Энергообеспечение мышечного сокращения. Витамины и их роль в обмене веществ

Общее представление об энергообеспечении мышечного сокращения. Исследование роли движения во взаимодействии человека с внешней средой. Понятие о функциональной активности человека. Участие витаминов в обмене веществ. Самооценка собственного здоровья.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 04.05.2013
Размер файла 192,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru/

Размещено на http://allbest.ru/

Министерство Высшего Образования РФ

Кубанский Государственный Технологический Университет

Кафедра экономики управления и бизнеса

Контрольная работа

по дисциплине «Физического воспитания и спорта»

Содержание

Введение

1. Общее представление об энергообеспечении мышечного сокращения

2. Понятие о функциональной активности человека

3. Витамины и их роль в обмене веществ

4. Присасывающее действие в кровообращении и мышечный насос

5. Самооценка собственного здоровья

Заключение

Список используемой литературы

Введение

Охрана собственного здоровья - это непосредственная обязанность каждого, он не вправе перекладывать ее на окружающих. Ведь нередко бывает и так, что человек неправильным образом жизни, вредными привычками, гиподинамией, перееданием уже к 20-30 годам доводит себя до катастрофического состояния и лишь тогда вспоминает о медицине. Какой бы совершенной ни была медицина, она не может избавить каждого от всех болезней.

Человек - сам творец своего здоровья, за которое надо бороться. С раннего возраста необходимо вести активный образ жизни, закаливаться, заниматься физкультурой и спортом, соблюдать правила личной гигиены, - словом, добиваться разумными путями подлинной гармонии здоровья. Целостность человеческой личности проявляется, прежде всего, во взаимосвязи и взаимодействии психических и физических сил организма. Гармония психофизических сил организма повышает резервы здоровья, создает условия для творческого самовыражения в различных областях жизни. Активный и здоровый человек надолго сохраняет молодость, продолжая созидательную деятельность.

Здоровье - это первая и важнейшая потребность человека, определяющая способность его к труду и обеспечивающая гармоническое развитие личности. Поэтому значение двигательной активности в жизнедеятельности людей играет важную роль.

Организм -- слаженная единая саморегулирующаяся и саморазвивающаяся биологическая система, функциональная деятельность которой обусловлена взаимодействием психических, двигательных и вегетативных реакций на воздействия окружающей среды, которые могут быть как полезными, так и пагубными для здоровья. Отличительная особенность человека -- сознательное и активное воздействие на внешние природные и социально-бытовые условия, определяющие состояние здоровья людей, их работоспособность, продолжительность жизни и рождаемость (репродуктивность).

Без знании о строении человеческого тела, о закономерностях функционирования отдельных органов и систем организма, об особенностях протекания сложных процессов его жизнедеятельности нельзя организовать процесс формирования здорового образа жизни и физической подготовки населения, в том числе и учащейся молодежи.

1. Общее представление об энергообеспечении мышечного сокращения

Сократительная функция всех типов мышц обусловлена превращением в мышечных волокнах химической энергии определённых биохимических процессов в механическую работу. Гидролиз аденозинтрифосфата (АТФ) как раз и обеспечивает мышцу этой энергией.

Поскольку снабжение мускулатуры АТФ невелико, необходимо активировать метаболические пути к ресинтезу АТФ, чтобы уровень синтеза соответствовал затратам на сокращение мышц. Образование энергии для обеспечения мышечной работы может осуществляться анаэробным (без использования кислорода) и аэробным путем. АТФ синтезируется из аденозиндифосфата (АДФ) посредством энергии креатинфосфата, анаэробного гликолиза или окислительного метаболизма. Запасы АТФ в мышцах сравнительно ничтожны и их может хватить лишь на 2-3 секунды интенсивной работы.

Креатинфосфат.

Запасы креатинфосфата (КрФ) в мышце побольше запасов АТФ и они анаэробно могут быть быстро превращены в АТФ. КрФ - самая «быстрая» энергии в мышцах (она обеспечивает энергию в первые 5-10 секунд очень мощной, взрывной работы силового характера, например, при подъеме штанги). После исчерпания запасов КрФ организм переходит к расщеплению мышечного гликогена, обеспечивающего более продолжительную (до 2-3 минут), но менее интенсивную (в три раза) работу.

Гликолиз.

Гликолиз - форма анаэробного метаболизма, обеспечивающая ресинтез АТФ и КрФ за счет реакций анаэробного расщепления гликогена или глюкозы до молочной кислоты.

КрФ считается топливом быстрой реализации, который регенерирует АТФ, которого в мышцах незначительное количество и поэтому КрФ является основным энергетиком в течение нескольких секунд. Гликолиз более сложная система, способная функционировать длительное время, поэтому ее значение существенно для более длительных активных действий. КрФ ограничен своим незначительным количеством. Гликолиз же имеет возможность для относительно длительного энергетического обеспечения, но, производя молочную кислоту, заполняет ею двигательные клетки и из-за этого ограничивает мышечную активность.

Окислительный метаболизм.

Связан с возможностью выполнения работы за счет окисления энергетических субстратов, в качестве которых могут использоваться углеводы, жиры, белки при одновременном увеличении доставки и утилизации кислорода в работающих мышцах.

Для пополнения срочных и кратковременных энергетических запасов и выполнения длительной работы мышечная клетка использует так называемые долговременные источники энергии. К ним относятся глюкоза и другие моносахара, аминокислоты, жирные кислоты, глицеролкомпоненты продуктов питания, доставляемые в мышечную клетку через капиллярную сеть и участвующие в окислительном метаболизме. Эти источники энергии генерируют образование АТФ путем сочетания утилизации кислорода с окислением носителей водорода в электронтранспортной системе митохондрии.

В процесс полного окисления одной молекулы глюкозы синтезируется 38 молекул АТФ. При сопоставлении анаэробного гликолиза с аэробным расщеплением углеводов можно заметить, что аэробный процесс в 19 раз эффективнее.

Во время выполнения кратковременных интенсивных физических нагрузок в качестве основных источников энергии используются КрФ, гликоген и глюкоза скелетных мышц. В этих условиях главным фактором, лимитирующим образование АТФ, можно считать отсутствие необходимого количества кислорода. Интенсивный гликолиз приводит к накоплению в скелетных мышцах больших количеств молочной кислоты, которая постепенно диффундирует в кровь и переносится в печень. Высокие концентрации молочной кислоты становятся важным фактором регуляторного механизма, ингибирующего обмен свободных жирных кислот во время физических нагрузок длительностью 30--40 с.

