Распад белков. Реакции анаэробного и аэробного гликолиза. Дыхательная цепь ферментов
Главные источники белков для организма. Переваривание белковой пищи. Метаболизм аминокислот, пути связывания аммиака. Дихотомический и апотомический распад глюкозы. Осуществление сопряжения окисления с фосфорилированием в процессе клеточного дыхания.
Рубрика | Биология и естествознание |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 27.05.2013 |
Размер файла | 2,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНОБРНАУКИ РОССИИ
ФЕДИРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ
ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
"ПЕЗЕНСКАЯ ГОСУДАРСТВЕННАЯ ТЕХНОЛОГИЧЕСКАЯ АКАДЕМИЯ"
ФАКУЛЬТЕТ "БИОМЕДИЦИНСКИХ И ПИЩЕВЫХ ТЕХНОЛОГИЙ И СИСТЕМ"
КАФЕДРА "БИОЛОГИЯ, БИОХИМИЯ И ЭКОЛОГИЯ"
ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ
по дисциплине: "БИОХИМИЯ"
Выполнил: студент группы 10ТП2
Рахимова К.К.
Проверил: к. б. н., доцент кафедры "ББиЭ"
Малышева Елена Александровна
Пенза, 2013
Оглавление
- 1. Вопрос. Распад Белков. Метаболизм аминокислот. Пути связывания аммиака
- Распад Белков
- Метаболизм аминокислот и белков
- Связывание (обезвреживание) аммиака
- 2 Вопрос. Дихотомический и апотомический распад глюкозы. Анаэробный распад (дихотомический)
- Реакции аэробного гликолиза
- 3. Вопрос. Дыхательная цепь ферментов, осуществляющих сопряжение окисления с фосфорилированием. Шкала редокс потенциалов компонентов электротранспортной цепи
- Окислительное фосфорилирование
- Окислительно-восстановительный потенциал
- Список литературы
1. Вопрос. Распад Белков. Метаболизм аминокислот. Пути связывания аммиака
Распад Белков
Белки - обязательный компонент сбалансированного пищевого рациона.
Главными источниками белков для организма являются пищевые продукты растительного и животного происхождения. Переваривание белков в организме происходит с участием протеолитических ферментов желудочно-кишечного тракта. Протеолиз - гидролиз белков. Протеолитические ферменты - ферменты, осуществляющие гидролиз белков. Данные ферменты подразделяются на две группы - экзопепетидазы, катализирующие разрыв концевой пептидной связи с освобождением одной какой-либо концевой аминокислоты, и эндопептидазы, катализирующие гидролиз пептидных связей внутри полипептидной цепи.
В ротовой полости расщепления белков не происходит из-за отсутствия протеолитических ферментов. В желудке имеются все условия для переваривания белков. Протеолитические ферменты желудка - пепсин, гастриксин - проявляют максимальную каталитическую активность в сильно кислой среде. Кислая среда создается желудочным соком (рН = 1,0-1,5), который вырабатывается обкладочными клетками слизистой оболочки желудка и в качестве основного компонента содержит соляную кислоту. Под действием соляной кислоты желудочного сока происходит частичная денатурация белка, набухание белков, что приводит к распаду его третичной структуры. Кроме того, соляная кислота переводит неактивный профермент пепсиноген (вырабатывается в главных клетках слизистой оболочки желудка) в активный пепсин. Пепсин катализирует гидролиз пептидных связей, образованных остатками ароматических и дикарбоновых аминокислот (оптимум рН = 1,5-2,5). Слабее проявляется протеолитическое действие пепсина на белки соединительной ткани (коллаген, эластин). Не расщепляются пепсином протамины, гистоны, мукопротеины и кератины (белки шерсти и волос).
По мере переваривания белковой пищи с образованием продуктов гидролиза щелочного характера рН желудочного сока изменяется до 4,0. С уменьшением кислотности желудочного сока проявляется деятельность другого протеолитического фермента - гастриксина (оптимум рН= 3,5-4,5).
В желудочном соке детей обнаружен химозин (реннин), расщепляющий казеиноген молока.
Дальнейшее переваривание полипептидов (образовавшихся в желудке) и нерасщепившихся белков пищи осуществляется в тонком кишечнике под действием ферментов панкреатического и кишечного соков. Протеолитические ферменты кишечника - трипсин, химотрипсин - поступают с панкреатическим соком. Оба фермента наиболее активны в слабощелочной среде (7,8-8,2), что соответствует рН тонкого кишечника. Профермент трипсина - трипсиноген, активатор - энтерокиназа (вырабатывается стенками кишечника) или ранее образованный трипсин. Трипсин гидролизует пептидные связи, образованные арг и лиз. Профермент химотрипсина - химотрипсиноген, активатор - трипсин. Химотрипсин расщепляет пептидные связи между ароматическими амк, а также связи, которые не были гидролизованы трипсином.
Благодаря гидролитическому действию на белки эндопептидаз (пепсин, трипсин, химотрипсин) образуются пептиды различной длины и некоторое количество свободных аминокислот. Дальнейший гидролиз пептидов до свободных аминокислот осуществляется под влиянием группы ферментов - экзопептидаз. Одни из них - карбоксипептидазы - синтезируются в поджелудочной железе в виде прокарбоксипептидазы, активируются трипсином в кишечнике, отщепляют аминокислоты с С-конца пептида; другие - аминопептидазы - синтезируются в клетках слизистой оболочки кишечника, активируются трипсином, отщепляют аминокислоты с N - конца.
Оставшиеся низкомолекулярные пептиды (2-4 аминокислотных остатка) расщепляются тетра-, три - и дипептидазами в клетках слизистой оболочки кишечника.
