Основы концепции современного естествознания

Отличия между строго научным и ненаучным подходом к естествознанию. Основные идеи и принципы классического естествознания. Главные особенности современной естественной науки. Кризис современной космологии. Проблемы современного развития биологии.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 20.04.2013
Размер файла 31,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Отличия между строго научным и ненаучным подходом к естествознанию

Наука - это сфера человеческой деятельности, функция которой - выработка, теоретическая систематизация объективных знаний о действительности; это одна из форм общественного сознания; наука включает как деятельность по получению нового знания, так её и результат - сумму знаний, лежащих в основе научной картины мира. Она обозначает отдельные отрасли научного знания. Непосредственные цели - описание, объяснение и предсказание процессов и явлений действительности, составляющий предмет её изучения, на основе открываемых ею законов. Система наук условно делится на естественные, общественные и технические науки.

Главной особенностью научного знания признается его системный характер, логическая доказанность путем выведения одних знаний из других. По содержанию же научное знание характеризуется стремлением к истине, к раскрытию наиболее глубоких и общих оснований рассматриваемого круга явлений, в предельном случае всего мира в целом. Что нельзя сказать о ненаучной форме знания.

До возникновения науки как специализированной познавательной деятельности людей эмпирическое познание совпало со стихийно-практическим, обыденным знанием. Эмпирическое - это опытное (полученное в процессе деятельности человека) знание. С возникновением науки эмпирическое познание перестает совпадать с житейским, обыденным познанием и превращается в познавательную специальную деятельность, целью которой является достоверное и практически и логически проверяемое установление фактов, их описание, классификация и так далее. Важнейшей особенностью эмпирического научного исследования надо считать его направленность непосредственно на чувственно воспринимаемые объекты путем наблюдения и эксперимента как главных его методов.

Познание сущностного единства явлений, их внутренних, а не только внешних связей составляет специфику теоретической науки. Именно в теоретическом знании наиболее концентрированно представлены отличные черты научного познания в целом. Если эмпирическое знание позволяет только фиксировать, констатировать явления и связи между ними, то теоретическое знание дает возможность объяснить факты, выделить их из общих наблюдений, вскрыть общую сущность и основу, ответить, почему как, каким образом происходят те или иные явления. Неразумно усматривать критерии истинности теоретического знания непосредственно в данных эмпирического знания. Притом, что эмпирическое знание опирается на факты, именно в нем находится источник как практических, так и теоретических ошибок людей. Эмпирическое знание односторонние, так как не раскрывает внутреннего единства многообразных фактов. Оно отражает наличие не только отдельных явлений, но и связей между ними, описывая их в виде так называемых эмпирических законов и закономерностей.

Главной и непосредственной функцией науки, определяющей всю ее структуру и организацию, было и остается раскрытие объективной истины. Истина - это результат познавательной деятельности человека, субъекта познания; истина существует в сознание человека. Но истина, будучи субъективной, в силу способа получения и формы выражения, по своему содержанию является объективной. Это следует из определения: истина это знание, содержание которого не зависит от познающего субъекта, оно обусловлено объектами познания, его свойствами и закономерностями. Более точную меру, степень и границы объективности истины удается выразить с помощью понятий абсолютной и относительной истины. Абсолютная истина складывается из суммы относительных истин.

Я согласна с высказыванием Вернадского, что отличительной особенностью науки является не истинность знания, а использование специальных методов познания. Абсолютной истины нет, все изменчиво и движется вперед и вперед, так же как и наука с помощью особых приемов или методов, позволяющих перейти оттого, что уже известно, к новому знанию.

2. Основные идеи и принципы классического естествознания

Начало первого - классического - периода в истории науки обычно связывают с именем И. Ньютона. Велик вклад Ньютона и в математику, и в оптику, однако, фундаментом классического естествознания стала созданная им механика, которая не только навела порядок в огромном эмпирическом материале, накопленном многими поколениями ученых, но и дала в руки людей мощный инструмент однозначного предсказания будущего в широкой области объектов и явлений природы. Причины перемещения тел в пространстве, закономерности этих перемещений, способы их адекватного описания всегда были в центре внимания человека, так как непосредственно касались наиболее близкой религиозному сознанию области естествознания, а именно - движения небесных тел. Поиск закономерностей этих движений был для человека не столько связан с удовлетворением научной любознательности, сколько преследовал глубокую религиозно-философскую цель: познать смысл бытия. Поэтому такое значение во все времена уделялось астрономическим наблюдениям, тщательной фиксации мельчайших подробностей в поведении небесных тел, интерпретации повторяющихся событий.

