Эволюция и строение Галактики

Изучение основных теорий зарождения и эволюции галактик как гигантских, гравитационно-связанных систем, состоящих из звезд, межзвездного газа, пыли и темной материи. Механизм движения галактик относительно центра масс. Спиральное строение Млечного пути.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 21.03.2013
Размер файла 29,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Негосударственное образовательное учреждение

высшего профессионального образования

РЕФЕРАТ

по концепции современного естествознания

на тему: «Эволюция и строение Галактики»

Москва 2013

Содержание

Введение

1. Эволюция галактик

2. Строение галактик

3. Строение нашей галактики (Млечный путь)

Заключение

Список используемой литературы

Введение

На данный момент удовлетворительной теории возникновения и эволюции галактик не существует. Есть несколько конкурирующих гипотез, объясняющих это явление, но каждая имеет свои серьёзные проблемы. Согласно инфляционной гипотезе, после возникновения первых звёзд во Вселенной начался процесс гравитационного объединения их в скопления и далее в галактики. В последнее время эта теория поставлена под сомнение. Современные телескопы способны «заглянуть» так далеко, что видят объекты, существовавшие приблизительно через 400 тыс. лет после Большого взрыва. Обнаружилось, что и на тот момент уже существовали вполне сформировавшиеся галактики. Предполагается, что между возникновением первых звёзд и вышеуказанным периодом развития Вселенной прошло слишком мало времени, и согласно теории Большого взрыва, галактики сформироваться просто не успели бы.

Другая распространенная гипотеза заключается в том, что в вакууме постоянно происходят квантовые колебания. Происходили они и в самом начале существования Вселенной, когда шёл процесс инфляционного расширения Вселенной, расширения со сверхсветовой скоростью. Это значит, что расширялись и сами квантовые флуктуации (от лат.fluctuatio -- колебание), причем до размеров, возможно, во много-много раз превышающих свой начальный размер. Те из них, которые существовали в момент прекращения инфляции, остались «раздутыми» и таким образом оказались первыми тяготеющими неоднородностями во Вселенной. Получается, что у материи было порядка 400 тыс. лет на гравитационное сжатие вокруг этих неоднородностей и образование газовых туманностей. А далее начался процесс возникновения звёзд и превращения туманностей в галактики.

1. Эволюция галактик

Образование галактик рассматривают как естественный этап эволюции Вселенной, происходящий под действием гравитационных сил. По-видимому, около 14 млрд. лет назад в первичном веществе началось обособление протоскоплений (прото от греческого - первый). В протоскоплениях в ходе разнообразных динамических процессов происходило выделение групп галактик. Многообразие форм галактик связано с разнообразием начальных условий образования галактик. Сжатие галактики длится около 3 млрд лет. За это время происходит превращение газового облака в звездную систему. Звезды образуются путем гравитационного сжатия облаков газа. Когда в центре сжатого облака достигаются плотности и температуры, достаточные для эффективного протекания термоядерных реакций, рождается звезда. В недрах массивных звезд происходит термоядерный синтез химических элементов тяжелее гелия. Эти элементы попадают в первичную водородно-гелиевую среду при взрывах звезд или при спокойном истечении вещества со звездами. Элементы тяжелее железа образуются при грандиозных взрывах сверхновых звезд. Таким образом, звезды первого поколения обогащают первичный газ химическими элементами, тяжелее гелия. Эти звезды наиболее старые и состоят из водорода, гелия и очень малой примеси тяжелых элементов. В звездах второго поколения примесь тяжелых элементов более заметная, так как они образуются из уже обогащенного тяжелыми элементами первичного газа. Процесс рождения звезд идет при продолжающемся сжатии галактики, поэтому формирование звезд происходит все ближе к центру системы, и чем ближе к центру, тем больше должно быть в звездах тяжелых элементов. Этот вывод хорошо согласуется с данными о содержании химических элементов в звездах гало нашей Галактики и эллиптических галактик. Во вращающейся галактике звезды будущего гало образуются на более ранней стадии сжатия, когда вращение еще не повлияло на общую форму галактики.