Метаболизм аминокислот и белков
Общее содержание аминокислот в ткани мозга человека в 8 раз превышает концентрацию их в крови. Аминокислотный состав мозга отличается определенной специфичностью. Так, концентрация свободной глутамино-вой кислоты в мозге выше, чем в любом другом органе млекопитающих (10 мкмоль/г). На долю глутаминовой кислоты вместе с ее амидом глу-тамином и трипептидом глутатионом приходится более 50% б-аминоазота головного мозга. В мозге содержится ряд свободных аминокислот, которые лишь в незначительных количествах обнаруживаются в других тканях млекопитающих. Это г-аминомасляная кислота, N-ацетиласпарагиновая кислота и цистатионин.
Известно, что обмен аминокислот в мозговой ткани протекает в разных направлениях. Прежде всего пул свободных аминокислот используется как источник "сырья" для синтеза белков и биологически активных аминов. Одна из функций дикарбоновых аминокислот в головном мозге - связывание аммиака, освобождающегося при возбуждении нервных клеток.
Поступления аминокислот в мозговую ткань и выход из нее, а также использование глюкозы крови для синтеза аминокислот нейронов и глии в разных отделах мозга различны. Эти различия в существенной мере обусловлены наличием гематоэнцефалического барьера, который следует рассматривать конкретно для каждого вещества или класса веществ. Гематоэнцефалический барьер не следует представлять как единое структурное образование, создающее преграду для транспорта; различие относительно скоростей поступления веществ в разные отделы мозга может быть обусловлено особенностями эпителия сосудов, базальной мембраны или расположения прилегающих отростков глиальных клеток. В условиях in vitro (в отсутствие барьера) многие аминокислоты накапливаются в клетках мозга за счет активного транспорта, в котором участвует несколько самостоятельных Na+-зависимых транспортных систем.
Установлено, что белки в головном мозге находятся в состоянии активного обновления, о чем свидетельствует быстрое включение радиоактивных аминокислот в молекулы белков. Однако в разных отделах головного мозга скорость синтеза и распада белковых молекул неодинакова. Белки серого вещества полушарий большого мозга и белки мозжечка отличаются особенно большой скоростью обновления. В участках головного мозга, богатых проводниковыми структурами - аксонами (белое вещество головного мозга), скорость синтеза и распада белковых молекул меньше.
При различных функциональных состояниях ЦНС наступают изменения в интенсивности обновления белков. Так, при действии на организм животных возбуждающих агентов (фармакологические средства и электрический ток) в головном мозге усиливается интенсивность обмена белков. Под влиянием наркоза скорость распада и синтеза белков снижается.
Возбуждение нервной системы сопровождается повышением содержания аммиака в нервной ткани. Это явление наблюдается как при раздражении периферических нервов, так и при раздражении мозга. Считают, что образование аммиака при возбуждении в первую очередь происходит за счет дезаминирования АМФ.
Аммиак - очень ядовитое вещество, особенно для нервной системы. Особую роль в устранении аммиака играет глутаминовая кислота. Она способна связывать аммиак с образованием глутамина - безвредного для нервной ткани вещества. Данная реакция амидирования протекает при участии фермента глутаминсинтетазы и требует затраты энергии АТФ. Непосредственный источник глутаминовой кислоты в мозговой ткани - путь восстановительного аминирования б-кетоглутаровой кислоты;
Образование глутаминовой кислоты из б-кетоглутаровой и аммиака является важным механизмом нейтрализации аммиака в ткани мозга, где путь устранения аммиака за счет синтеза мочевины не играет существенной роли.
Кроме того, глутаминовая кислота в нервной ткани может декарбокси-лироваться с образованием ГАМК:
ГAMК в наибольшем количестве содержится в сером веществе головного мозга. В спинном мозге и периферических нервах ее значительно меньше.
Связывание (обезвреживание) аммиака
В связи с токсичностью аммиака в тканях происходит его связывание с образованием нетоксичных соединений - АК и мочевины. Процесс образования и обезвреживания аммиака регулируют в основном ферменты глутаматдегидрогеназа и глутаминсинтетаза.
Обмен глутамата
В мозге и некоторых других органах может протекать восстановительное аминирование б-кетоглутарата под действием глутаматдегидрогеназы, катализирующей обратимую реакцию.
Однако этот путь обезвреживания аммиака в тканях используется слабо, так как глутаматдегидрогеназа катализирует преимущественно реакцию дезаминирования глутамата. Хотя, если учитывать последующее образование глутамина, реакция выгодна для клеток, так как способствует связыванию сразу 2 молекул NH3.
Обмен глутамина
Основной реакцией связывания аммиака, протекающей во всех тканях организма (основные поставщики мышцы, мозг и печень), является синтез глутамина под действием глутаминсинтетазы:
Глутаминсинтетаза находиться в митохондриях клеток, содержит кофактор - ионы Mg2+, является одним из основных регуляторных ферментов обмена АК. Она аллостерически ингибируется АМФ, глюкозо-6ф, гли, ала и гис.
Глутамин, путём облегчённой диффузии, легко проходит клеточные мембраны (для глутамата возможен только активный транспорт), поступает из тканей в кровь и транспортируется в кишечник и почки.
В почках происходит гидролиз глутамина под действием глутаминазы с образованием аммиака:
Аммиак с протонами и анионами образует соли аммония (0,5 г/сут), которые выделяются с мочой. Этот процесс используется для регуляции КОС и сохранения в организме важнейших катионов Na+ и К+. Глутаминаза почек значительно индуцируется при ацидозе, ингибируется при алкалозе.
В клетках кишечника также под действием глутаминазы происходит гидролитическое освобождение амидного азота в виде аммиака:
Образовавшийся аммиак поступает через воротную вену в печень или удаляется из организма с фекалиями.
Высокий уровень глутамина в крови и лёгкость его поступления в клетки обусловливают использование глутамина во многих анаболических процессах. Глутамин - основной донор азота в организме. Амидный азот глутамина используется для синтеза пуриновых и пиримидиновых нуклеотидов, аспарагина, аминосахаров и других соединений.