Одним из величайших достижений на этом поприще стали эмпирические законы И. Кеплера, которые убедительно показали существование порядка в движении планет Солнечной системы. Решающий же шаг в понимании причин этого порядка был сделан И. Ньютоном. Созданная им классическая механика в чрезвычайно лаконичной форме обобщила весь предшествующий опыт человечества в изучении движений. Оказалось, что все многообразие перемещений макроскопических тел в пространстве может быть описано всего лишь двумя законами: законом инерции (F = ma) и законом всемирного тяготения (F = Gm1m2 / r2).

И не только законы Кеплера, относящиеся к Солнечной системе, оказались следствием законов Ньютона, но и все наблюдаемые человеком в естественных условиях перемещения тел стали доступными аналитическому расчету. Точность, с которой такие расчеты позволяли делать предсказания, удовлетворяли любые запросы. Сильнейшее впечатление на людей произвело обнаружение в 1846 году ранее неизвестной планеты Нептун, положение которой было рассчитано заранее на основании уравнений Ньютона (Адамс и Леверье). К середине XIX века авторитет классической механики возрос настолько, что она стала считаться эталоном научного подхода в естествознании. Широта охвата явлений природы, однозначная определенность (детерминизм) выводов, характерные для механики Ньютона, были настолько убедительны, что сформировалось своеобразное мировоззрение, в соответствии с которым механистический подход следует применять ко всем явлениям природы, включая физиологические и социальные, и что надо только определить начальные условия, чтобы проследить эволюцию природы во всем ее многообразии. Это мировоззрение часто называют «детерминизмом Лапласа», в память о великом французском ученом П-С. Лапласе, внесшем большой вклад в небесную механику, физику и математику. Очень образно об этом сказал сам Лаплас: «Ум, которому были бы известны для какого-либо момента времени все силы, одушевляющие природу, обнял бы в одной формуле движение величайших тел Вселенной наравне с движением атомов. И будущее, также как и прошедшее предстало бы перед его взором».

Однако, эта программа - сведение всех природных явлений к механическому движению под действием сил - оказалась не реализованной, прежде всего, из-за проблем с описанием световых, электрических и магнитных явлений. Во второй половине XIX века стало ясно, что материальный мир не сводится только к механическим перемещениям вещества. Еще одной формой существования материи было признано электромагнитное поле, наиболее полную теорию, которого создал Дж.К. Максвелл. После этого, в конце XIX в., большинство ученых считало, что создание полной и окончательной естественнонаучной картины мира практически завершено. Все явления природы, в соответствии с этой картиной мира, являются следствием электромагнитных и гравитационных взаимодействий между зарядами и массами, которые приводят к однозначному, полностью определенному начальными условиями поведению тел (концепция детерминизма). Критериями истинности в такой картине мира являются, с одной стороны, эксперимент («практика - критерий истины»), а с другой стороны - однозначный логический вывод (с XVII века, как правило, математический) из более общих посылок (дедукция). Отметим здесь также, что одним из главных методологических принципов классического естествознания являлась независимость объективных процессов в природе от субъекта познания, отделенность объекта от средств познания.

3. Основные идеи и принципы неклассического естествознания

Подрыву классических представлений в естествознании способствовали некоторые идеи, которые зародились еще в середине XIX века, когда классическая наука находилась в зените славы. Среди этих первых неклассических идей, в первую очередь, следует отметить эволюционную теорию Ч. Дарвина. Как известно, в соответствии с этой теорией биологические процессы в природе протекают сложным, необратимым, зигзагообразным путем, который на индивидуальном уровне совершенно непредсказуем. Явно не вписывались в рамки классического детерминизма и первые попытки Дж. Максвелла и Л. Больцмана применить вероятностно-статистические методы к исследованию тепловых явлений. Г. Лоренц, А. Пуанкаре и Г. Минковский еще в конце XIX века начали развивать идеи релятивизма, подвергая критике устоявшиеся представления об абсолютном характере пространства и времени. Эти и другие революционные с точки зрения классической науки идеи привели в самом начале XX века к кризису естествознания, коренной переоценке ценностей, доставшихся от классического наследия.