Свидетельствами этой эпохи в нашей Галактике являются шаровые звездные скопления. Когда прекращается сжатие протогалактики, кинетическая энергия образовавшихся звезд диска равна энергии коллективного гравитационного взаимодействия. В это время, создаются условия для образования спиральной структуры, а рождение звезд происходит уже в спиральных ветвях, в которых газ достаточно плотный. Это звезды третьего поколения. К ним относится наше Солнце. Запасы межзвездного газа постепенно истощаются, рождение звезд становится менее интенсивным. Через несколько миллиардов лет, когда будут исчерпаны все запасы газа, спиральная галактика превратится в линзообразную, состоящую из слабых красных звезд. Эллиптические галактики уже находятся на этой стадии: весь газ в них израсходован 10-15 млрд. лет назад. Возраст галактик равен примерно возрасту Вселенной. Одним из секретов астрономии остаётся вопрос о том, что из себя представляют ядра галактик. Очень важным открытием явилось то, что некоторые ядра галактик активны. Это открытие было неожиданным. Раньше считалось, что ядро галактики - это не больше чем скопление сотен миллионов звёзд. Оказалось, что и оптическое и радиоизлучение некоторых галактических ядер может меняться за несколько месяцев. Это означает, что в течении короткого времени из ядер освобождается огромное количество энергии, в сотни раз превышающее то, которое освобождается при вспышке сверхновой. Такие ядра получили название «активных», а процессы, происходящие в них «активность». В1963 году были обнаружены объекты нового типа, находящиеся за приделами нашей галактики. Эти объекты имеют звездообразный вид. Со временем выяснили, что их светимость во много десятков, раз превосходит светимость галактик! Самое удивительное то, что их яркость меняется. Мощность их излучения в тысячи раз превосходит мощность излучения активных ядер. Эти объекты назвали квазарами. Сейчас считается, что ядра некоторых галактик представляют собой квазары.

К проблеме эволюции галактик ученые начали серьезно подходить в середине 40-х годов ХХ века. Эти годы ознаменовались рядом важных открытий в звездной астрономии. Удалось выяснить, что среди звездных скоплений, рассеянных и шаровых, имеются молодые и старые, и ученые даже смогли оценить их возраст. Нужно было произвести своеобразную перепись населения в галактиках разных типов и сравнить результаты. В каких галактиках (эллиптических или спиральных), в каких классах галактик преобладают более молодые или более старые звезды. Такое исследование дало бы ясное указание на направление эволюции галактик, позволило бы выяснить эволюционный смысл классификации галактик Хаббла. Но прежде астрономам надо было выяснить численное соотношение между разными типами галактик. Непосредственное изучение фотографий, полученных в обсерватории Маунт Вилсон, позволило Хабблу получить следующие результаты: эллиптических галактик - 23%, спиральных - 59%, спиральных с перемычкой (баром) - 15%, неправильных - 3%.

Астрофизик Эдвин Пауэлл Хаббл предложил в 1926 г. интересную классификацию галактик и усовершенствовал ее в 1936 г. Эта классификация называется "Камертон Хаббла". До самой смерти в 1953г. Хаббл улучшал свою систему, а после его смерти это делал американский астроном Aллан Рекс Сэмндидж, который в 1961 г. внес существенные новшества в систему Хаббла. звезда темная материя галактика млечный путь