Обмен аспарагина
Обезвреживание аммиака в тканях происходит незначительно при синтезе аспарагина под действием глутаминзависимой и аммиакзависимой аспарагинсинтетазы.
Первая функционирует в животных клетках, вторая преобладает в бактериальных клетках, но присутствует и у животных.
Обмен аланина
Из мышц и кишечника избыток аминного азота выводится преимущественно в виде аланина.
В кишечнике:
Глутамат подвергается трансаминированию с ПВК с образованием аланина и б-кетоглутарата. Аланин поступает из кишечника в кровь воротной вены и поглощается печенью.
В мышцах:
Образование аланина в мышцах, его перенос в печень связан с обратным переносом в мышцы синтезированной в печени глюкозы. Этот процесс называется глюкозо-аланиновый цикл:
Он необходим, так как активность глу-ДГ в мышцах невелика и непрямое дезаминирование АК малоэффективно.
Мышцы выделяют особенно много аланина в силу их большой массы, активного потребления глюкозы при физической работе, а также потому, что часть энергии они получают за счёт распада АК. Образовавшийся аланин поступает в печень, где подвергается непрямому дезаминированию. Выделившийся аммиак идет на синтез мочевины, а ПВК включается в глюконеогенез. Глюкоза из печени поступает в ткани и там, в процессе гликолиза, опять окисляется до ПВК.
2 Вопрос. Дихотомический и апотомический распад глюкозы. Анаэробный распад (дихотомический)
Анаэробный распад глюкозы происходит при недостаточном содержании кислорода, в клетках мышечной ткани животного организма. Данный путь распада называется дихотомическим, т.к. в процессе происходит образование двух молекул триоз, содержащих по 3 С-атома из одной молекулы гексозы (6 С-атомов). Конечный продукт анаэробного превращения глюкозы - молочная кислота. Гликолиз протекает в гиалоплазме (цитозоле) клетки. Гликолиз условно можно разбить на два этапа. В первом этапе происходит затрата энергии, второй этап, наоборот, характеризуется накоплением энергии в форме молекул АТФ.
Следует отметить, что в организме любой метаболический путь начинается с активации исходного соединения.
Первой ферментативной реакцией гликолиза является фосфорилирование глюкозы, т.е. перенос остатка фосфорной кислоты на глюкозу за счет энергии АТФ с образованием глюкозо-6-фосфата. Реакция катализируется ферментом гексокиназой. Киназами называются ферменты, катализирующие перенос остатка фосфорной кислоты от АТФ к акцептору.
Образование глюкозо-6-фосфата в гексокиназной реакции сопровождается освобождением значительного количества свободной энергии и может считаться практически необратимым процессом.
Наиболее важным свойством гексокиназы являетвся ее ингибирование глюкозо-6-фосфатом, т.е. последний служит одновременно и продуктом реакции, и аллостерическим ингибитором.
Второй реакцией гликолиза является превращение глюкозо-6-фосфата под действием фермента глюкозо-6-фосфат-изомеразы во фруктозо-6-фосфат (изомеризация альдозы в кетозу):
Эта реакция протекает легко в обоих направлениях.
Третья реакция катализируется ферментом фосфофруктокиназой; образовавшийся фруктозо-6-фосфат вновь фосфорилируется за счет второй молекулы АТФ:
Данная реакция аналогично гексокиназной практически необратима, протекает в присутствии ионов магния и является наиболее медленно текущей реакцией гликолиза. Фактически эта реакция определяет скорость гликолиза в целом.
Фосфофруктокиназа относится к числу аллостерических ферментов. Она ингибируется АТФ и стимулируется АМФ. Так, в неработающей мышце активность фосфофруктокиназы низкая, а концентрация АТФ относительно высокая. Во время работы мышцы происходит интенсивное потребление АТФ и активность фосфофруктокиназы повышается, что приводит к усилению процесса гликолиза.
Четвертую реакцию гликолиза катализирует фермент альдолаза. Под влиянием этого фермента фруктозо-1,6-бифосфат расщепляется на две фосфотриозы:
Эта реакция обратима. В зависимости от температуры равновесие устанавливается на различном уровне. При повышении температуры peакция сдвигается в сторону большего образования триозофосфатов (дигидроксиацетонфосфата и глицеральдегид-3-фосфата (фосфоглицериновый альдегид)).
Пятая реакция - это реакция изомеризации триозофосфатов. Kaтализируется ферментом триозофосфатизомеразой:
Дальнейшим превращениям будет подвергаться только глицеральдегид-3-фосфат.
В результате шестой реакции глицеральдегид-3-фосфат в присутствии фермента глицеральдегидфосфатдегидрогеназы, кофермента НАД и неорганического фосфата подвергается окислению с образованием 1,3 - бифосфоглицериновой кислоты и восстановленной формы НАДН. С данной реакции начинается второй этап гликолиза.
1,3-Бисфосфоглицерат представляет собой высокоэнергетическое соединение (макроэргическая связь условно обозначена знаком "тильда" ~).
Седьмая реакция катализируется фосфоглицераткиназой, при этом происходит передача богатого энергией фосфатного остатка (фосфатной группы в положении 1) на АДФ с образованием АТФ и 3-фосфоглицериноой кислоты (3-фосфоглицерат):
Это первая реакция гликолиза, в которой происходит образование АТФ (пример субстратного фосфорилирования).
