так, появление зеленоватого оттенка свидетельствует, как правило, об окислении пигментов (каротина), что предшествует окислению триглицеридов. Интенсивная желтая окраска, развивающаяся в процессе хранения, является внешним признаком прогоркания, а обесцвечивание часто сопутствует осаливанию.

Кулинарные жиры должны иметь чистый, характерный для данного вида жира запах и вкус, без посторонних привкусов и запахов, цвет -- от белого до светло-желтого, равномерный по всей массе, консистенцию -- однородную, плотную или мазеобразную; в расплавленном состоянии они должны быть прозрачными. Незначительный осадок допускается в жирах, обогащенных фосфатидами (в смеси пищевого саломаса, растительного масла и свиного сала, используемые для приготовления кондитерских изделий, добавляют фосфатидные концентраты). Жиры, обогащенные витамином А или каротином, имеют насыщенную желтую окраску.

Запах и вкус определяют как в холодном, так и в разогретом виде. В последнем случае небольшое количество масла, подогретого до 50°С на водяной бане, наносят тонким слоем на стеклянную пластинку или растирают на тыльной стороне кисти и немедленно оценивают. Запах и вкус доброкачественного масла специфические, ароматные, без горечи, посторонних запахов и привкусов.

Обнаружение в масле недостаточно чистого или слабовыраженного дымного, пригорелого запаха, слабого кормового, салистого или слегка горьковатого привкуса снижает его сортность, но не является основанием для браковки. Те же привкусы и запахи, резко выраженные, сохраняющиеся при добавлении масла в первые и вторые блюда, достаточны для запрещения к использованию в пищу без подработки.

Не допускается на довольствие масло, имеющее гнилостный, сырный, рыбный, салистый, плесневелый, олеистый, прогорклый запах и привкус, посторонние примеси, пораженные плесенью на значительную глубину. При обнаружении примеси маргарина, животных топленых жиров, растительных масел, творога или крахмала проводят расследование фальсификации. В сомнительных случаях производится определение перекисного, кислотного числа, альдегидов и кетонов.

Запах и вкус животных топленых жиров должны быть характерными для каждого вида жира, вытопленного из свежего сырья, без посторонних привкусов и запахов. В жирах первого сорта допускается легкий, приятный поджаристый запах и привкус. Появление прогорклого или фруктового запаха обычно свидетельствует о глубоких химических изменениях жира.

В процессе длительного хранения кулинарные жиры могут приобретать горький, сальный, прогорклый, металлический, рыбный, плесневелый привкус, салистый, сырный, кислый запах. При появлении перечисленных признаков жиры для пищевых целей не используются.

Прозрачность. Для определения прозрачности в чистый, сухой цилиндр или широкую пробирку диаметром 1,5 см и высотой 20--25 см из прозрачного стекла наливают предварительно расплавленный жир, имеющий температуру не ниже 55--60°С. Налитый в цилиндре жир рассматривают в проходящем и отраженном дневном свете.

В раславленном состоянии жиры должны быть прозрачными, не содержать взвешенных частил и остатков шквары. Консистенция говяжьего и бараньего жира при 15--20°С твердая, свиного и костного -- мазеобразная. Прозрачность растительного масла определяют путем просмотра на белом фоне содержимого стеклянного цилиндра, предварительно выдержав масло при 20°С в течение 48 ч. Отстоявшееся нерафинированное масло не должно давать видимого осадка.

Доброкачественные жиры и масла должны отвечать следующим органолептическим требованиям.

Показатель

Коровье масло

Топленое масло

Маргарин

Кухонные жиры

Растительные масла

Цвет

От светлого до соломенного

Соломенно-желтый

Однородный по всей массе

Однородный по всей массе

Золотисто-желтый

Прозрачность (для твердых жиров в растопленном состоянии)

Прозрачное

Прозрачное

Прозрачный

Прозрачные

Прозрачные

Консистенция при +15 °С

Плотная

Мягкая

Плотная

Пластичная

Жидкая

Запах и вкус

Без посторонних оттенков и привкусов

Лабораторные методы определения примесей в сливочном масле

Определение примеси маргарина: а) в большую пробирку наливают 20 мл ледяной уксусной кислоты и 1 мл расплавленного на водяной бане масла. При смешивании натуральное масло дает прозрачный раствор, а при наличии маргарина -- мутный;

б) в большую пробирку наливают 20 мл смеси, состоящей из этилового спирта (3 части), этилового эфира (6 частей) и едкого натрия (одна часть) и около 1 г расплавленного на водяной бане (не перегретого!) масла. Реакция читается так же, как при анализе первым способом;

в) на фаянсовой тарелке кусочек масла размером 3х4 см освещают ультрафиолетовыми лучами. На темно-фиолетовом фоне тарелки сливочное масло люминесцирует желтым цветом, маргарин дает бело-голубое свечение.