Однако в 1948 г. астроном Юрий Николаевич Ефремов обработал данные каталога галактик американского астронома Харлоу Шепли и исследовательского центра НАСА им. Эймса и пришел к следующим выводам: эллиптические галактики в среднем на 4 звездные величины слабее спиральных по абсолютной величине. Среди них много галактик карликов. Если учесть это обстоятельство и сделать пересчет количества галактик в единице объема, то окажется, что эллиптических галактик примерно в 100 раз больше чем спиральных. Большая часть спиральных галактик - это галактики гиганты, большинство эллиптических галактик - галактики карлики. Конечно, среди тех и других существует некий разброс в размерах, имеются эллиптические галактики гиганты и спиральные карлики, но тех и других очень мало. В 1947 году Х. Шепли обратил внимание на то, что количество ярких сверхгигантов постепенно убывает по мере перехода от неправильных галактик к спиральным, а затем к эллиптическим. Получалось, что молодыми являлись именно неправильные галактики и галактики с сильно разветвленными ветвями. Х. Шепли тогда же высказал мысль, что переход галактик из одного класса в другой происходит необязательно. Возможно, что галактики образовались все такими, какими мы их наблюдаем, а потом лишь медленно эволюционировали в направлении сглаживания и округления их форм. Однонаправленного изменения галактик, вероятно, не происходит. Х. Шепли обратил внимание еще на одно важное обстоятельство. Двойные галактики - это не результат столкновения и захвата одной галактики другой. Нередко в таких парах сосуществуют спиральные галактики с эллиптическими. Такие галактические пары, по всей вероятности, вместе и возникли. В этом случае допустить, что они прошли существенно разный путь развития, нельзя. В 1949 году советский астроном Борис Васильевич Кукаркин обратил внимание на существования не только парных галактик, но и скоплений галактик. Между тем, возраст скопления галактик, судя по данным небесной механики, не может превышать 10-12 млрд. лет. Таким образом, получалось, что в Метагалактике практически одновременно образовались галактики разных форм. Значит, переход каждой галактики за время ее существования из одного типа в другой совсем необязателен.

2. Строение галактик

Галамктика (др.-греч. ГблбоЯбт -- Млечный Путь) -- гравитационно-связанная система из звёзд, межзвёздного газа, пыли и тёмной материи. Все объекты в составе галактик участвуют в движении относительно общего центра масс. Галактики -- чрезвычайно далёкие объекты, расстояние до ближайших из них принято измерять в мегапарсеках, а до далёких -- в единицах красного смещения z. Именно из-за удалённости различить на небе невооружённым глазом можно всего лишь три из них: туманность Андромеды (видна в северном полушарии), Большое и Малое Магеллановы Облака (видны в южном). Разрешить изображение галактик до отдельных звёзд не удавалось вплоть до начала XX века. К началу 1990-х годов насчитывалось не более 30 галактик, в которых удалось увидеть отдельные звёзды, и все они входили в Местную группу. После запуска космического телескопа «Хаббл» и ввода в строй 10-метровых наземных телескопов число галактик, в которых удалось различить отдельные звёзды, резко возросло. Одной из нерешённых проблем строения галактик является тёмная материя, проявляющая себя только в гравитационном взаимодействии. Она может составлять до 90 % от общей массы галактики, а может и полностью отсутствовать, как в карликовых галактиках.

Галактика состоит из диска, гало и короны.

1. Гало (сферическая составляющая Галактики). Ее звезды концентрируются к центру галактики, а плотность вещества, высокая в центре галактики, довольно быстро падает с удалением от него.

2. Балдж - центральная, наиболее плотная часть гало в пределах нескольких тысяч световых лет от центра Галактики.

3. Звездный диск (плоская составляющая Галактики). Он представляет собой как бы две сложенные краями тарелки. В диске концентрация звезд значительно больше, чем в гало. Звезды внутри диска движутся по круговым траекториям вокруг центра Галактики. В звездном диске между спиральными рукавами расположено Солнце.