Восьмая реакция сопровождается внутримолекулярным переносом оставшейся фосфатной группы, и 3-фосфоглицериновая кислота превращается в 2-фосфоглицериновую кислоту (2-фосфоглицерат):
Девятая реакция катализируется ферментом енолазой, при этом фосфоглицериновая кислота в результате отщепления молекулы переходит в фосфоенолпировиноградную кислоту (фосфоенолпируват), а фосфатная связь в положении 2 становится высокоэргической:
Десятая реакция характеризуется разрывом высокоэргической связи и переносом фосфатного остатка от фосфоенолпирувата на АДФ (субстатное фосфолирование). Катализируется ферментом пируваткиназой:
В результате одиннадцатой реакции происходит восстановление пировиноградной кислоты и образуется молочная кислота. Реакция протекает при участии фермента лактатдегидрогеназы и кофермента НАДН, образовавшегося в шестой реакции:
Конечным акцептором электронов в ходе гликолиза является ПВК, которая восстанавливается в молочную кислоту (лактат). Поэтому для нормального протекания этого метаболического пути требуется только глюкоза, которая может быть запасена клеткой в виде резервных полисахаридов в избыточном количестве.
Образование лактата является завершающей стадией анаэробного гликолиза. Энергетический баланс - 2 молекулы АТФ (4 молекулы образуется, 2 - потребляется).
Рис.1. Последовательность реакций гликолиза.
1-гексокиназа;
2-фосфоглюкоизомераза;
3-фосфофруктокиназа;
4-альдотаза;
5-триозофосфатизомераза;
6-глицеральдигидфосфатдегидрогеназа;
7-фосфоглицераткиназа;
8 - фосфоглицеромутаза;
9-енолаза;
10-пирруваткиназа;
11-лактатдегидрогенеза.
Аналогичный процесс у бактерий называют молочнокислым брожением: он лежит в основе приготовления многих кисломолочных продуктов. У дрожжей в анаэробных условиях имеет место сходный процесс - спиртовое брожение: в этом случае пируват сначала декарбоксилируется образованием уксусного альдегида, который затем восстанавливается в этиловый спирт.
Гликолиз у животных и человека может происходить во многих типах клеток, но его значение для разных органов различно.
Анаэробный гликолиз, несмотря на небольшой энергетический эффект, является основным источником энергии для скелетных мышц в начальный период интенсивной работы, т.е. в условиях, когда снабжение кислородом мышечной ткани ограничено (мощность механизма транспорта кислорода к митохондриям и мощность митохондриального аппарата синтеза АТФ оказываются недостаточными для обеспечения всей энергетической потребности). Ocoбенно большое значение анаэробный гликолиз имеет при кратковременной интенсивной работе. Так, бег в течение примерно 30 с (дистанция около 200 м) полностью обеспечивается анаэробным гликолизом. Через 4-5 мин бега (дистанция около 1,5 км) энергия поставляется поровну аэробным и анаэробным процессами, а через 30 мин (около 10 км) - почти целиком аэробным процессом.
Молочная кислота, накапливаясь в мышцах при интенсивной мышечной деятельности, воздействует на нервные окончания, тем самым, вызывая боль в мышцах. Большая часть молочной кислоты, образующейся в мышце, вымывается в кровяное русло. Изменению рН крови препятствует бикарбонатная буферная система: у спортсменов буферная емкость крови повышена по сравнению с нетренированными людьми, поэтому они могут переносить более высокое содержание молочной кислоты.
Далее молочная кислота транспортируется к печени и почкам, где она почти полностью перерабатывается в глюкозу и гликоген, участвуя в глюконеогенезе и гликогенезе. Незначительная часть молочной кислоты вновь превращается в пировиноградную кислоту, которая в аэробных условиях окисляется до конечных продуктов обмена.
Анаэробный гликолиз характерен также для посмертных изменений мышечной ткани, характеризует первые три стадии посмертного распада рыбы.
Кроме того, зрелые эритроциты извлекают энергию за счет анаэробного окисления глюкозы, т.к. не имеют митохондрий. Интенсивный гликолиз характерен также для клеток злокачественных опухолей. Меньшее значение этот процесс имеет для сердечной мышцы, мозга, почек.
Аэробный распад глюкозы (апотомический)
Аэробный распад глюкозы можно выразить суммарным уравнением:
С6Н12О6 + 6О2 > 6СО2 + Н2О + 2880 кДж/моль.
Этот процесс включает несколько стадий:
1. Аэробный гликолиз - процесс окисления глюкозы с образованием двух молекул пирувата;
2. Общий путь катаболизма, включающий превращение пирувата в ацетил-КоА и его дальнейшее окисление в цитратом цикле;
3. Цепь переноса электронов на кислород, сопряжённая с реакциями дегидрирования, происходящими в процессе распада глюкозы.
Реакции аэробного гликолиза
Аэробным гликолизом называют процесс окисления глюкозы до пировиноградной кислоты, протекающий в присутствии кислорода. Все ферменты, катализирующие реакции этого процесса, локализованы в цитозоле клетки.
Глюкозо-6-фосфат, образованный в результате фосфорилирования глюкозы с участием АТФ, в ходе следующей реакции превращается в фруктозо-6-фосфат. Эта обратимая реакция изомеризации протекает под действием фермента глюкозофосфатизомеразы.
Затем следует ещё одна реакция фосфорилирования с использованием фосфатного остатка и энергии АТФ. В ходе этой реакции, катализируемой фосфофруктокиназой, фруктозо-6 - фосфат превращается в фруктозо-1,6-бисфосфат. Данная реакция, так же, как гексокиназная, практически необратима, и, кроме того, она наиболее медленная из всех реакций гликолиза. Реакция, катализируемая фосфофруктокиназой, определяет скорость всего гликолиза, поэтому, регулируя активность фосфофруктокиназы, можно изменять скорость катаболизма глюкозы.
Фруктозо-1,6-бисфосфат далее расщепляется на 2 триозофосфата: глицеральдегид-3 - фосфат и дигидроксиацетонфосфат. Реакцию катализирует фермент фруктозобисфосфатальдолаза, или просто альдолаза. Этот фермент катализирует как реакцию альдольного расщепления, так и альдольной конденсации, т.е. обратимую реакцию. Продукты реакции альдольного расщепления - изомеры. В последующих реакциях гликолиза используется только глицеральдегид-3-фосфат, поэтому дигидроксиацетонфосфат превращается с участием фермента триозофосфатизомеразы в глицероальдегид-3-фосфат.