Научная революция, ознаменовавшая переход к неклассическому этапу в истории естествознания, в первую очередь, связана с именами двух великих ученых XX века - М. Планком и А. Эйнштейном. Первый ввел в науку представление о квантах электромагнитного поля, второй навсегда останется в истории человечества как автор специальной и общей теории относительности. Буквально в течение первой четверти века был полностью перестроен весь фундамент естествознания, который в целом остается достаточно прочным и в настоящее время. Что же принципиально нового в понимании природы принесло с собой неклассическое естествознание?

1. Прежде всего, следует иметь в виду, что решающие шаги в становлении новых представлений были сделаны в области атомной и субатомной физики, где человек попал в совершенно новую познавательную ситуацию. Те понятия (положение в пространстве, скорость, сила, траектория движения и т.п.), которые с успехом работали при объяснении поведения макроскопических природных тел, оказались неадекватными и, следовательно, непригодными для отображения явлений микромира. И причина этого заключалась в том, что исследователь непосредственно имел дело не с микрообъектами самими по себе, как он к этому привык в рамках представлений классической науки, а лишь с «проекциями» микрообъектов на макроскопические «приборы». В связи с этим в теоретический аппарат естествознания были введены понятия, которые не являются наблюдаемыми в эксперименте величинами, а лишь позволяют определить вероятность того, что соответствующие наблюдаемые величины будут иметь те или иные значения в тех или иных ситуациях. Более того, эти ненаблюдаемые теоретические объекты (например, y - функция Шредингера в квантовой механике или кварки в современной теории адронов) становятся ядром естественнонаучных представлений, именно для них записываются базовые соотношения теории.

2. Второй особенностью неклассического естествознания является преобладание же упомянутого вероятностно-статистического подхода к природным явлениям и объектам, что фактически означает отказ от концепции детерминизма. Переход к статистическому описанию движения индивидуальных микрообъектов было, наверное, самым драматичным моментом в истории науки, ибо даже основоположники новой физики так и не смогли смириться с онтологической природой такого описания, считая его лишь временным, промежуточным этапом естествознания.

3. Далеко за рамки естествознания вышла сформулированная Н. Бором и ставшая основой в неклассической физике идея дополнительности. В соответствии с этим принципом, получение экспериментальной информации об одних физических величинах, описывающих микрообъект, неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым. Такими взаимно дополнительными величинами являются, например, координаты и импульсы, кинетическая и потенциальная энергия, напряженность электромагнитного поля и число фотонов и т.п. Таким образом, с точки зрения неклассического естествознания невозможно не только однозначное, но и всеобъемлющее предсказание поведения всех физических параметров, характеризующих динамику микрообъектов.

4. Для неклассического естествознания характерно объединение противоположных классических понятий и категорий. Например, в современной науке идеи непрерывности и дискретности уже не являются взаимоисключающими, а могут быть применены к одному и тому же объекту, в частности, к физическому полю или к микрочастице (корпускулярно-волновой дуализм). Другим примером может служить относительность одновременности: события, одновременные в одной системе отсчета, оказываются неодновременными в другой системе отсчета, движущейся относительно первой.

5. Произошла в неклассической науке и переоценка роли опыта и теоретического мышления в движении к новым результатам. Прежде всего, была зафиксирована и осознана парадоксальность новых решений с точки зрения «здравого смысла». В классической науке такого резкого расхождения науки со здравым смыслом не было. Основным средством движения к новому знанию стало не его построение снизу, отталкиваясь от фактической, эмпирической стороны дела, а сверху. Явное предпочтение методу математической гипотезы, усложнение математической символики все чаще стали выступать средствами создания новых теоретических конструкций, связь которых с опытом оказывается не прямой и не тривиальной.

4. Главные особенности современной естественной науки

Естествознание конца XX века характеризуется рядом специфических черт, которые позволяют говорить об уже начавшемся повороте к новому этапу его развития. Этот этап, получивший название постнеклассического, был вызван не столько проблемами физики «переднего края» (микромир, космос), сколько острой необходимостью понять сложные экономические, социально-политические, общественные процессы, инициированные научно-техническим прогрессом. Ввиду того, что последствия этого прогресса оказались далеко не однозначными, более того, начали угрожать человечеству (ядерная, экологическая катастрофа, деградация культуры и человеческой психики), потребовалась научно обоснованная реакция общества на эти негативные последствия.