По мере увеличения длительности физических нагрузок происходит постепенное снижение концентрации инсулина в крови. Этот гормон активно участвует в регуляции жирового обмена и при высоких концентрациях тормозит активность липаз. Снижение концентрации инсулина во время длительных физических нагрузок приводит к повышению активности инсулин зависимых ферментных систем, что проявляется в усилении процесса липолиза и увеличении освобождения жирных кислот из депо.

Важность этого регуляторного механизма становится очевидной, когда спортсмены допускают наиболее распространенную ошибку. Нередко, стараясь обеспечить организм легкоусвояемыми источниками энергии, за час до начала соревнований или тренировок они принимают богатую углеводами пищу или концентрированный, содержащий глюкозу, напиток. Такое насыщение организма легкоусвояемыми углеводами приводит через 15--20 минут к повышению уровня глюкозы в крови, а это, в свою очередь, вызывает усиленное выделение инсулина клетками поджелудочной железы. Повышение концентрации этого гормона в крови приводит к усилению потребления глюкозы в качестве источника энергии для мышечной деятельности. В конечном счете, вместо энергетически более выгодных жирных кислот в организме расходуются углеводы. Так, прием глюкозы за час до старта может существенно повлиять на спортивную работоспособность и снизить выносливость к длительной нагрузке.

Активное участие свободных жирных кислот в энергетическом обеспечении мышечной деятельности позволяет более экономно выполнять длительные физические на грузки. Усиление процесса липолиза во время физических нагрузок приводит к освобождению жирных кислот из жировых депо в кровь, и они могут быть доставлены в скелетные мышцы или использованы для образования липопротеинов крови. В скелетных мышцах свободные жирные кислоты проникают в митохондрии, где подвергаются последовательному окислению, сопряженному с фосфорилированием и синтезом АТФ.

2. Понятие о функциональной активности человека

Функциональная активность человека характеризуется различными двигательными актами: сокращением мышцы сердца, передвижением тела в пространстве, движением глазных яблок, глотанием, дыханием, а также двигательным компонентом речи, мимики.

На развитие функций мышц большое влияние оказывают силы гравитации и инерции, которые мышца вынуждена постоянно преодолевать. Важную роль играют время, в течение которого развертывается мышечное сокращение, и пространство, в котором оно .происходит.

Предполагается и целым рядом научных работ доказывается, что труд создал человека. Понятие «труд» включает различные его виды. Между тем существуют два основных вида трудовой деятельности человека -- физический и умственный труд и их промежуточные сочетания.

Физический труд - это вид деятельности человека, особенности которой определяются комплексом факторов, отличающих один вид деятельности от другого, связанного с наличием каких-либо климатических, производственных, физических, информационных и тому подобных факторов.

Выполнение физической работы всегда связано с определенной тяжестью труда, которая определяется степенью вовлечения в работу скелетных мышц и отражающая физиологическую стоимость преимущественно физической нагрузки. По степени тяжести различают физически легкий труд, средней тяжести, тяжелый и очень тяжелый. Критериями оценки тяжести труда служат эргометрические показатели (величины внешней работы, перемещенных грузов и др.) и физиологические (уровни энергозатрат, частота сердечных сокращении, иные функциональные изменения).

Умственный труд -- это деятельность человека по преобразованию сформированной в его сознании концептуальной модели действительности путем создания новых понятий, суждений, умозаключений, а на их основе -- гипотез и теории.

Результат умственного труда -- научные и духовные ценности или решения, которые посредством управляющих воздействий на орудия труда используются для удовлетворения общественных или личных потребностей. Умственный труд выступает в различных формах, зависящих от вида концептуальной модели и целей, которые стоят перед человеком (эти условия определяют специфику умственного труда).

К неспецифическим особенностям умственного труда относятся прием и переработка информации, сравнение полученной информации с хранящейся в памяти человека, ее преобразование, определение проблемной ситуации, путей разрешения проблемы и формирование цели умственного труда в зависимости от вида и способов преобразования информации и выработки решения различают репродуктивные и продуктивные (творческие) виды умственного труда.

В репродуктивных видах труда используются заранее известные преобразования с фиксированными алгоритмами действий (например, счетные операции), в творческом труде алгоритмы либо вообще неизвестны, либо даны в неясном виде.

Оценка человеком себя как субъекта умственного труда, мотивов деятельности, значимости цели и самого процесса труда составляет эмоциональную составляющую умственного труда. Эффективность его определяется уровнем знаний и возможностью их осуществить, способностями человека, и его волевыми характеристиками.

При высокой напряженности умственного труда, особенно если она связана с дефицитом времени, могут возникать явления умственной блокады (временное торможение процесса умственного труда), которые предохраняют функциональные системы центральной нервной системы от разобщения.

3. Витамины и их роль в обмене веществ

Первые шаги в познании природы витаминов сделал наш соотечественник Н. И. Лунин. На основании опытов над животными он обнаружил в пище наличие незаменимых веществ, отличающихся по своим свойствам и биологической ценности от белков, жиров, углеводов и минеральных веществ. Витамины (от латинского слова VITA, что означает жизнь + амины) представляют собой незаменимые вещества, поступающие с пищей и необходимые для поддержания важнейших функций организма. Хотя витамины не являются источником энергии, они необходимы для живого организма. Недостаток, какого - либо витамина в пище неблагоприятно отражается на общем состоянии организма и ведёт к заболеванию отдельных органов. Длительное отсутствие витаминов в пище приводит к характерным заболеваниям получивших название АВИТОМИНОЗОВ.

Биологическая роль витаминов достаточно хорошо известна.

Доктор Б. Лефави, рассуждая о роли витаминов, сравнивает их с раствором, необходимым для склеивания «кирпичиков» протеинов. Повышенная потребность в витаминах возникает при усиленной физической или умственной работе, под влиянием некоторых физических факторов: при перегревании и переохлаждении организма, во время беременности, при ряде заболеваний, при нарушении всасывания витаминов в кишечнике и т. д. - всё это способствует развитию гиповитаминозных состояний. Большинство гиповитаминозов характеризуется общими признаками: повышается утомляемость, снижается работоспособность, падает сопротивляемость организма против инфекций и простудных заболеваний.