Эта часть аэробного гликолиза включает реакции, связанные с синтезом АТФ. Наиболее сложной в данной серии реакций является реакция превращения глицеральдегид-3 - фосфата в 1,3-бисфосфоглицерат. Это превращение - первая реакция окисления в ходе гликолиза. Реакцию катализирует глицеральдегид-3-фосфатдегидрогеназа, которая является NAD-зависимым ферментом. Значение данной реакции заключается не только в том, что образуется восстановленный кофермент, окисление которого в дыхательной цепи сопряжено с синтезом АТФ, но также и в том, что свободная энергия окисления концентрируется в макроэргической связи продукта реакции. В следующей реакции высокоэнергетический фосфат передаётся на АДФ с образованием АТФ. Фермент, катализирующий это превращение, назван по обратной реакции фосфоглицераткиназой (киназы называются по субстрату, находящемуся в уравнении реакции по одну сторону с АТФ). Образование АТФ описанным способом не связано с дыхательной цепью, и его называют субстратным фосфорилированием АДФ. Образованный 3-фосфоглицерат уже не содержит макроэргической связи. В следующих реакциях происходят внутримолекулярные перестройки, смысл которых сводится к тому, что низкоэнергетический фосфоэфир переходит в соединение, содержащее высокоэнергетический фосфат. Внутримолекулярные преобразования заключаются в переносе фосфатного остатка из положения 3 в фосфоглицерате в положение 2. Затем от образовавшегося 2-фосфоглицерата отщепляется молекула воды при участии фермента енолазы. Название дегидратирующего фермента дано по обратной реакции. В результате реакции образуется замещённый енол - фосфоенолпируват. Образованный фосфоенолпируват - макроэргическое соединение, фосфатная группа которого переносится в следующей реакции на АДФ при участии пируваткиназы (фермент также назван по обратной реакции, в которой происходит фосфорилирование пирувата, хотя подобная реакция в таком виде не имеет места).
Превращение фосфоенолпирувата в пируват - необратимая реакция. Это вторая в ходе гликолиза реакция субстратного фосфорилирования. Образующаяся енольная форма пирувата затем неферментативно переходит в более термодинамически стабильную кетоформу.
Выход АТФ при аэробном гликолизе.
На образование фруктозо-1,6-бисфосфата из одной молекулы глюкозы требуется 2 молекулы АТФ. Реакции, связанные с синтезом АТФ, происходят после распада глюкозы на 2 молекулы фосфотриозы, т.е. на втором этапе гликолиза. На этом этапе происходят 2 реакции субстратного фосфорилирования и синтезируются 2 молекулы АТФ.
Кроме того, одна молекула глицеральдегид-3-фосфата дегидрируется, a NADH передаёт водород в митохондриальную ЭТЦ. Однако сам цитозольный NADH не способен передавать водород на дыхательную цепь, потому что митохондриальная мембрана для него непроницаема. Перенос водорода через мембрану происходит с помощью специальных систем, называемых "челночными". В этих системах водород транспортируется через мембрану при участии пар субстратов, связанных соответствующими дегидрогеназами, т.е. с обеих сторон митохондриальной мембраны находится специфическая дегидрогеназа. Известны 2 челночные системы.
В первой из этих систем водород от NADH в цитозоле передаётся на дигидроксиацетонфосфат ферментом глицерол-3-фосфатдегидрогеназой (NAD-зависимый фермент, назван по обратной реакции). Образованный в ходе этой реакции глицерол-3 - фосфат, окисляется далее ферментом внутренней мембраны митохондрий - глицерол-3 - фосфатдегидрогеназой (FAD-зависимым ферментом). Затем протоны и электроны с FADH2 переходят на убихинон и далее по ЭТЦ.
Рис.2. Глицерофосфатная челночная система.1 - глицеральдегид-3 - фосфатдегидрогеназа; 2 - глицерол-3-фосфатдегидрогеназа (цитозольный фермент, назван по обратной реакции); 3 - глицерол-3-фосфатдегидрогеназа (митохондриальныи флавиновый фермент). (Северин, 2003)
Вторая челночная система, в которой участвуют малат, цитозольная и митоховдриальная малат-дегидрогеназы, является более универсальной. В цитоплазме NADH восстанавливает оксалоацетат в малат, который при участии переносчика проходит в митохондрии, где окисляется в оксалоацетат NAD-зависимой малатдегидрогеназой. Восстановленный в ходе этой реакции NAD отдаёт водород в митохондриальную ЭТЦ. Однако образованный из малата оксалоацетат выйти самостоятельно из митохондрий в цитозоль не может, так как мембрана митохондрий для него непроницаема. Поэтому оксалоацетат превращается в аспартат, который и транспортируется в цитозоль, где снова превращается в оксалоацетат. Превращения оксалоацетата в аспартат и обратно связаны с присоединением и отщеплением аминогруппы. Эта челночная система называется малат-аспартатной. Результат её работы - регенерация цитоплазматического NAD+ из NADH.
Рис.3. Малат-аспартатная челночная система.1,2 - окислительно-восстановительные реакции, обеспечивающие транспорт водорода из цитозоля в митохондрии на ЦПЭ; 3,4 - транслоказы, обеспечивающие транспорт а-кетоглутарата, аспартата и глутамата и через мембрану митохондрий. (Северин, 2003)
Обе челночные системы существенно отличаются по количеству синтезированного АТФ. В первой системе соотношение Р/О равно 2, так как водород вводится в ЦПЭ на уровне KoQ. Вторая система энергетически более эффективна, так как передаёт водород в ЦПЭ через митохондриальный NAD+ и соотношение Р/О близко к 3.