Центральная, наиболее компактная область Галактики называется ядром. В ядре высокая концентрация звезд: в каждом кубическом парсеке находятся тысячи звезд. В центре почти каждой галактики находится очень массивное тело - чёрная дыра - с такой мощной гравитацией, что его плотность равна или больше плотности ядер атомов. По сути, каждая чёрная дыра - это в пространстве небольшое, а по массе просто чудовищное, бешено вращающееся ядро. Название "чёрная дыра" явно неудачное, так как никакая это не дыра, а очень плотное тело с мощной гравитацией - такой, что даже легкие фотоны не могут из него вырваться. И когда чёрная дыра накапливает в себе чересчур большую массу и кинетическую энергию вращения, в ней нарушается равновесие массы и кинетической энергии, и тогда она исторгает из себя фрагменты, которые (самые массивные) становятся малыми чёрными дырами второго порядка, фрагменты поменьше - будущими звездами, когда соберут на себя большие водородные атмосферы из галактических облаков, а фрагменты мелкие станут планетами, когда собранного водорода не хватит для начала термоядерного синтеза. Думаю, что галактики образуются из массивных чёрных дыр, мало того, в галактиках совершается космический круговорот вещества и энергии. Вначале чёрная дыра поглощает вещество, рассеянное в Метагалактике: в это время, благодаря своей гравитации, она действует как "пылегазосос". Вокруг чёрной дыры концентрируется водород, рассеянный в Метагалактике, при этом образуется шарообразное скопление газа и пыли. Вращение чёрной дыры увлекает газ и пыль, отчего шарообразное облако сплющивается, в нем образуются центральное ядро и рукава. Накопив критическую массу, чёрная дыра в центре газопылевого облака начинает выбрасывать фрагменты (фрагментоиды), которые отрываются от нее с большим ускорением, достаточным, чтобы быть выброшенными на круговую орбиту вокруг центральной чёрной дыры. На орбите, взаимодействуя с газопылевыми облаками, эти фрагментоиды гравитационно захватывают газ и пыль. Крупные фрагментоиды становятся звездами. Чёрные дыры своей гравитацией затягивают в себя космическую пыль и газ, которые, падая на такие дыры, сильно раскаляются и излучают в рентгеновском диапазоне. Когда вещества вокруг чёрной дыры становится мало, ее свечение резко уменьшается. Поэтому в некоторых галактиках в центре видно яркое свечение, а в других нет. Чёрные дыры подобны космическим «убийцам»: их гравитация притягивает даже фотоны и радио волны, отчего сама чёрная дыра не излучает и выглядит как абсолютно чёрное тело. Но, вероятно, периодически гравитационное равновесие внутри чёрных дыр нарушается, и они начинают извергать сгустки сверхплотного вещества, обладающие сильной гравитацией, под воздействием которой эти сгустки принимают шарообразную форму и начинают притягивать пыль и газ из окружающего пространства. Из захваченного вещества на этих телах формируются твердые, жидкие и газообразные оболочки. Чем массивнее был извергнутый чёрной дырой сгусток сверхплотного вещества (фрагментоид), тем больше он соберет на себя пыли и газа из окружающего пространства (если, конечно, это вещество в окружающем пространстве имеется). В кольцевой области галактического диска (3-7 кпк) сосредоточено почти все молекулярное вещество межзвездной среды. Видимое излучение центральных областей Галактики полностью скрыто от нас мощными слоями поглощающей материи.

Галактики бывают трех типов: спиралевидные, эллиптические и неправильной формы. У спиралевидных галактик хорошо выражен диск, рукава и гало. В центре находится плотное скопление звезд и межзвездного вещества, а в самом центре - чёрная дыра. Рукава в спиралевидных галактиках отходят от их центра и закручены вправо или влево в зависимости от вращения ядра и чёрной дыры (точнее, сверхплотного тела) в его центре. В центре галактического диска находится сферическое уплотнение, называемое балджем. Число ветвей (рукавов) может быть различно: 1, 2, 3,… но чаще всего встречаются галактики только с двумя ветвями. В галактиках в гало входят звезды и очень разреженное газообразное вещество, не входящее в спирали и в диск. Мы живем в спиральной галактике, которая называется Млечный Путь, и в ясную погоду наша Галактика хорошо видна на ночном небе в виде широкой беловатой полосы, пересекающей небосвод. Нам наша Галактика видна в профиль. Шаровые скопления в центре галактик практически не зависят от положения диска галактики. Рукава галактик содержат сравнительно малую часть всех звезд, но зато в них сосредоточены почти все горячие звезды высокой светимости. Звезды этого типа астрономы считают молодыми, поэтому спиральные ветви галактик можно считать местом образования звезд. Эллиптические галактики часто встречаются в плотных скоплениях спиралевидных галактик. Они имеют форму эллипсоида или шара, причем шаровидные, обычно бывают больше эллипсоидных. Скорость вращения эллипсоидных галактик меньше, чем у спиралевидных, потому диск у них не сформирован. Такие галактики обычно насыщены шаровидными скоплениями звезд. Эллиптические галактики, как считают астрономы, состоят из старых звёзд и практически полностью лишены газа. Галактики неправильной формы обычно имеют небольшую массу и объем, в них входит немного звезд. Как правило, они являются спутниками спиралевидных галактик. В них обычно очень мало шаровых скоплений звезд. Примерами таких галактик являются спутники Млечного Пути - Большое и Малое Магеллановы облака. Но среди неправильных галактик встречаются и малые эллиптические галактики.