Учёные выделяют две группы витаминов, которые получили название от своих химических свойств. Группа жирорастворимых витаминов обозначается буквами « A, D, E, K», а к водорастворимым относятся витамины группы «В».

Жирорастворимые витамины.

Витамин «А»

Необходим для обеспечения процессов зрения, роста, а также нормального состояния кожных и слизистых покровов. Существует мнение, что этот витамин участвует в регуляции процессов синтеза белка, а также входит в состав светочувствительного вещества в сетчатки глаз. Поэтому одним из ранних признаков недостаточности витамина А, является нарушение сумеречного зрения. При гиповитаминозе А человек в сумерках быстро теряет ориентировку, нечётко видит предметы, зрительные реакции его замедлены. При выраженных гиповитаминозах А возникают также нарушения со стороны слизистой глаза, кожных покровов: появление чувства неприятной сухости, а затем воспаления роговой оболочки глаз, что в наиболее запущенных случаях обычно может привести к полной потере зрения. У детей недостаточность витамина А вызывает отставание в росте. Суточная потребность взрослого человека в витамине А составляет около 5000 интернациональных единиц (И. Е.), или 1,5миллиграма чистого витамина. Витамин А - сравнительно сложное органическое соединение, хорошо растворимое в жирах. Большое количество его содержится в жирах, которые добывают из печени трески, палтуса, морского окуня и других рыб.

Витамин «D»

Участвует в обмене кальция и фосфора и, прежде всего в обеспечении нормального отложения кальция в костях. Недостаточность витамина D в пище особенно отражается на здоровье ребёнка. В организме ребёнка при высокой интенсивности его роста замедленное отложение кальция приводит к уменьшению прочности костей, их размягчению и деформации даже под влиянием силы тяжести. Однако недостаточность витамина D влияет не только на отложение кальция в костях, но понижает скорость всасывания солей кальция и фосфора из кишечника в кровь и вызывает возникновения в организме глубоких расстройств фосфорнокальциевого обмена.

Недостаток витамина D вызывает рахит. Рахит - это серьёзное общее заболевание, возникающее у ребёнка в результате недостаточности витамина D и характеризующиеся поражением костной, нервной, мышечной и других систем организма. Первые признаки рахита в общем подавленным состоянии: ребёнок плохо спит, становится пугливым и раздражительным, сильно потеет. Затем появляются признаки нарушения отложения кальция: размягчение затылочной кости черепа, образуются значительные утолщения на рёбрах - рахитические чётки, искривляются ноги, развивается плоскостопие. Мышцы становятся вялыми, и наблюдается общее отставание в развитии ребёнка. Как правило, снижается сопротивляемость к различным инфекционным и простудным заболеваниям. Каковы же меры профилактики рахита? Мы знаем, что беременная женщина передаёт своему потомству определённые запасы витамина D, поэтому в последние месяцы своей беременности она должна по указанию врача принимать препараты витамина D. Хорошей мерой профилактики у детей раннего возраста является грудное вскармливание. Однако уже со второго полугодия жизни следует заботиться о дополнительном источнике витамина D, в качестве которых могут быть использованы яичные желтки, а в дальнейшем протёртая печень и т.п. Концентрированные препараты витамина D в масле могут назначаться только по рекомендации врача, так как приём избыточных количеств витамина D от большинства других витаминов может принести значительный вред. Каково же влияние на организм избыточного количества витамина D? Его чрезмерные дозы, несомненно, вызывают отравление, так называемый гипервитаминоз D, который характеризуется повышенной возбудимостью, раздражительностью, плохим самочувствием, значительным повышением кальция в крови и его отложения в стенках сосудов, почках и других органах. Особенно неблагоприятное влияние оказывает гипервитаминоз D на больных атеросклерозом. Избыток витамина D ускоряет развитие атеросклеротических процессов и вызывает отложение кальция в сосудах.

Витамин «Е»

Является мощным антиоксидантом, защитная мембрана клеток от окисления. Кроме этого, витамин Е предотвращает гемолиз и дегенеративные изменения в мышцах. Потребность в витамине Е зависит от потребления полиненасыщенных жирных кислот. При диетах с применением этих липидов возрастает потребность в витамине Е. По мнению многих специалистов, дефицит витамина Е приводит к нарушениям в метаболизме белков, жиров и углеводов, а также в процессах образования ферментов.

Витамин «К»

Необходим для синтеза некоторых факторов, которые участвуют в процессах свёртывания крови. По мнению исследователей, в кишечнике человека полезными микроорганизмами образуется достаточное количество витамина К. Помимо этого, с пищей в организм поступает витамин К1.

Водорастворимым витамины.

Витамин «В1»

Принимает непосредственное участие в обмене углеводов и, в частности, в обмене пировиноградной кислоты, которая является основным промежуточным продуктом при окислении глюкозы. При недостаточности этого витамина в организме дальнейшее превращение пировиноградной кислоты затормаживается и в результате увеличивается её содержание в крови и тканях. Первыми реагируют на эти нарушения обмена нервные образования. Обычно по ходу нервов возникают ощущения болей, онемений, покалывания, потеря чувствительности участков кожной поверхности и т. п. Множественное воспаление нервных стволов при В1 - витаминной недостаточности получило наименование пищевого полиневрита. Эта болезнь в недалёком прошлом была очень распространена в Японии, где она называется «бери - бери». Теперь понятно, почему врачи для подтверждения диагноза пользуются определением количества пировиноградной кислоты в крови: повышение концентрации её указывают на В1 - витаминную недостаточность.

Гиповитаминоз В1 характеризуется также нарушениями желудочно-кишечного трака, мышечной слабостью, разнообразными болевыми ощущениями, в том числе в области сердца, что свидетельствует о множественном воспалении нервов и нарушении тканевого обмена. Поэтому витамин В1 довольно широко используется при лечении ряда заболеваний. Какова же потребность организма в витамине В1? Взрослый человек в среднем нуждается в 1,5 - 2,0 миллиграммах витамина В1 в день. Потребность в этом витамине меняется в зависимости от затрат энергии, характера питания и работы. Чем больше в пище углеводов, тем больше требуется витамина В1 . Если же в рационе увеличено количество жиров, то потребность организма в витамине В1 уменьшается. При интенсивной мышечной работе, в частности у спортсменов, при напряжении умственной деятельности и у женщин в период беременности и кормления грудью потребность в витамине В1 также значительно возрастает.