3. Вопрос. Дыхательная цепь ферментов, осуществляющих сопряжение окисления с фосфорилированием. Шкала редокс потенциалов компонентов электротранспортной цепи
Окислительное фосфорилирование
Окислительное фосфорилирование, синтез АТФ из аденозиндифосфата и неорганического фосфата, осуществляющийся в живых клетках, благодаря энергии, выделяющейся при окислении орг. веществ в процессе клеточного дыхания. В общем виде окислительное фосфорилирование и его место в обмене веществ можно представить схемой:
АН2 - органические вещества, окисляемые в дыхательные цепи (так называемые субстраты окисления, или дыхания), АДФ-аденозиндифосфат, Р-неорганический фосфат.
Поскольку АТФ необходим для осуществления многих процессов, требующих затраты энергии (биосинтез, совершение механической работы, транспорт веществ и др.), окислительное фосфорилирование играет важнейшую роль в жизнедеятельности аэробных организмов. Образование АТФ в клетке происходит также благодаря др. процессам, например в ходе гликолиза и различных типов брожения. протекающих без участия кислорода. Их вклад в синтез АТФ в условиях аэробного дыхания составляет незначительную часть от вклада окислительного фосфорилирования (около 5%).
Рис.4. Упрощенная схема митохондрии: 1-внутренняя мембрана; 2-наружная мембрана; 3-межмембранное пространство; 4-матрикс; 5-кристы
У животных, растений и грибов окислительное фосфорилирование протекает в специализированных субклеточных структурах-митохондриях (рис.4); у бактерий ферментные системы, осуществляющие этот процесс, находятся в клеточной мембране.
Митохондрии окружены белково-фосфолипидной мембраной. Внутри митохондрий (в так называемом матриксе) идет ряд метаболических процессов распада пищевых веществ, поставляющих субстраты окисления АН2 для окислительного фосфорилирования.
Наиболее важные из этих процессов - трикарбоновых кислот цикл и т. наз. - окисление жирных кислот (окислит. расщепление жирной кислоты с образованием ацетил-кофермента А и кислоты, содержащей на 2 атома С меньше, чем исходная; вновь образующаяся жирная кислота также может подвергаться - окислению). Интермедиаты этих процессов подвергаются дегидрированию (окислению) при участии ферментов дегидрогеназ; затем электроны передаются в дыхательную цепь митохондрий-ансамбль окислительно-восстановительных ферментов, встроенных во внутреннюю митохондриальную мембрану. Дыхательная цепь осуществляет многоступенчатый экзэргонический перенос электронов (сопровождается уменьшением свободной энергии) от субстратов к кислороду, а высвобождающаяся энергия используется расположенным в той же мембране ферментом АТФ-синтетазой, для фосфорилирования АДФ до АТФ. В интактной (неповрежденной) митохондриальной мембране перенос электронов в дыхательной цепи и фосфорилирование тесно сопряжены между собой. Так, например, выключение фосфорилирования по исчерпании АДФ либо неорганического фосфата сопровождается торможением дыхания (эффект дыхательного контроля). Большое число повреждающих митохондриальную мембрану воздействий нарушает сопряжение между окислением и фосфорилированием, разрешая идти переносу электронов и в отсутствие синтеза АТФ (эффект разобщения).
Рис.5. Схема хемиосмотического механизма окислительного фосфорилирования: ДЦ - дыхательная цепь, АН2 - субстраты дыхания. Заштрихован фрагмент внутренней метохондриальной мембраны в разрезе.
Механизм окислительного фосфорилирования можно представить схемой: Перенос электронов (дыхание) А ~ В АТФ А ~ В-высокоэнергетический интермедиат. Предполагалось, что А ~ В - химическое соединение с макроэргической связью, например фосфорилированный фермент дыхательной цепи (химическая гипотеза сопряжения), или напряженная конформация какого-либа белка, участвующего в окислительное фосфорилирование (конформационная гипотеза сопряжения). Однако эти гипотезы не получили экспериментального подтверждения. Наибольшим признанием пользуется хемиосмотическая концепция сопряжения, предложенная в 1961 П. Митчеллом (за развитие этой концепции в 1979 ему присуждена Нобелевская премия). Согласно этой теории, свободная энергия транспорта электронов в дыхательной цепи затрачивается на перенос из митохондрий через митохондриальную мембрану на ее наружную сторону ионов Н+. В результате на мембране возникает разность электрич. потенциалов и разность хим. активностей ионов Н+ (внутри митохондрий рН выше, чем снаружи). В сумме эти компоненты дают трансмембранную разность электрохимических потенциалов ионов водорода между матриксом митохондрий и внешней водной фазой, разделенными мембраной:
где R-универсальная газовая постоянная, T-абсолютная температура, F - число Фарадея. Величина обычно составляет около 0,25 В, причем основная часть (0,15-0,20 В) представлена электрической составляющей . Энергия , выделяющаяся при движении протонов внутрь митохондрий по электрическому полю в сторону меньшей их концентрации, используется АТФ-синтетазой для синтеза АТФ.Т. обр., схему окислительное фосфорилирование, согласно этой концепции, можно представить в следующем виде:
Перенос электронов (дыхание) АТФ
Сопряжение окисления и фосфорилирования через позволяет объяснить, почему окислительное фосфорилирование, в отличие от гликолитического ("субстратного") фосфорилирования, протекающего в растворе, возможно лишь в замкнутых мембранных структурах, а также почему все воздействия, снижающие электрическое сопротивление и увеличивающие протонную проводимость мембраны, подавляют ("разобщают") окислительное фосфорилирование Энергия , помимо синтеза АТФ, может непосредственно использоваться клеткой для др. целей - транспорта метаболитов, движения (у бактерий), восстановления никотинамидных коферментов и др.