Определение примеси сала (акролеиновая, фитильная проба). Хлопчатобумажный фильтр пропитывают растопленным в фарфоровой чашечке маслом. Фитиль зажигают и через короткое время тушат. Свежее коровье масло при этом дает приятный запах топленого масла. Дым от масла с примесью сала или других жиров животного происхождения имеет неприятный запах старой (сальной) свечи.

Определение примеси растительного масла. В пробирке смешивают равные объемы исследуемого масла, насыщенного раствора резорцина в бензоле и крепкой азотной кислоты. В присутствии растительных масел смесь приобретает фиолетовую окраску.

Примесь минеральных масел может быть выявлена путем определения количества неомы-ляющихся веществ.

Определение примеси творога. Чайную ложку исследуемого масла опускают в стакан с крутым кипятком, смешивают. Если масло доброкачественное, через несколько минут жир всплывает, вода остается прозрачной. Частицы творога, не растворяющиеся в воде и удельно более тяжелые, оседают на дно. Пробу можно проводить в количественных соотношениях и ориентировочно определить процент примеси.

Определение примеси крахмала. Около 10 г расплавленного масла взбалтывают в пробирке с равным объемом горячей дистиллированной воды. Слой жира сливают, водный слой доводят до кипения, добавляют 2--3 капли 0,5%-ного раствора йода. Появление синей окраски свидетельствует о наличии в масле крахмала. При отрицательной пробе смесь имеет желтоватую окраску.

Ориентировочное определение воды в жире и масле. В узкую пробирку помещают около 5 г исследуемого масла. Пробирку с маслом нагревают на водяной бане до полного растворения масла. После охлаждения пробирки с маслом миллиметровой линейкой измеряют высоту столбов воды и масла в пробирке. Объем, занимаемый водой, не должен превышать 1/6 всего объема (что соответствует содержанию 15,5--16,0 % влаги).

Проба на прогорклость. В пробирку с 1 г растопленного масла приливают равные объемы (по 1 мл) крепкой соляной кислоты (удельный вес 1,19) и 1%-ного эфирного раствора флороглюцина. Смесь взбалтывают в течение 30 с. Испорченное, прогорклое масло окрашивается в розовый цвет (положительная реакция на альдегиды).

Отличие растительного масла от минерального. В химическую пробирку помещают 2--3 капли исследуемого масла и прибавляют 5 мл 2 н. спиртового раствора едкого калия. Смесь нагревают на спиртовке до кипения и кипятят 2--3 мин. Затем пробирку немного охлаждают на воздухе и в нее добавляют 2--3 капли дистиллированной воды. Если раствор в пробирке прозрачен -- значит омыление произошло и масло -- растительное. Если содержимое пробирки от прибавления воды стало мутным (то есть омыления не произошло) -- масло минеральное.

Помимо проб на доброкачественность жиров, существуют пробы, с помощью которых можно определить природу масла или жира, а также их натуральность. Для этого существуют такие показатели, как коэффициент преломления света (рефракция), число Рейхерта-Мейссля, число Поленске, число омыления и йодное число.

Определение перекисного числа. Перекисное число выражают в граммах йода, вытесняемого из йодистого калия перекисными соединениями, содержащимися в 100 г жира. 1--2 г расплавленного жира растворяют в колбе в смеси 7,5 мл ледяной уксусной кислоты и 5 мл хлороформа, добавляют 1 мл свежеприготовленного насыщенного раствора йодистого калия.

Колбу закрывают пробкой, встряхивают в течение 5 мин, добавляют 60 мл воды и 1 мл 1%-ного раствора крахмала.