Следует иметь в виду также значительный рост потребности этого витамина при ряде заболеваний, сопровождающийся высокой температурой и увеличением интенсивности обмена.

Главные источники снабжения организма витамином В1 - хлебные и крупяные продукты. Основное количество витамина содержится в наружных слоях зерна, большая часть которых теряется при производстве высших сортов муки. Высшие сорта муки и круп (полированный рис) имеют наименьшую биологическую ценность.

Витамин «В2»

Этот витамин принимает участие в процессах тканевого дыхания и, следовательно, способствует выработки энергии в организме. Особенно необходим витамин В2 детям в период их развития. Недостаточность витамина В2 в питании детей приводит к замедлению их роста и прибавления в весе. Ранние признаки недостаточности витамина В2 проявляются на коже и слизистых: образуются трещины, язвочки в углах рта - заеды, возникает шелушение кожи. Часто наблюдается воспаление слизистой глаз, слёзотечение, светобоязнь и понижение остроты зрения. Потребность взрослого человека в витамине В2 - 2,5-3,5 миллиграмма в день. Потребность в этом витамине возрастает примерно на 1 миллиграмм у женщин во время беременности и в период кормления грудью. Хорошим источником витамина В2 является молоко, творог, сыр, яйца, печень, мясо, особенно много его в дрожжах.

Витамин «РР»

Или никотиновая кислота, необходим для обеспечения процессов биологического окисления в организме. Он входит в состав некоторых окислительных ферментов. Недостаточность витамина РР плохо влияет на здоровье, появляется быстрая утомляемость, слабость, раздражительность, бессонница. С дефицитом ниацина связывают возникновение такой болезни, как пеллагра. Наш организм способен синтезировать необходимое количество никотиновой кислоты, или ниацина, если с пищей поступает достаточное количество триптофана. Ниацин входит в состав ниациновой кислоты, или никотинамида. Никотинамид, как известно, в свою очередь входит в состав НАД. Таким образом, ниацин участвует в процессах синтеза жирных кислот, гликолиза и тканевого дыхания. Суточная дозировка никотинамида зависит от калорийности питания. Минимальная потребность в этом витамине составляет 6,6 миллиграмм на каждые 1000 килокалорий суточного рациона.

Витамин «С»

Ни об одном витамине не написано столько статей и книг, как о витамине С. Это и неудивительно, так как от недостатка его в пище в недавнем прошлом страдало огромное количество людей. Цинга - авитаминоз С - ещё в начале нашего столетия была бичом жителей Заполярья. Мы видели её вновь в некоторых районах в годы войны. Цинга страшна: воспалены и кровоточат дёсны, выпадают зубы, появляются кровоизлияния, слабость, резко падает сопротивляемость организма к различным инфекционным заболеваниям. Организм намного труднее переносит недостаточность витамина С при малом содержании белка в пище. Установлено, что при недостатке в пище витамина С сильно повышается проницаемость и хрупкость стенок мельчайших кровеносных сосудов, а также понижается способность организма к образованию антител, препятствующих развитию инфекций. В настоящие время не только выяснена химическая природа витамина С, представляющего сравнительно несложное соединение, названое аскорбиновой кислотой, но и широко освоен её промышленный синтез. Встречаемся ли мы в настоящие время с недостаточностью витамина С? Да, несомненно, встречаемся. Конечно, это не цинга, но это, безусловно, случаи неполной обеспеченности организма витамином С. Дело в том, что потребность организма в витамине С относительно велики. Взрослый человек нуждается в 70-120 миллиграммах аскорбиновой кислоты в день.

Витамин «В5»

Необходим для преобразования холина в важнейший медиатор нервной системы - ацетилхолин. Считается также, что путём взаимодействия с различными ферментами витамин В5 способствует синтезу стероидных гормонов. Пантотеновая кислота входит в состав важнейшего кофермента А, занимающего центральное место в метаболизме. Суточная потребность в пантотеновой кислоте не установлена.

Витамин «В6» (пиридоксин)

Необходим для синтеза белка. Этот витамин участвует также в активизации гликоген-фосфорилазы - ключевого фермента метаболизма. Помимо этого витамин В6 активно участвует в синтезе норадреналина, серотонина, и дофамина. Таким образом, пиридоксин важен для продукции важнейших медиаторов и нейропередатчиков. Пиридоксин и другие соединения витамина В6 обладают жизненно важным влиянием на обмен белков, жиров и углеводов в нашем организме. Известно также, что недостаток витамина В6 приводит к нарушениям метаболизма триптофана. Обычно рекомендуемая ежедневная доза составляет 25-50 миллиграмм, однако некоторые специалисты рекомендуют меньшие дозировки - 0,03 миллиграмма на килограмм массы тела в день.

Витамин «В12»

Известен с 20-х годов нашего столетия, с тех пор, когда врачи научились лечить одну из форм анемии введением в рацион больных больших количеств печени. Впоследствии в конце 40-х годов кобаламин (Витамин В12) был получен в очищенном виде. Наиболее распространённая форма промышленного витамина В12 - цианкобаламин названного так по своей структуре, связанной с процессом выделения.

Витамин В12 синтезируется не животными и растениями, а, скорее, микроорганизмами типа анаэробных бактерий. Однако недостаток кобаламина наблюдается крайне редко, так как этот витамин присутствует практически во всех животных тканях.

Витамины группы В имеют одну особенность. Они усваиваются лучше при приёме их всех вместе. Специалисты рекомендуют принимать витамины В-комплекса три раза в день с пищей по 25-30 миллиграмм.

Гиповитаминоз

Гиповитаминозы возникают при нарушении нормального функционирования печени, кишечника и других органов.

Длительное неоправданное применение антибактериальных средств (антибиотиков, сульфамидных препаратов и др.) вызывает обычно резкие изменения кишечной микрофлоры и может быть причиной возникновения своеобразных гиповитаминозных состояний, например гиповитаминоза К, характеризуется повышенной кровоточивостью. Другой причиной возникновения гиповитаминозов при достаточном содержании витаминов в пище могут быть расстройства процессов переваривания и всасывания жиров, в частности при уменьшении поступления в кишечник желчи. При заболеваниях печени могут возникнуть значительные нарушения в снабжении организма жирорастворимыми витаминами А, D, К. Заболевания печени могут быть также причиной нарушения обмена витаминов В1, РР и др. Участие витаминов в обмене веществ.