3. Строение нашей галактики (Млечный путь)

Млечный Путь -- с лат. via lactea «молочная дорога»

В советской астрономической школе Млечный Путь назывался просто «наша Галактика» или «система Млечный Путь»; словосочетание «Млечный путь» использовалось для обозначения видимых звёзд, которые оптически для наблюдателя составляют Млечный Путь.

Диаметр Галактики составляет около 30 тысяч парсек (порядка 100 000 световых лет, 1 квинтиллион километров) при оценочной средней толщине порядка 1000 световых лет. Галактика содержит, по самой низкой оценке, порядка 200 миллиардов звёзд (современная оценка колеблется в диапазоне предположений от 200 до 400 миллиардов). Основная масса звёзд расположена в форме плоского диска. По состоянию на январь 2009, масса Галактики оценивается в 3·1012 масс Солнца, или 6·1042 кг. Большая часть массы Галактики содержится не в звёздах и межзвёздном газе, а в несветящемся гало из тёмной материи. Лишь в 1980-х годах астрономы высказали предположение, что Млечный Путь является спиральной галактикой с перемычкой, а не обычной спиральной галактикой. Это предположение было подтверждено в 2005 году космическим телескопом имени Лаймана Спитцера, который показал, что центральная перемычка нашей галактики является большей, чем считалось ранее. Вблизи плоскости диска концентрируются молодые звезды и звездные скопления, возраст которых не превышает нескольких миллиардов лет. Они образуют так называемую плоскую составляющую. Среди них много ярких и горячих звезд. Газ в диске Галактики также сосредоточен в основном вблизи его плоскости. Он распределен неравномерно, образуя многочисленные газовые облака -- от гигантских неоднородных по структуре облаков, протяженностью свыше нескольких тысяч световых лет к небольшим облакам размерами не более парсека. В средней части Галактики находится утолщение, которое называется балджем (англ. bulge -- утолщение), составляющее около 8 тысяч парсек в поперечнике. Центр ядра Галактики находится в созвездии Стрельца. Расстояние от Солнца до центра Галактики 8,5 килопарсек (2,62·1017 км, или 27 700 световых лет). В центре Галактики, по всей видимости, располагается сверхмассивная чёрная дыра вокруг которой, предположительно, вращается чёрная дыра средней массы и периодом обращения около 100 лет и несколько тысяч сравнительно небольших. Их совместное гравитационное действие на соседние звёзды заставляет последние двигаться по необычным траекториям. Существует предположение, что большинство галактик имеют сверхмассивные черные дыры в своем ядре. Для центральных участков Галактики характерна сильная концентрация звезд: в каждом кубическом парсеке вблизи центра их содержится многие тысячи. Расстояния между звездами в десятки и сотни раз меньше, чем в окрестностях Солнца. Как и в большинстве других галактик, распределение массы в Млечном Пути такое, что орбитальная скорость большинства звезд этой Галактики не зависит в значительной степени от их расстояния до центра. Далее от центральной перемычки к внешнему кругу, обычная скорость обращения звезд составляет 210--240 км/с. Таким образом, такое распределение скорости, не наблюдаемое в солнечной системе, где различные орбиты имеют различные скорости обращения, является одной из предпосылок к существованию темной материи. Считается, что длина галактической перемычки составляет около 27 000 световых лет. Эта перемычка проходит через центр галактики под углом 44 ± 10 градусов к линии между нашим Солнцем и центром галактики. Она состоит преимущественно из красных звезд, которые считаются очень старыми. Перемычка окружена кольцом, называемым «Кольцом в пять килопарсек». Это кольцо содержит большую часть молекулярного водорода Галактики и является активным регионом звездообразования в нашей Галактике. Если вести наблюдение из галактики Андромеды, то галактическая перемычка Млечного Пути была бы яркой его частью.