В дыхательной цепи имеется несколько участков, которые характеризуются значительным перепадом окислительно-восстановительного потенциала и сопряжены с запасанием энергии (генерацией ). Таких участков, называемых пунктами или точками сопряжения, обычно три: НАДН: убихинон-редуктазное звено (0,35-0,4 В), убихинол: цитохром-c-редуктазное звено ( ~ 0,25 В) и цитохром-с-оксидазный комплекс (~ 0,6 В) - пункты сопряжения 1, 2 и 3 соотв. (рис.5). Каждый из пунктов сопряжения дыхательной цепи может быть выделен из мембраны в виде индивидуального ферментного комплекса, обладающего окислительно-восстановительной активностью. Такой комплекс, встроенный в фосфолипидную мембрану, способен функционировать как протонный насос.
Рис.6. Упрощенная схема расположения пунктов сопряжения в цепи дыхательных ферментов; НАДН - восстановленная форма кофермента никотинамид-адениндинуклеотида.
Обычно для характеристики эффективности окислительное фосфорилирование используют величины Н+/2е или q/2e, указывающие сколько протонов (либо электрических зарядов) переносится через мембрану при транспорте пары электронов через данный участок дыхательной цепи, а также отношение Н+/АТФ, показывающее, сколько протонов нужно перенести снаружи внутрь митохондрий через АТФ-синтетазу для синтеза 1 молекулы АТФ. Величина q/2e составляет для пунктов сопряжения 1, 2 и 3 соотв.3-4, 2 и 4. Величина Н+/АТФ при синтезе АТФ внутри митохондрий равна 2; однако еще один Н+ может тратиться на вынос синтезированного АТФ4 - из матрикса в цитоплазму переносчиком адениновых нуклеотидов в обмен на АДФ - 3. Поэтому кажущаяся величина Н+ / АТФнаружн равна 3.
В организме окислительное фосфорилирование подавляется многими токсичными веществами, которые по месту их действия можно разделить на три группы:
1) ингибиторы дыхательной цепи, или так называемые дыхательные яды. 2) Ингибиторы АТФ-синтетазы. Наиболее распространенные ингибиторы этого класса, употребляемые в лабораторных исследованиях, - антибиотик олигомицин и модификатор карбоксильных групп белка дициклогексилкарбодиимид. 3) Так называемые разобщители окислительного фосфорилирования Они не подавляют ни перенос электронов, ни собственно фосфорилирование АДФ, но обладают способностью уменьшать величину на мембране, благодаря чему нарушается энергетическое сопряжение между дыханием и синтезом АТФ. Разобщающее действие проявляет большое число соединений самой разнообразной химической структуры. Классические разобшители - вещества, обладающие слабыми кислотными свойствами, способные проникать через мембрану как в ионизованной (депротонированной), так и в нейтральной (протонированной) формах. К таким веществам относят, например, 1- (2-дицианометилен) гидразино-4-трифтор-метоксибензол, или карбонилцианид-n-трифторметокси-фенилгидразон, и 2,4-динитрофенол (соответственно формулы I и II; показаны протонированная и депротонированная формы).
Двигаясь через мембрану в электрическом поле в ионизованной форме, разобщитель уменьшает ; возвращаясь обратно в протонированном состоянии, разобщитель понижает (рис.6). Т. обр., такой "челночный" тип действия разобщителя приводит к уменьшению
Рис.7. Схема рабочего цикла разобщителя "челночного" типа: ФКФ - 1- (2 - дицианометилен) гидразино-4-трифторметокстибензол.
Разобщающим действием обладают также ионофоры (например, грамицидин), повышающие электропроводность мембраны в результате образования ионных каналов или вещества, разрушающие мембрану (например, детергенты).
Окислительное фосфорилирование открыто В.А. Энгельгардтом в 1930 при работе с эритроцитами птиц. В 1939 В.А. Белицер и Е.Т. Цыбакова показали, что окислительное фосфорилирование сопряжено с переносом электронов в процессе дыхания; к такому же заключению несколько позднее пришел Г.М. Калькар.
Окислительно-восстановительный потенциал
Транспорт водорода и транспорт электронов - процессы эквивалентные. Дыхательная цепь может рассматриваться как цепь переноса электронов. Компоненты дыхательной цепи переходят попеременно из окисленного состояния в восстановленное и обратно, т.е. ведут себя как типичные окислительно-восстановительные катализаторы. Они обладают окислительно-восстановительным потенциалом, который может быть измерен непосредствен но (у цитохромов) или косвенно (у NAD, FAD).
Окислительно-восстановительный потенциал служит количественной мерой способности тех или иных соединений или элементов отдавать электроны. Этот потенциал отсчитывается относительно потенциала молекулярного водорода. Согласно определению, водородный полуэлемент - платинированный или платиновый электрод, погруженный в раствор кислоты и обтекаемый газообразным Н2 при давлении 1,013 бар и рН 0, имеет потенциал, равный нулю:
Н2; 2Н++2е" (pH0; p =1,D136ap)
Подобно химическим элементам, биологические вещества также можно расположить в ряд по величине их окислительно-восстановительного потенциала при степени восстановления 1/2 (равные концентрации окисленной и восстановленной форм); эту величину обозначают Е0. В биохимии пользуются величиной Е", приведенной к рН 7. При этом рН водородный электрод имеет потенциал Ј"', равный - 0,42 В. На рис.7. показана зависимость потенциала, отнесенного к потенциалу водородного полуэлемента, от величины рН. Из уравнения Нернста следует, что зависимость измеряемого потенциала окислительно-восстановительной системы Е' от концентраций окисленной и восстановленной форм выражается формулой
Рис.8. Окислительно-восстановительные потенциалы. А. Зависимость окислительно-восстановительного потенциала, отнесенного к потенциалу водородного полуэлемента от величины рН; для некоторых соединений указаны нормальные потенциалы . Б. Зависимость измеряемого потенциала от концентраций окисленной и восстановленной форм соединения для двух окислительно-восстановленных систем.
Значение Е' тем более отрицательно, чем меньше отношение концентрации окисленной формы к концентрации восстановленной формы (рис.8. Б).