Витамины необходимы для синтеза ряда ферментов, которые являются мощными ускорителями биохимических реакций.

Ферменты бывают простыми и сложными. Простые ферменты являются белками, в составе которых особое расположение аминокислот предаёт им способность катализировать химические реакции.

Сложные ферменты в качестве активных групп содержат витамины или какие-либо другие соединения небелковой природы.

Так витамин В1 входит в состав фермента, способствующего отщеплению углекислоты от пировиноградной кислоты.

Витамины В2 и РР, а также пантотеновая кислота принимают участие в построении молекул окислительных ферментов, витамин В6 выполняет важную роль в составе ферментов, участвующих в превращениях ряда аминокислот, и т. п. Иными словами, в ходе длительной эволюции организм приспособился использовать при построении своего ферментного аппарата не только специфические, синтезированные им самим белки, но и витамины, синтезируемые растениями и даже микробами, а также микроэлементы, получаемые им в виде минеральных солей.

4. Присасывающее действие в кровообращении и мышечный насос

Мышечный насос -- физиологическое понятие, связанное с мышечной функцией и ее влиянием на собственное кровоснабжение. Принципиальное его действие проявляется следующим образом: во время сокращения скелетных мышц приток артериальной крови к ним замедляется и ускоряется отток ее по венам; в период расслабления венозный отток уменьшается, а артериальный приток достигает своего максимума. Обмен веществ между кровью и тканевой жидкостью происходит через стенку капилляра.

Рис. 2.5. Схематическое изображение процессов, происходящих в синапсе при возбуждении

1 -- синаптические пузырьки, 2 -- пресинаптическая мембрана, 3 -- медиатор, 4 -- пост-синаптическая мембрана, 5 -- синаптическая щель

Механизмы мышечного сокращения .Функции мышц регулируются различными отделами центральной нервной системы (ЦНС), которые во многом определяют характер их разносторонней активности (фазы движения, тонического напряжения и др.). Рецепторы Двигательного аппарата дают начало афферентным волокнам двигательного анализатора, которые составляют 30--50% волокон смешанных (афферентно-эфферентных) нервов, направляющихся в спинной мозг. Сокращение мышц. Вызывает импульсы, которые являются источником мышечного чувства -- кинестезии.

Передача возбуждения с нервного волокна на мышечное осуществляется через нервно-мышечный синапс (рис. 2.5), который состоит из двух разделенных щелью мембран -- пресинаптической (нервного происхождения) и постсинаптической (мышечного происхождения). При воздействии нервного импульса выделяются кванты ацетилхолина, который приводит к возникновению электрического потенциала, способного возбудить мышечное волокно. Скорость проведения нервного импульса через синапс в тысячи раз меньше, чем в нервном волокне. Он проводит возбуждение только в направлении к мышце. В норме через нервно-мышечный синапс млекопитающих может пройти до 150 импульсов в одну секунду. При утомлении (или патологии) подвижность нервно-мышечных окончаний снижается, а характер импульсов может изменяться.

Механизм и энергетика мышечного сокращения. Сокращение и напряжение мышцы осуществляется за счет энергии, освобождающейся при химических превращениях, которые происходят при поступлении в мышцу нервного импульса или нанесении на нее непосредственного раздражения. Химические превращения в мышце протекают как при наличии кислорода (в аэробных условиях), так и при его отсутствии (в анаэробных условиях).

Расщепление и ресинтез аденозинтрифосфорной кислоты (АТФ). Первичным источником энергии для сокращения мышцы служит расщепление АТФ (она находится в клеточной мембране, ретикулюме и миозиновых нитях) на аденозиндифосфорную кислоту (АДФ) и фосфорные кислоты. При этом из каждой грамм-молекулы АТФ освобождается 10 000 кал:

АТФ = АДФ + НзР04 + 10 000 кал.

АДФ в ходе дальнейших превращений дефосфолирируется до аде-ниловой кислоты. Распад АТФ стимулирует белковый фермент актомиозин (аденозинтрифосфотаза). В покое он не активен, активизируется при возбуждении мышечного волокна. В свою очередь АТФ воздействует на нити миозина, увеличивая их растяжимость. Активность актомиозина увеличивается под воздействием ионов Са, которые в состоянии покоя располагаются в саркоплазматическом ретикулюме.

Запасы АТФ в мышце незначительны и, чтобы поддерживать их деятельность, необходим непрерывный ресинтез АТФ. Он происходит за счет энергии, получаемой при распаде креатинфосфата (КрФ) на креатин (Кр) и фосфорную кислоту (анаэробная фаза). С помощью ферментов фосфатная группа от КрФ быстро переносится на АДФ (в течение тысячных долей секунды). При этом на каждый моль КрФ освобождается 46 кДж:

Таким образом, конечный процесс, обеспечивающий все энергетические расходы мышцы, -- процесс окисления. Между тем длительная деятельность мышцы возможна лишь. При достаточном поступлении к ней кислорода, так как содержание веществ, способных отдавать энергию, в анаэробных условиях постепенно падает. Кроме того, при этом накапливается молочная кислота, сдвиг реакции в кислую сторону, нарушает ферментативные реакции и может привести к угнетению и дезорганизации обмена веществ и снижению работоспособности мышц. Подобные условия возникают в организме человека при работе максимальной, субмаксимальной и большой интенсивности (мощности), например при беге на короткие и средние дистанции. Из-за развившейся гипоксии (нехватки кислорода) не полностью восстанавливается АТФ, возникает так называемый кислородный долг и накапливается молочная кислота.

Аэробный ресинтез АТФ (синонимы: окислительное фосфолирирование, тканевое дыхание) -- в 20 раз эффективнее анаэробного энергообразования. Накопленная во время анаэробной деятельности и в процессе длительной работы часть молочной кислоты окисляется до углекислоты и воды (1/4--1/6 ее часть), образующаяся энергия используется на восстановление оставшихся частей молочной кислоты в глюкозу и гликоген, при этом обеспечивается ресинтез АТФ и КрФ. Энергия окислительных процессов используется также и для ресинтеза углеводов, необходимых мышце для ее непосредственной деятельности.