Для выполнения этого социального «заказа», наука должна была перейти к изучению больших и очень сложных систем, какими являются человек, биосфера, общество и т.п. Для анализа таких систем ученым пришлось отказаться от аналитического подхода к изучаемым объектам, основанного на все большем и большем «погружении» в глубь его структуры. Основными методами исследования становятся синтетические методы, концентрирующие внимание на специфических особенностях поведения сложных саморазвивающихся систем, пронизанных многочисленными нелинейными обратными связями между подсистемами. Именно эти обратные связи обусловливают индивидуальную неповторимость эволюции сложных систем. Одним из первых применил такой синтетический метод основоположник кибернетики Н. Винер. Развития системного подхода и его применение к сложноструктурированным объектам привело, в конце концов, к созданию нового направления в естествознании - синергетике, в основу которой были положены работы Германа Хакена, Ильи Пригожина и других. Синергетика изучает поведение способных к самоорганизации сложных систем, находящихся вдали от состояния теплового равновесия и интенсивно обменивающихся энергией с окружающей средой. При определенных условиях поведение таких систем резко отличается от поведения обычных физических объектов, изучаемых в равновесной термодинамике. В частности, такие сложные системы начинают развиваться в направлении усложнения своей структуры, причем «траектории» такого развития могут раздваиваться (в точках бифуркации), вследствие чего развитие системы становится непредсказуемым, зависящим от собственной предыстории.

Если классическая и неклассическая наука занималась в основном изучением непрерывно протекающих процессов, достаточно плавных переходов между состояниями рассматриваемых объектов, то постнеклассическая наука начинает в первую очередь интересоваться вопросами возникновения новых качеств, связанных с переходом на более высокие уровни структурной организации. В связи с этим можно говорить о повороте от науки «существующего» к науке «возникающего», повороте от «бытия» к «становлению». Эволюционная наука постепенно переходит от индуктивно-эмпирического к дедуктивно-теоретическому уровню познания.

Однако особенность современного естествознания заключается не только в формировании единого взгляда на процессы в природе. Изменяется роль естествознания и науки в целом. «Планетарные» возможности человека сейчас таковы, что процесс познания природы уже нельзя считать актом «бесстрастного» наблюдения за чем-то внешним по отношению к наблюдателю. В связи с этим впервые за всю историю человечества встает вопрос о «цене» знания, которая не должна быть столь «высокой», чтобы полученное знание привело бы человеческий род к гибели. Другими словами, «истина» перестает быть самодовлеющей категорией науки («Не ищи в науке только истину и не пользуйся ею во зло или ради корысти», - говорил академик Д.С. Лихачев). Если апофеозом классической и неклассической науки была законосообразная истина и рациональным считалось только то, что ведет к ней, то в постнеклассической науке возникает новая идеология рациональности: рационально то, что ведет к выживанию.

5. Проблемы современных естественных наук

Кризис современной космологии

Представляется, что в понятии космологической сингулярности скрыты, по меньшей мере, три проблемы, решение которых потребует изменения научной картины мира в целом (Г.В. Гивишвили).

Во-первых, при обсуждении свойств сингулярности упор делают, главным образом, на то, что материя была в сверхплотном и сверхгорячем состоянии. При этом часто упускают из виду полное отсутствие пространства-времени, что фактически равнозначно принципиальному отрицанию всего сущего, абсолютному (безотносительно чего бы то ни было) ничто. Но ведь все физические теории объединяет одно, не знающее исключений правило: они предназначены для описания различного рода взаимодействий между частицами и излучением в сопутствующем им пространстве-времени. Теория большого Взрыва (ТБВ) обязывает нас рассматривать возникновение материи-пространства-времени из абсолютного ничто, причем этот процесс единичен, уникален, а значит, никакое его описание не может считаться строго доказательным: теория в принципе непроверяема, поскольку результат ее предсказания невоспроизводим.

Во-вторых, густым туманом окутано происхождение космологической сингулярности. Кажется очевидным, что, коль скоро современное состояние Вселенной преходяще, то и прошлое ее должно быть преходящим, то есть, если фазе расширения предшествовало состояние сингулярности, то оно, в свою очередь, предварялось фазой образования этой сингулярности.

В-третьих, ТБВ не дает ответа на вопрос о причине Большого Взрыва. Она описывает события, происходящие в процессе уже расширяющейся Вселенной, но проблема нарушения сингулярности («первотолчка») повисает в воздухе, она попросту не рассматривается. Трудность здесь в том, что ни одно из известных фундаментальных взаимодействий не в состоянии преодолеть силы гравитационного сжатия, возникающие при бесконечно большой плотности вещества-излучения.