Окислительно-восстановительный потенциал служит мерой максимальной полезной работы, которую может выполнить система, т.е. мерой изменения свободной энергии (AG0) в данной реакции. По разности окислительно-восстановительных потенциалов двух реагирующих друг с другом систем ДЈ0 можно вычислить изменение свободной энергии при данной реакции:
AG0 = - n-F - ДЈ0 = - п 96,5 ДЈ0 (кДж/моль)
Значения Ј0' отдельных компонентов дыхательной цепи лежат в пределах от - 0,32 В для NADH2/NAD [ - 0,08 В для флавопротеина (FADH2/FAD); - 0,04 В для цитохрома Ъ (Fe2 + /Fe3 +)] до + 0,81 В для О2 ~ /'/гОг - Можно также привести значения Ј"' для ряда субстратов: лактат/пируват - 0,186 В; малат/оксалоацетат - 0,166 В; сукцинат/фурамат - 0,03 В.
Таблица 1.
Окислительно-восстановительные потенциалы компонентов дыхательной цепи. Разности потенциалов между отдельными компонентами и эквивалентные изменения свободной энергии.
Поскольку разность между величинами Е для Н2 и 02 составляет - 0,42-0,81 = - 1,23 В, изменение свободной энергии в реакции гремучего газа AG0' должно быть равно - 2-96,5-1,23 = - 237,4 кДж/моль. В клетке при переносе водорода от NADH2 разность потенциалов составляет только [ (+ 0,81 В) - ( - 0,32 В)] = 1,13 В, т.е. AG0 = = - 218 кДж/моль. Аналогичным образом по разности потенциалов можно вычислить соответствующий выход энергии для любых двух переносчиков электронов в дыхательной цепи (табл.1).
гликолиз аминокислота клеточное дыхание
Список литературы
1. Аврансон Л.А., Гуткевич Н.В. Обмен белков. Ї М.: Красный крест, 2006. Ї 127 с.
2. Башлов В., Гуржин И. Биологическая химия. Ї Самара:, 2007. Ї 517 с.
3. Велобова Е.Н. Переваривание белков. Ї Киев: Гродынец, 2005. Ї 29 с.
4. Зеродич А.К., Лучинков И.В. Справочник по химии. - Москва.; 2006 - 594.
5. Збарский Б.И., Иванов И.И., Мардашев С.Р. Биологическая химия. - Л.: Медицина, 2004. Ї 583 с.
6. Яковлев В.В., Яковлев Д.В. Биологическая химия Ї Минск: Вышэйш. шк., 2007. Ї 494 с.
7. http://www.xumuk.ru/biologhim/289.html
8. http://fizikatela.ru/aminokisloty-metabolizm-aminokislot---none
9. http://humbio.ru/humbio/biochem/00020346. htm
10. http://micro. moy. su/publ/obshhaja_mikrobiologija/mekhanizmy_obmena_veshhestv/okislitelno_vosstanovitelnyj_potencial/10-1-0-97
11. http://www.luxmag.ru/statlux/par5.html
Размещено на Allbest.ru
Подобные документы
Химический состав, природа и структура белков. Механизм действия ферментов, виды их активирования и ингибирования. Современная классификация и номенклатура ферментов и витаминов. Механизм биологического окисления, главная цепь дыхательных ферментов.
шпаргалка [893,3 K], добавлен 20.06.2013Понятие и структура белков, аминокислоты как их мономеры. Классификация и разновидности аминокислот, характер пептидной связи. Уровни организации белковой молекулы. Химические и физические свойства белков, методы их анализа и выполняемые функции.
презентация [5,0 M], добавлен 14.04.2014Пищевые белки как основной источник аминокислот для человека. Группы аминокислот, которые встречаются в белках организма. Переваривание белков в желудке и кишечнике. Обезвреживание продуктов гниения путем соединения с серной и глюкуроновой кислотами.
презентация [2,5 M], добавлен 28.12.2013История исследования белков. Белки: строение, классификация, обмен. Биосинтез белка. Функции белков в организме. Роль в жизнедеятельности организма. Высокомолекулярные органические соединения. Болезни, связанные с нарушением выработки ферментов.
реферат [29,2 K], добавлен 05.10.2006Классификация процессов метаболизма и обмена. Виды организмов по различиям обменных процессов, методы их изучения. Метод учета веществ поступивших и выделившихся из организма на примере азотистого обмена. Основные функции и источники белков для организма.
презентация [3,8 M], добавлен 12.01.2014Белки (протеины) – высоко молекулярные, азотосодержащие природные органические вещества, молекулы которых построены из аминокислот. Строение белков. Классификация белков. Физико-химические свойства белков. Биологические функции белков. Фермент.
реферат [4,0 M], добавлен 15.05.2007Белки как источники питания, их основные функции. Аминокислоты, участвующие в создании белков. Строение полипептидной цепи. Превращения белков в организме. Полноценные и неполноценные белки. Структура белка, химические свойства, качественные реакции.
презентация [896,5 K], добавлен 04.07.2015Значение дыхания в жизни растительного организма. Специфика дыхания у растений. Каталитические системы дыхания. Типы окислительно-восстановительных реакций. Основные пути диссимиляции углерода. Цепь переноса водорода и электрона (дыхательная цепь).
реферат [2,8 M], добавлен 07.01.2011Понятие белков как высокомолекулярных природных соединений (биополимеров), состоящих из остатков аминокислот, которые соединены пептидной связью. Функции и значение белков в организме человека, их превращение и структура: первичная, вторичная, третичная.
презентация [564,0 K], добавлен 07.04.2014Гетерогенность клеточного состава нервной ткани как одна из ее морфологических особенностей. Роль нейроглиальных клеток в функциональной активности ЦНС. Состав и особенности метаболизма нуклеиновых кислот, аминокислот и белков, нейроглиальных клеток.
реферат [23,7 K], добавлен 26.08.2009