В целом углеводы дают наибольшее количество энергии для мышечной работы. Например, при аэробном окислении глюкозы образуются 38 молекул АТФ (для сравнения: при анаэробном распаде углевода образуется лишь 2 молекулы АТФ). Время развертывания аэробного пути образования АТФ составляет 3--4 мин (у тренированных -- до 1 мин), максимальная мощность при этом 350--450 кал/мин/кг, время поддержания максимальной мощности -- десятки минут. Если в покое скорость аэробного ресинтеза АТФ невысокая, то при физических нагрузках его мощность становится максимальной и при этом аэробный путь может работать часами. Он отличается также высокой экономичностью: в ходе этого процесса идет глубокий распад исходных веществ до конечных продуктов СОг и НаО. Кроме того, аэробный путь ресинтеза АТФ отличается универсальностью в использовании субстратов: окисляются все органические вещества организма (аминокислоты, белки, углеводы, жирные кислоты, кетоновые тела и др.).

Однако аэробный способ ресинтеза АТФ имеет и недостатки: 1) он требует потребления кислорода, доставка которого в мышечную ткань обеспечивается дыхательной и сердечнососудистой системами, что, естественно, связано с их напряжением; 2) любые факторы, влияющие на состояние и свойство мембран митохондрий, нарушают образование АТФ; 3) развертывание аэробного образования АТФ продолжительно во времени и невелико по мощности.

Мышечная деятельность, осуществляемая в большинстве видов спорта, не может полностью быть обеспечена аэробным процессом ре-синтеза АТФ, и организм вынужден дополнительно включать анаэробные способы образования АТФ, имеющие более короткое время развертывания и большую максимальную мощность процесса (т.е. наибольшее количество АТФ,' образуемое в единицу времени) -- 1 моль АТФ соответствует 7,3 кал, или 40 Дж (1 кал == 4,19 Дж).

Возвращаясь к анаэробным процессам энергообразования, следует уточнить, что они протекают по меньшей мере в виде двух типов реакций: 1. Креатинфосфокиназная -- когда осуществляется расщепление КрФ, фосфорные группировки с которого переносятся на АДФ, ресинтезируя при этом АТФ. Но запасы креатинфосфата в мышцах невелики и это обусловливает быстрое (в течение 2--4 с) угасание этого типа реакции. 2. Гликолитическая (гликолиз) -- развивается медленнее, в течение 2--3 мин интенсивной работы. Гликолиз начинается с фосфолирирования запасов гликогена мышц и поступающей с кровью глюкозы. Энергии этого процесса хватает на несколько минут напряженной работы. На этом этапе завершается первая стадия фосфолирирования гликогена и происходит подготовка к окислительному процессу. Затем наступает вторая стадия гликолитической реакции -- дегидрогенирование и третья -- восстановление АДФ в АТФ. Гликолитическая реакция заканчивается образованием двух молекул молочной кислоты, после чего разворачиваются дыхательные процессы (к 3--5 мин работы), когда начинает окисляться молочная кислота (лак-тат), образованная в процессе анаэробных реакций.

Биохимическими показателями оценки креатинфосфатного анаэробного пути ресинтеза АТФ является креатининовый коэффициент и алактатный (без молочной кислоты) кислородный долг. Креатининовый коэффициент -- это выделение креатинина с мочой за сутки в расчете на 1 кг массы тела. У мужчин выделение креатинина колеблется в пределах 18--32 мг/сут х кг, а у женщин -- 10--25 мг/сут х кг. Между содержанием креатинфосфата и образованием у него креатинина существует прямолинейная зависимость. Следовательно, с помощью креатининового коэффициента можно оценить потенциальные возможности этого пути ресинтеза АТФ.

Биохимические сдвиги в организме, обусловленные накоплением молочной кислоты в результате гликолиза. Если в покое до начала мышечной деятельности концентрация лактата в крови составляет 1-- 2 ммоль/л, то после интенсивных, непродолжительных нагрузок в течение 2--3 мин эта величина может достигать 18--20 ммоль/л. Другим показателем, отражающим накопление в крови молочной кислоты, служит показатель крови (рН): в покое 7,36, после нагрузки снижение до 7,0 и более. Накопление лактата в крови определяет и ее щелочной резерв -- щелочные компоненты всех буферных систем крови. Окончание интенсивной мышечной деятельности сопровождается снижением потребления кислорода -- вначале резко, затем более плавно. В связи с этим выделяют два компонента кислородного долга: быстрый (алактатный) и медленный (лактатный). Лактатный -- это то количество кислорода, которое используется после окончания работы для устранения молочной кислоты: меньшая часть окисляется до J-bO и СОа, большая часть превращается в гликоген. На это превращение тратится значительное количество АТФ, которая образуется аэробным путем за счет кислорода, составляющего лактатный долг. Метаболизм лактата осуществляется в клетках печени и миокарда.

Количество кислорода, необходимое для полного обеспечения выполняемой работы, называют кислородным запросом. Например, в беге на 400 м кислородный запрос, равен приблизительно 27 л. Время пробегания дистанции на уровне мирового рекорда составляет около 40 с. Исследования показали, что за это время спортсмен поглощает 3--4 л 02. Следовательно, 24 л -- это общий кислородный долг (около 90% кислородного запроса), который ликвидируется после забега.

В беге на 100 м кислородный долг может доходить до 96% запроса. В беге на 800 м доля анаэробных реакций несколько снижается -- до 77%, в беге на 10 000 м -- до 10%, т.е. преобладающая часть энергии поставляется за счет дыхательных (аэробных) реакций.

5. Самооценка собственного здоровья

Как известно, здоровье человека определяется комплексом факторов: наследственностью, качеством окружающей среды, качеством жизни, образом жизни человека. Состояние здоровья организма наиболее полно определяется при квалификационном врачебном контроле. Существенным дополнением к нему может быть самоконтроль текущего состояния здоровья, который позволяет своевременно выявлять имеющиеся отклонения. К объективным показателям функционального состояния здоровья относятся морфологические (рост, масса тела) и функциональные (ЧСС, ЖЕЛ, частота дыхания, мышечная сила, температура тела). К субъективным характеристикам жизнедеятельности организма относят самочувствие, работоспособность, сон, аппетит, настроение.