Важно, что в теории сингулярность возникает не из-за неадекватности математических уравнений или некорректности задания граничных условий. Она представляет собой неотъемлемое свойство любой физической модели конечной нестационарной Вселенной. А между тем, вопреки выводам теории, мы существуем.

Как увязать очевидность бытия Вселенной с отрицанием возможности этого бытия, следующим из теории? По-видимому, нельзя переносить представления о видимой части Вселенной на всю Вселенную. Иначе говоря, нужно признать, что наша конечная, нестационарная вселенная (тогда уже маленькой буквы) представляет собой лишь один из элементов Большой бесконечной Вселенной (с заглавной буквы).

Еще в начале века С. Шарлье предложил модель иерархической Большой Вселенной, в которой малые вселенные распределены как изюминки в пудинге. Трудности современной космологии дают основание вернуться к ней, разумеется, с позиций нового знания. Суть в том, чтобы рассматривать нестационарные отдельные малые вселенные как преходящие элементы вечной и неизменной Большой Вселенной. Но при бесконечно большом объеме Вселенной движение ее как единой системы невозможно. Поэтому бесконечность ее бытия достигается через несвязанные между собой движения локальных масс в составляющих ее вселенных, и вся наша видимая вселенная - лишь одна из них. Нестационарность вселенных обрекает их на «смертность». Понятие «жизнь» по отношению к ним означает динамическое развитие по определенной программе как целого, а «смерть» - их распад. (Отношения между Большой и малыми вселенными в известном смысле подобны взаимоотношениям сообществ организмов и отдельных особей: бессмертие первых реализуется через смертность вторых.)

Модель Большого Взрыва в первом приближении достаточна для описания эволюции «типичной» вселенной в фазе ее расширения. Но для изучения процессов на масштабах, намного превышающих размеры и время жизни одной такой вселенной, видимо, нужна новая теория. Она должна была бы учитывать тот факт, что отдельная вселенная проявляется как локальная флуктуация кривизны пространства, «евклидовой лишь в среднем».

Проблемы современного развития биологии.

Биологическая форма движения материи занимает промежуточное положение между химической и социальной. Предмет теоретической биологии - познание сущности живого. Он включает в себя анализ трех групп взаимосвязанных задач - объяснение происхождения жизни на Земле; познание эволюции живого; изучение системной организации живого.

До сих пор, как это ни странно, немало загадок таит вопрос о происхождении жизни на Земле. Хотя еще в 1922 году наш российский ученый А.И Опарин сформулировал идею происхождения жизни в результате эволюции углеродистых соединений, но до сих пор нет приемлемых экспериментальных подтверждений этому. Более того, такие известные ученые как наш В.И. Вернадский, ряд американских ученых, приходят к принципиальному выводу о привнесении жизни на Землю извне. Живое из неживого появиться не может, считает ряд ученых.

Казалось бы уже банальностью стало признание эволюционного пути развития живого вслед за работами Ч. Дарвина и его последователей. Со школьных лет нам известны схемы развития видов от простейших до высшего произведения эволюционного процесса - Homo Sapiens, Человека разумного. Однако все чаще сейчас раздаются голоса том, что и здесь пока слишком мало точных данных, и слишком много нестыковок, искусственного подтягивания данных к сформулированным априорно теоретическим конструкциям. Целый ряд американских ученых, среди которых есть и нобелевские лауреаты, считают, например, что ничем не доказано происхождение человека от обезьяны. До сих пор не найдено ни одной переходной формы между ними. В самом же процессе эволюции есть немало парадоксов: впечатление такое, что виды как будто сменяли друг друга неожиданно резко, почти не изменяясь в процессе существования, и так же резко исчезали. Дарвинисты до сих пор не могут убедительно объяснить происхождение ряда явлений, идущих вразрез с эволюционной теорией - птичьи перья, волосяной покров у млекопитающих, зубы, ракушки моллюсков и т.п.

Интересные проблемы связаны с анализом механизма передачи наследственной информации, изучаемого генетикой. Как формируется генетический код и как он трансформируется, насколько развитие данной особи зависит от генетической предзаданности, а насколько влияет среда обитания, каковы возможности генной инженерии?