Наша галактика относится к классу спиральных галактик, что означает, что у Галактики есть спиральные рукава, расположенные в плоскости диска. Диск погружён в гало сферической формы, а вокруг него располагается сферическая корона. Солнечная система находится на расстоянии 8,5 тысяч парсек от галактического центра, вблизи плоскости Галактики (смещение к Северному полюсу Галактики составляет всего 10 парсек), на внутреннем крае рукава, носящего название рукав Ориона. Такое расположение не даёт возможности наблюдать форму рукавов визуально. Новые данные по наблюдениям молекулярного газа (СО) говорят о том, что у нашей Галактики есть два рукава, начинающиеся у бара во внутренней части Галактики. Кроме того, во внутренней части есть ещё пара рукавов. Затем эти рукава переходят в четырёхрукавную структуру, наблюдающуюся в линии нейтрального водорода во внешних частях Галактики. Большинство небесных тел объединяются в различные вращающиеся системы. Так, Луна обращается вокруг Земли, спутники планет-гигантов образуют свои, богатые телами, системы. На более высоком уровне, Земля и остальные планеты обращаются вокруг Солнца. Возникал естественный вопрос: не входит ли и Солнце в систему ещё большего размера? Первое систематическое исследование этого вопроса выполнил в XVIII веке английский астроном Уильям Гершель. Он подсчитывал количество звёзд в разных областях неба и обнаружил, что на небе присутствует большой круг (впоследствии он был назван галактическим экватором), который делит небо на две равные части и на котором количество звёзд оказывается наибольшим. Кроме того, звёзд оказывается тем больше, чем ближе участок неба расположен к этому кругу. Наконец обнаружилось, что именно на этом круге располагается Млечный Путь. Благодаря этому Гершель догадался, что все наблюдаемые нами звёзды образуют гигантскую звёздную систему, которая сплюснута к галактическому экватору. Вначале предполагалось, что все объекты Вселенной являются частями нашей Галактики, хотя ещё Кант высказывал предположение, что некоторые туманности могут быть галактиками, подобными Млечному Пути. Ещё в 1920 году вопрос о существовании внегалактических объектов вызывал дебаты (например, известный Большой спор между Харлоу Шепли и Гебером Кёртисом; первый отстаивал единственность нашей Галактики). Гипотеза Канта была окончательно доказана лишь в 1920-х годах, когда Эдвину Хабблу удалось измерить расстояние до некоторых спиральных туманностей и показать, что по своему удалению они не могут входить в состав Галактики.

Заключение

Во Вселенной существует круговорот материи, суть которого - в рассеянии материи сверхмассивными чёрными дырами, взрывами новых и сверхновых и затем в собирании рассеянной материи планетами, звездами и чёрными дырами с помощью своей гравитации. Никакого Большого Взрыва, в результате которого из сингулярности родилась наша Вселенная (Метагалактика), не было. Взрывы (и весьма мощные) случаются и случались в Метагалактике периодически то здесь, то там. Вселенная не пульсирует, она просто кипит, она бесконечна, и мы о ней очень мало знаем и еще меньше ее понимаем. Окончательной теории, объясняющей Вселенную и происходящие в ней процессы, нет и никогда не будет. Теории и гипотезы соответствуют уровню развития нашей техники, нашей науки, тому опыту, который накопило человечество на данный момент. Поэтому надо максимально бережно относиться к накопленному опыту и всегда ставить факт выше теории. Как только какая-то наука поступает наоборот, так сразу же она перестает быть открытой информационной системой и превращается в новую религию. В науке главное - сомнение, а в религии - вера.