Показатели самооценки состояния здоровья:

Состояние кожных покровов и их образований (волос, ногтей), оценка самочувствия, определение работоспособности (как умственной, так и физической), сон, настроение, аппетит, состояние иммунитета (субъективно), оценка адаптационных возможностей, определение массы тела.

Таким образом, по субъективной модели здоровья можно судить не только о его тенденциях, но и об умении индивида управлять состоянием своего организма.

Управлять своим организмом с целью улучшения состояния здоровья может лишь тот человек, который знает особенности строения и функционирования систем и органов, факторы, укрепляющие и ослабляющие здоровье, правила личной гигиены.

Важно уметь контролировать и оценивать функциональное состояние организма или отдельных систем органов, с тем, чтобы своевременно выявлять отклонения и проводить коррекцию (имеются в виду наиболее простые оздоровительные действия: закаливания, тренировка, регуляция массы тела путём изменения режима дня, выполнения расслабляющих упражнений и т. д.)

С целью формирования валеологической грамотности необходимо проводить занятия с учащимися, направленные на изучение функциональных особенностей своего организма, на анализ и оценку влияния собственного образа жизни и различных экологических факторов (шум, загрязнение окружающей среды) на состояние здоровья. Именно поэтому так важно правильно оценивать, а главное анализировать текущее состояние собственного здоровья. Многие убеждены, что самооценка влияет на состояние психического здоровья человека, поэтому нет ничего удивительного в том, что люди стараются повысить её любым способом. А большинство американцев уверено, что высокое мнение о себе -- залог успеха и процветания, и наоборот -- заниженная самооценка лежит в основе многих личных и, как следствие, общественных проблем.

Женщины живут дольше, чем мужчины, но живут хуже - по их мнению. Такой вывод позволяют сделать некоторые исследования, в которых анализировалось, как оценивают свое здоровье мужчины и женщины.

В последние годы наблюдается тенденция к улучшению восприятия здоровья среди испанского населения, однако женщины старше 45 лет все еще оценивают свое здоровье ниже, чем мужчины. Различия, говорится в докладе Испанского общества общественного здоровья и санитарного управления, усиливаются с возрастом. Так, среди людей старше 64 лет ощущение плохого здоровья испытывают 55,1% мужчин и 67% женщин. В общем, женщины любой возрастной категории утверждают, что здоровье у них хуже, чем у мужчин. Самооценка состояния здоровья - один из наиболее часто используемых показателей при анализе социального неравенства. В Национальной службе здравоохранения считают, что оценка здоровья на основании восприятия индивида является неотъемлемым элементом анализа состояния здоровья и отражением различных социальных, климатических факторов и образов жизни, выходящих за рамки системы здравоохранения. По мнению Карме Боррель из барселонского Агентства общественного здоровья такая субъективная оценка здоровья позволяет прогнозировать продолжительность жизни, осложнения после болезней, смертность и частоту пользования услугами медицинских учреждений. Разница между мужчинами и женщинами объясняется не только биологическими отличиями, но, в первую очередь, социальным и материальным неравенством полов. Не в последнюю очередь сказываются различные роли, которые играют мужчины и женщины, так как "условия труда тесно связаны со здоровьем", а для женщин "двойная трудовая нагрузка на работе и дома негативно влияет на здоровье". Женщины утверждают, что здоровье у них хуже, чаще страдают от ограничений, связанных с состоянием здоровья, чаще имеют хронические заболевания: депрессия, артрит, ревматизм. "У мужчин чаще встречаются другие нарушения - астма и болезни сердца", - отмечает Боррель. Опытным путем доказано, отмечает Хавьер дель Торо, что женщины чаще страдают более болезненными хроническими заболеваниями, такими как люмбаго или фиброма. "В моей ревматологической консультации больше 80% пациентов - женщины", - говорит ревматолог больничного комплекса Хуан Каналехо де ла Корунья.

Из-за такого представления о здоровье женщины чаще пользуются услугами медицинских учреждений. Полученные данные, считает Гарсия Кальвенте, "также могут объяснить, почему женщины больше беспокоятся из-за болезней, так как в их функции входит забота о ближних". Кроме того, можно говорить о медикализации жизни. Однако Кармен, подвергающаяся сильной перегрузке, так как она заботится о двух членах семьи, утверждает, что не все можно вылечить с помощью лекарств. "Зачем мне принимать таблетки, если я не могу отдохнуть, не могу выспаться?" По мнению Гарсия Кальвенте, первичные медицинские учреждения превращаются для женщин в "припарки", которые "зачастую не решают проблемы". "Однако в общем женщины удовлетворены работой медицинских учреждений", - говорит она.

А мужчины? "Они переоценивают свое здоровье, стремясь соответствовать мужскому стереотипу, навязываемому обществом: "мужчины - выносливые и сильные", отмечает Гарсия Кальвенте. На самом деле мужчины лишь прикрываются стереотипом, ведь болезни они переносят плохо. "Я не единственный человек, который много болеет. Я очень выносливый, но, когда болезнь валит с ног, я вынужден три-четыре дня лежать в постели", - рассказывал один их участников опроса EASP. Совершенно иначе ответила одна из женщин: "Бедная я... Я очень устала, я не знаю, что будет с моим сыном, я должна заботиться о матери - так много всего". Гарсия Кальвенте считает, что оба гендерных стереотипа играют негативную роль "как для мужчин, так и для женщин". Изможденные женщины среднего и пожилого возраста, говоря о своем здоровье, делают акцент на усталости. "Они представляют разнородную группу: женщины, заботящиеся о ком-то, находящемся на их попечении, женщины с двойным рабочим днем или тяжелыми условиями труда, что превращает их жизнь в порочный круг, так как он отнимает их свободное время и непрерывно изматывает их". "Выносливые" мужчины, говоря о своем здоровье, упоминают "излишки потребляемых субстанций" и "жизненную модель, сконцентрированную вокруг работы".

Еще один факт дает пищу для размышлений. Согласно докладу Агентства общественного здоровья Барселоны, женщины, живущие в браке, худшего мнения о своем здоровье: ("Они берут на себя соответствующие функции содержания и ухода за теми, кто живет дома"), а разведенные и одинокие женщины оценивают свое здоровье так же, как мужчины, или даже выше. Причины такого отношения еще предстоит установить, но складывается впечатление, что расставание делает женщин сильнее.