В последнее время все возрастающий интерес биологов привлекают проблемы системной организации всего живого. Дело в том, что на всех основных уровнях существования живого - молекулярном, клеточном, организменном, популяционном, уровне всей биосферы наблюдается особый тип энергетической и структурной упорядоченности, взаимодействие подструктур, подсистем. Непонимание этого приводит к непродуманным воздействиям, хотя и с «благими намерениями», но приносящим негативный эффект. Так, как известно, при истреблении волков, как хищников, страдают зачастую зайцы как род, ибо начинается мор среди них. Волки - санитары леса, истребляя старых и слабых зайцев и других животных, делают, как ни странно, благое дело.

Сложные биосистемы пока мало изучены именно как сложносоставные структуры, а не механическая сумма составляющих звеньев. В них нет ничего лишнего, бесполезного - у всего есть своя особая функция. Свое место в «разделении труда». Познание их сути, форм функционирования и развития - принципиальная задача биологии и экологии.

6. Нерешенные современным естествознанием проблемы

При всех безусловных победах естествознания (а их никто не может отрицать) есть большой комплекс нерешенных вопросов, причем самого принципиального плана, на которые нужно искать ответы. К таковым вопросам в качестве конкретных проблем относятся:

1. Происхождение и дальнейшее развитие Вселенной

2. Происхождение и генезис жизни на Земле

3. Происхождение и эволюция человека

4. Физические и психические возможности человека, запредельные способности (телепатия, телекинез, левитация, биолокация и др.)

5. Свойства пространственно-временного континуума

6. Наличие или отсутствие внеземных, параллельных цивилизаций и сверхчеловеческого Разума во Вселенной

7. Энергоинформационное поле Земли (Вселенной)

И ряд таких глобальных проблем можно продолжить и далее. Ясно, что они отнюдь не второстепенны, являются базовыми, а может быть и вечными в системе «Человек-Мир». На них пока нет убедительных ответов, но есть некие гипотезы, интуиции.

Рассмотрим для примера проблему наличия внеземных цивилизаций и внеземного Разума. Если он существует, то каковы могут быть последствия контактов с внеземным разумом? И что может произойти, если мы наконец обнаружим внеземную цивилизацию?

Предположим, мы приняли радиосигнал от суперцивилизации. Сумели его дешифровать. Что дальше? Дальше возможно возникновение нескольких ситуаций, но коротко все эти ситуации можно разделить на два больших класса - благоприятные и неблагоприятные.

Поскольку мы ничего не знаем априорно об этических принципах суперразума, то мы должны предусматривать в принципе возможность неблагоприятной ситуации. В чем может состоять неблагоприятная ситуация?

Предположим, принимаемое сообщение содержит инструкцию для построения принципиально новой ЭВМ, с невиданными возможностями. Человечество должно иметь в виду потенциальную агрессивность созданного супермозга и должно заранее обезопасить себя от последствий этой потенциальной агрессивности.

Благоприятные ситуации связаны с приобщением человечества к высшим достижениям внеземной культуры и техники, и значение этого факта трудно переоценить. Контакт сможет оказать огромное влияние на культурный, научный и технологический потенциал человечества. Более того, контакт может оказать положительное влияние на будущее самого человечества.

Только в нынешнее время, впервые в истории человеческого общества появилась реальная возможность проводить глубокие теоретические и экспериментальные исследования по этой интригующей проблеме. Сейчас человечество готово к поиску внеземных цивилизаций и контакту с ними. Уже в ближайшее время будет осуществляться поиск сигналов от возможных астроинженерных объектов, от мощных источников в центре Галактики и так далее.

Быть может, еще при жизни нашего поколения удастся разрешить вечную загадку: одиноки ли мы во Вселенной? И будем надеяться, что в ближайшее время будет решена и другая великая проблема - проблема возникновения живой материи. Решение этих проблем было бы триумфом человеческого гения.

7. Процесс интеграции в современных условиях естественных, технических и социальных наук

Современная наука органически срастается с производством, техникой и бытом людей, превращаясь в могучий фактор развития всей нашей цивилизации. Она уже не является уделом кабинетных ученых, включая в свою орбиту мощные комплексные коллективы исследователей различных направлений. Ученые все более ясно начинают осознавать тот факт, что Вселенная представляет собой некую целостность с недостаточно понятными людям законами развития, с парадоксами, причем жизнь человека удивительным образом связана с космическими ритмами и закономерностями. Глобальные связи процессов и явлений в мире, Вселенной требуют комплексного, адекватного изучения и, в частности, требуют глобального моделирования на основе методов системного анализа. В этих целях используются методы системной динамики, синергетики, теории игр, программно-целевого управления, составляются сценарии возможного дальнейшего развития сложных систем и их подсистем.