Список используемой литературы:

1. Википедия. Адрес доступа: http://ru.wikipedia.org/wiki/

2. Агекян Т.А. Звезды, Галактики, Метагалактика. - М.: Наука, 1981.

3. Вокулер Ж. Классификация и морфология галактик // Строение звездных систем. Пер. с нем. - М., 1962.

4. Зельдович Я.Б. Новиков И.Д. Строение и эволюция Вселенной, - М.: Наука, 1975.

5. Левченко И.В. Многоликая Вселенная // Открытия и гипотезы, ТОВ «Интеллект Медиа». - 9 (67) сентябрь 2007.

6. Новиков И. Д., Фролов В. П. Чёрные дыры во Вселенной // Успехи физических наук. - 2001. - Т. 131. № 3.

Размещено на Allbest.ru


Подобные документы

  • Гипотеза о происхождении звезд и Солнечной системы и эволюции галактик. Теория формирования звезд из газа за счет гравитационной неустойчивости. Понятие термодинамики земной атмосферы и стадия конвективного равновесия. Превращение звезды в белый карлик.

    реферат [32,9 K], добавлен 31.08.2010

  • Определение понятия энтропии и принципы ее возрастания. Различия между двумя типами термодинамических процессов - обратимыми и необратимыми. Единство и многообразие органического мира. Строение и эволюция звезд и Земли. Происхождение и эволюция галактик.

    контрольная работа [230,8 K], добавлен 17.11.2011

  • Формирование основных положений космологической теории - науки о строении и эволюции Вселенной. Характеристика теорий происхождения Вселенной. Теория Большого взрыва и эволюция Вселенной. Строение Вселенной и её модели. Сущность концепции креационизма.

    презентация [1,1 M], добавлен 12.11.2012

  • Революция в естествознании, возникновение и дальнейшее развитие учения о строении атома. Состав, строение и время мегамира. Кварковая модель адронов. Эволюция Метагалактики, галактик и отдельных звезд. Современная картина происхождения Вселенной.

    курсовая работа [39,3 K], добавлен 16.07.2011

  • Принципы неопределенности, дополнительности, тождественности в квантовой механике. Модели эволюции Вселенной. Свойства и классификация элементарных частиц. Эволюция звезд. Происхождение, строение Солнечной системы. Развитие представлений о природе света.

    шпаргалка [674,3 K], добавлен 15.01.2009

  • Структура и эволюция Вселенной. Гипотезы происхождения и строения Вселенной. Состояние пространства до Большого Взрыва. Химический состав звезд по данным спектрального анализа. Строение красного гиганта. Черные дыры, скрытая масса, квазары и пульсары.

    реферат [31,0 K], добавлен 20.11.2011

  • Понятие эволюции как процесса саморазвития и усложнения материи от ее простейших форм вплоть до появления сложных общественных образований. Характеристика основных эволюционных теорий. Признаки приближения к точке катастроф. Обоснование теории эпигенеза.

    презентация [688,5 K], добавлен 01.12.2014

  • Появление класса земноводных (амфибий) — крупный шаг на пути эволюции позвоночных. Строение и характеристика лягушек класса земноводные. Пресмыкающиеся, деление их на группы. Строение ящериц, крокодилов. Специализированное строение змей и черепах.

    контрольная работа [14,0 K], добавлен 24.04.2009

  • Исследование схемы эволюции животного мира. Изучение особенностей нервной системы диффузного, узлового и стволового типа. Строение головного мозга членистоногих. Развитие общей двигательной координации у хрящевых рыб. Этапы эволюции мозга позвоночных.

    презентация [1,7 M], добавлен 18.06.2016

  • Представление об открытых системах, введенное неклассической термодинамикой. Теории, гипотезы и модели происхождения галактик. Допущения для объяснения расширения Вселенной. "Большой взрыв": его причины и хронология. Стадии и следствия эволюции.

    реферат [30,8 K], добавлен 10.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.