Заключение

энергообеспечение мышечный витамин здоровье

Познание себя самого является необходимым условием обеспечения жизнедеятельности человека в условиях современных воздействий внешней среды. Формирование физической культуры личности будущего человека при этом немыслимо без умения рационально корректировать свое состояние средствами физической культуры и двигательной деятельности.

Движения играют существенную роль во взаимодействии человека с внешней средой. Выполняя разнообразные и сложные движения, человек может осуществлять трудовую деятельность, общаясь с другими людьми, заниматься спортом и т.д. При этом организм получает более высокую способность к сохранению постоянства внутренней среды при изменяющихся внешних воздействиях: температура, влажность, давление, сила воздействия солнечной и космической радиации. Под воздействием физической тренировки происходит неспецифическая адаптация организма человека к разнообразным проявлениям факторов внешней среды.

Экспериментальные данные подчеркивают стимулирующее влияние оптимально организованной двигательной активности на уровень умственной работоспособности студентов.

Таким образом, можно сделать заключение, что двигательная функция - основная функция человеческого организма, которую следует постоянно совершенствовать для повышения работоспособности в любом виде деятельности, в том числе и в умственной. Знания необходимы для самопознания личности в процессе физкультурно-спортивной деятельности. Прежде всего, это относится к самосознанию, т.е. осознанию себя как личности, осознанию своих интересов, стремлений, переживаний. Переживание различных эмоций, сопровождающих самопознание, формирует отношение к себе и образует самооценку личности. Она имеет две стороны -- содержательную (знания) и эмоциональную (отношение). Знания о себе соотносятся со знаниями о других и с идеалом. В результате выносится суждение, что у индивида лучше, а что хуже, чем у других, и как соответствовать идеалу. Таким образом, самооценка -- это результат сравнительного познания себя, а не просто констатация наличных возможностей. В связи с самооценкой возникают такие личностные качества, как самоуважение, тщеславие, честолюбие. Самооценка имеет ряд функций: сравнительного познания себя (чего я стою); прогностическая (что я могу); регулятивная (что я должен делать, чтобы не потерять самоуважение, иметь душевный комфорт). Студент ставит перед собой цели определенной трудности, т.е. имеет определенный уровень притязаний, который должен быть адекватным его реальным возможностям. Если уровень притязаний занижен, то это может сковывать инициативу и активность личности в физическом совершенствовании; завышенный уровень может привести к разочарованию в занятиях, потере веры в свои силы.

Список используемой литературы

1. Ф50 Физическая культура студента: Учебник / Под ред. В.И. Ильинича. М.: Гардарики, 2000. -- 448 с.

2. Дормидонтова Л.С. Профессиональная деятельность специалистов физической культуры и спорта - Омск: СибГАФК, 2001.

3. Теория и методика физического воспитания: Учебное пособие для студентов вузов физической культуры и спорта. Под ред. Т.Ю.Круцевича. Киев: Издательство «Олимпийская литература», 2003.- 412 с.

4. Физическая культура: Учебное пособие / Под ред. В.А.Коваленко.- Изд-воАСВ, 2000.- 432 с.

Размещено на Allbest.ru


Подобные документы

  • Разработка интегрированного урока по биологии и химии, задачей которого является формирование понятия "витамины", знакомство учащихся с их классификацией, биологической ролью витаминов в обмене веществ и их практическим значением для здоровья человека.

    презентация [4,1 M], добавлен 23.04.2010

  • Значение для организма белков, жиров и углеводов, воды и минеральных солей. Белковый, углеводный, жировой обмен организма человека. Нормы питания. Витамины, их роль в обмене веществ. Основные авитаминозы. Роль минеральных веществ в питании человека.

    контрольная работа [1,6 M], добавлен 24.01.2009

  • Хотя Витамины не являются источником энергии, они необходимы для живого организма. Недостаток витаминов в пище неблагоприятно отражается на общем состоянии организма и ведёт к заболеванию отдельных органов.

    реферат [17,7 K], добавлен 17.09.2005

  • Характеристика обмена веществ, сущность которого состоит в постоянном обмене веществами между организмом и внешней средой. Отличительные черты процесса ассимиляции (усвоение веществ клетками) и диссимиляции (распад веществ). Особенности терморегуляции.

    реферат [32,3 K], добавлен 23.03.2010

  • Преобразование химической энергии в механическую работу или силу как основная функции мышц, их механические свойства. Применение закона Гука в отношении малых напряжений и деформаций. Механизм мышечного сокращения. Ферментативные свойства актомиозина.

    презентация [3,0 M], добавлен 23.02.2013

  • Строение поперечно-полосатой мышечной ткани. Исследование особенностей развития мышц. Энергообеспечение мышечного сокращения. Подготовка к сдаче анализов крови. Специфические изменения в метаболизме спортсменов в ответ на стандартную физическую нагрузку.

    презентация [7,5 M], добавлен 27.03.2016

  • Основные физиологические свойства мышц: возбудимость, проводимость и сократимость. Потенциал покоя и потенциал действия скелетного мышечного волокна. Механизм сокращения мышц, их работа, сила и утомление. Возбудимость и сокращение гладкой мышцы.

    курсовая работа [1,1 M], добавлен 24.06.2011

  • Роль процесса дыхания в обмене веществ, особенности газообмена между кровью и окружающим воздухом. Недыхательные функции, участие дыхательной системы в водно-солевом обмене, увлажнении и очищении вдыхаемого воздуха. Строение носа, гортани и трахеи.

    презентация [1,6 M], добавлен 24.09.2015

  • Принцип саморегуляции организма. Понятие о гомеостазе и гомеокинезе. Энергетика и биомеханика мышечного сокращения. Ультраструктура скелетного мышечного волокна. Особенности строения периферических синапсов. Классификация, строение и функции нейронов.

    курс лекций [342,3 K], добавлен 14.06.2011

  • Механизм преобразования химической энергии АТФ непосредственно в механическую энергию сокращения и движения. Типы мыщц, их химическое строение. Роль миоцита, цитоплазмы, миофибриллов, рибосомов, лизосомов. Гликоген как основной углевод мышечной ткани.

    реферат [255,1 K], добавлен 06.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.