Синтез учения о глобальном эволюционизме с синергетикой позволяет описать мировое развитие как последовательную смену рождающихся из хаоса структур, временно обретающих стабильность, но вновь стремившихся к хаотическим состояниям. Кроме того, многие системы фактически предстают как сложноорганизованные, многофункциональные, открытые, неравновесные, развитие которых носит малопредсказуемый характер.

Анализ же возможностей дальнейшей эволюции сложных объектов зачастую предстает как принципиально непредсказуемый, сопряженный со многими случайными факторами, могущими стать своеобразным пусковым механизмом новых форм эволюции. Так печальный опыт «Чернобыльской случайности» многому научил и ученых и организаторов современного производства, вызывая цепную реакцию действий по модификации программ энергетического обеспечения общественного воспроизводства.

Список литературы

1. Аруцев А.А., Ермолаев Б.В., Кутателадзе И.О., Слуцкий М.С. «Концепции современного естествознания» Учебное пособие

2. Голубинцев В.О., Зарубин А.Т. «Концепции современного естествознания»

3. Горелов А.А. «Концепции современного естествознания в вопросах и ответах»

4. Золотухин В.Е. спецкурс «Концепции современного естествознания»

естествознание наука космология биология

Размещено на Allbest.ru


Подобные документы

  • Отличия между строго научным и ненаучным подходом к естествознанию. Концептуальные формы выражения идеи структурных уровней материи. Основные идеи и принципы неклассического естествознания. Проблемы современной естественной науки (на примере химии).

    контрольная работа [39,9 K], добавлен 21.01.2014

  • Строго научный и ненаучный подход к естествознанию. Основные идеи и принципы классического и неклассического естествознания. Особенности современной науки, компоненты научных теорий. Концепции самоорганизации объекта, неопределенности, ноосферности.

    реферат [37,8 K], добавлен 02.06.2009

  • Цель и предмет курса "Концепции современного естествознания", основные термины и понятия. Специфические черты науки, виды культуры. История становления научных знаний. Естественнонаучная картина мира. Внутреннее строение Земли. Законы химии и биологии.

    шпаргалка [136,9 K], добавлен 12.02.2011

  • Рассмотрение стадий исторического развития естествознания. Отказ от созерцательности и наивной реалистичности установок классического естествознания. Усиление математизации современного естествознания, сращивание фундаментальных и прикладных исследований.

    реферат [30,2 K], добавлен 11.02.2011

  • Требования образовательных стандартов по дисциплине "Концепции современного естествознания". Изучение и понимание сущности фундаментальных законов природы, составляющих каркас современных физики, химии и биологии. Методология современного естествознания.

    лекция [26,7 K], добавлен 24.11.2017

  • Значение науки в современной культуре и структура научного знания. Основные этапы эволюции европейского естествознания. Типы физических взаимодействий. Механистическая, электромагнитная и квантово-релятивистская картина мира. Модели строения атома.

    учебное пособие [49,9 K], добавлен 27.01.2010

  • Исторические этапы познания природы, логика и закономерности развития науки. Понятие научной картины мира и теория относительности. Антропный принцип космологии и Учение Вернадского о ноосфере. Современные концепции экологии, задачи и принципы биоэтики.

    шпаргалка [64,8 K], добавлен 29.01.2010

  • Естественнонаучная и гуманитарная культуры. Предмет и метод естествознания. Динамика естествознания и тенденции его развития. История естествознания. Структурные уровни организации материи. Макромир. Открытые системы и неклассическая термодинамика.

    книга [353,5 K], добавлен 21.03.2009

  • Наука как часть культуры, ее критерии и структура. Методы и подходы научного познания. Сущность современных концепций физики, химии и космологии. Земля как предмет естествознания. Теории происхождения жизни, эволюции органического мира. Феномен человека.

    учебное пособие [3,2 M], добавлен 21.09.2010

  • Релятивистская космология. Достижения в основных направлениях современной химии. Предпосылки развития современной биологии. Молекулярная биология. Расшифровка генома человека. Атомная энергия в народном хозяйстве. Этапы развития жизни на Земле.

    контрольная работа [262,2 K], добавлен 28.10.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.