Вытесненный перекисями йод оттитровывают 0,01 н. раствором тиосульфата натрия с теми же реактивами, но без добавления жира:

ПЧ = (А - Б) * 100 * 0,00127 К

где А -- расход 0,01 н. раствора тиосульфата натрия на титрование опытной пробы, мл; Б -- расход 0,01 н. раствора тиосульфата натрия на титрование контрольной пробы, мл; р --масса навески, г; К -- поправка к титру раствора тиосульфата натрия; 0,00127 -- количество йода, связывающее 1 мл 0,01 н. раствора тиосульфата натрия, г.

Стандартами нормируется перекисное число только для топленых животных жиров. Ориентировочные значения перекисного числа других жиров различной степени свежести приведены в таблице.

Пищевые жиры

Перекисное число, не более

Свежие

Подозрительной свежести

Прогорклые

Сливочное масло

0,02

0,06

0,10

Топленое масло

0,02

0,03

0,50

Подсолнечное масло:

рафинированное

0,18

0,50

6,08

нерафинированное

0,16

0,40

3,50

Гидрожир

0,10

--

0,50

Жиры топленые животные

0,03*

0,06 -- 0,10

Более 0,10

Реакция на кетоны. В круглодонную колбу на 0,5 л вносят 20 г исследуемого масла, 250 мл насыщенного раствора хлорида натрия и несколько бусинок. Соединив колбу с холодильником через каплеуловитель, отгоняют при нагревании и собирают в градуированную пробирку первые 4 мл отгона. Дистиллят разливают по 1 мл в четыре химические пробирки. В каждую пробирку добавляют по 0,2 мл салицилового альдегида и по 3 мл дымящейся соляной кислоты. Смесь нагревают до начала кипения при частом взбалтывании. Через 2--3 мин в остывшие пробирки вносят по 0,5 мл хлороформа, встряхивают и оставляют в штативе до разделения слоев.

При наличии в масле кетонов слой хлороформа розовеет, а сверху образуется тонкое красное колечко.

Реакция на альдегиды: а) около 1 г жира растворяют в 10 мл петролейного эфира. К 2 мл приготовленного раствора прибавляют 1 мл фуксинсернистой кислоты, встряхивают и оставляют в штативе. При наличии альдегидов через 10 мин нижний слой окрашивается в фиолетовый цвет;

б) около 2 г жира расплавляют в пробирке, добавляют равные объемы концентрированной соляной кислоты и 1%-ного раствора флороглюцина в эфире или в ацетоне, встряхивают. При наличии эпигидринальдегида, свидетельствующего о прогорклости масла, смесь окрашивается в розово-красный или вишнево-красный цвет.

Если в аналогичной рецептурной прописи раствор флороглюцина заменить насыщенным на холоде раствором резорцина в бензоле или 1%-ным раствором пирогаллола в эфире, то при положительной реакции на границе раздела жидкостей появляется красно-фиолетовое кольцо.

Количественное определение отстоя растительных масел. Отвешивают 100 г масла в колбу и фильтруют его через бумажный фильтр, предварительно высушенный при температуре 105 °С и взвешенный. Фильтр с осадком промывают эфиром, высушивают в бюксе до постоянной массы и после охлаждения в эксикаторе взвешивают. Отстой в процентах рассчитывают по формуле

X = (А - Б) * 100р-1 ,

где А -- масса фильтра с бюксой и осадком после высушивания, г; Б -- масса фильтра с бюксой, г; р -- масса навески, г.

Отстой подсолнечного масла высшего сорта должен быть не более 0,05 %, 1-го сорта -- 0,1 % и 2-го сорта--0,2% массы. Нерафинированное хлопковое масло (“черное масло”) для пищевых целей не допускается, так как содержит ядовитый пигмент -- госсипол.

Определение кислотности. В коническую колбу отвешивают 5 г масла или жира, расплавляют его на водяной бане и приливают 30--40 мл предварительно нейтрализованной смеси равных объемов 95° спирта и этилового эфира для растворения жира. Раствор должен быть совершенно прозрачный. При наличии мути содержимое вновь подогревают на водяной бане до получения прозрачного раствора. В колбу добавляют 3--4 капли 1%-ного спиртового раствора фенолфталеина и титруют 0,1 н. раствором едкой щелочи до появления розовой окраски, не исчезающей в течение минуты. Кислотность жира выражается в виде градусов кислотности. Градусом кислотности называют количество 0,1 н. раствора едкого калия (в мл), которое требуется для нейтрализации свободных кислот в 100 г жира. Кислотность может выражаться в виде кислотного числа.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.