Достижения генной инженерии и биотехнологии
Особенности строения ДНК. История возникновения, специфика и разделы биотехнологии. Развитие генной инженерии. Способы получения отдельных генов для молекулярного клонирования. Методы введения ДНК в бактериальные клетки. Достижения молекулярной геномики.
Рубрика | Биология и естествознание |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 18.02.2013 |
Размер файла | 57,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Строение ДНК
2. Биотехнология
2.1 Возникновение биотехнологии
2.2 Специфика биотехнологии
2.3 Разделы биотехнологии
3. Генная инженерия
3.1 Генная инженерия
3.2 Методы генной инженерии
3.3 Генетическая рекомбинация in vitro
3.4 Методы введения ДНК в бактериальные клетки
3.5 Достижения генной инженерии
4. Молекулярная геномика
Заключение
Список литературы
Введение
В своей работе я раскрываю тему достижений генной инженерии и биотехнологии. Возможности, открываемые генетической инженерией перед человечеством как в области фундаментальной науки, так и во многих других областях, весьма велики и нередко даже революционны. Так, она позволяет осуществлять индустриальное массовое производство нужных белков, значительно облегчает технологические процессы для получения продуктов ферментации - энзимов и аминокислот, в будущем может применяться для улучшения растений и животных, а также для лечения наследственных болезней человека. Таким образом, генная инженерия, будучи одним из магистральных направлений научно-технического прогресса, активно способствует ускорению решения многих задач, таких, как продовольственная, сельскохозяйственная, энергетическая, экологическая.
Но особенно большие возможности генная инженерия открывает перед медициной и фармацевтикой, поскольку применение генной инженерии и гибридомных методов может привести к коренным преобразованиям медицины. Многие болезни, для которых в настоящее время не существует адекватных методов диагностики и лечения (раковые, сердечно-сосудистые, вирусные и паразитные инфекции, нервные и умственные расстройства), с помощью генной инженерии и биотехнологии станут доступны и диагностике, и лечению. Под влиянием биотехнологии медицина может превратиться из преимущественно эмпирической в фундаментально теоретически обоснованную дисциплину с ясным пониманием происходящих в организме молекулярных и генетических процессов.
1. Строение ДНК
Еще в прошлом веке биологи изучили процесс клеточного деления, которому предшествует расхождение хромосом, благодаря чему в каждый сперматозоид и в каждую яйцеклетку попадает половина хромосом из исходной клетки. Тогда уже было показано, что носителями генетической информации являются хромосомы.
С точки зрения химиков хромосомы состоят из белка и дезоксирибонуклеиновой кислоты (ДНК). Белки - сложная группа веществ, состоящая из 20 мономерных звеньев (аминокислот), которые соединены в самых разных комбинациях. В ДНК - всего четыре вида аминокислот. Сначала предположили, что ДНК строится сочетанием этих четырех единиц в однообразном порядке. В качестве носителей генетической информации предполагались белки, как более сложные структуры. Только в 40-с годы было установлено, что именно ДНК, несмотря на простоту своей структуры, являются носителями информации, и, более того, обеспечивают образование своих точных копий для передачи последующим поколениям.
Гены - это участки молекулы ДНК, которая "размножается" путем комплиментарного пристраивания друг к другу четырех нуклеотидов (оснований), и при ошибках в этом процессе происходят мутации. Гены управляют синтезом белков, составляющих протоплазму, переключаясь время от времени с построения собственных клеток на построение иных молекул. В клетках высших организмов количество ДНК сильно различается, отсюда отличия между организмами и в наборе синтезируемых белков, и в сложности строения организмов.
В начале 50-х годов выяснилось, что химический состав ДНК (а не белков) у одного вида почти одинаков, весьма различаясь у разных видов. Любая ДНК состоит из четырех типов нуклеотидов: А, Т, Г, Ц (начальные буквы четырех азотистых оснований- аденин, тимин, гуанин и цитозин), которые присутствуют в ДНК в разных пропорциях у разных видов и имеют близкие пропорции у одного вида. В 1938 г. Уильям Астбери (автор термина молекулярная биология) получил вместе со своим сотрудником Флорином Беллом рентгенограммы ДНК, которые показали, что азотистые основания располагаются одно за другим, построенные как пластинки. Вскоре американский биохимик Эрвин Чаргафф (р. 1905) установил, что отношения А/Т и Г/Ц приблизительно равны единице. Эти результаты были важны для понимания структуры ДНК.
Интерес к ДНК как носителю генетической информации резко возрос к началу 50-х годов, и структура ДНК была вскоре установлена. Химики понимали, что ДНК собрана из нуклеотидов, каждый из которых имеет фосфатную группу, связанную ковалентно с пятиуглеродным сахаром. Каждый такой сахар связан с одним из четырех азотистых оснований. История открытия структуры ДНК описана американским биохимиком Джеймсом Уотсоном (р.1928) в его книге «Двойная спираль»(1968). Кембридже Уотсон познакомился с Криком, физиком, который переквалифицировался в биохимика. Из общения с химиками Уотсон узнал, что структурные формулы, которыми они пользовались далеки от совершенства. Разобравшись в структуре пуринов (А, Г) и пиримидинов (Т, Ц), Уотсон и Крик решили, что они должны быть тесно связаны между собой. Если это так, то ДНК должна состоять из двух цепей. Цепи должны закручиваться между собой так, чтобы сохранялись определенные углы между группами атомов. Так возникла двойная спираль, в которой пурины и пиримидины выстроены по типу ступенек лестницы: роль "перекладин" играют основания, "веревок" - сахарофосфатные остовы. Каждая перекладинка образована из двух оснований, присоединенных к двум противоположным цепям, причем у одного из оснований одно кольцо, у другого - два. Следовательно, это может быть А и Т или Г и Ц. Поскольку в каждой паре есть одно основание с одним кольцом и одно - с двумя, величина перекладин одинаковая, и остовы цепей находятся на одном расстоянии. Две цепи удерживаются вместе водородными связями между основаниями. Статья Уотсона и Крика, в которой сообщалось о расшифровке структуры ДНК, заняла всего две странички в научном журнале, но она открыла новую эпоху в раскрытии тайны жизни. В первой же публикации (1953) Крик и Уотсон отметили, что такая структура хорошо объясняет и процесс "воспроизводства" этой молекулы. При рассоединении цепей возможно присоединение новых нуклеотидов к каждой из них, тогда около каждой старой возникнет новая цепь, точно ей соответствующая. Так впервые пришли к структуре, которая была способна к самовоспроизведению. Физики Крик и Уилкинс вместе с биохимиком Уотсоном стали лауреатами Нобелевской премии по физиологии и медицине за 1962 год.
Исследования показали, что ДНК может существовать в двух формах: А (при низкой влажности) и В (при высокой). Для обеих форм построили молекулярные модели. Из дифракционных картин волокон ДНК информацию получить было достаточно трудно, поскольку цепи ДНК расположены вдоль оси волокна беспорядочно, но была подтверждена ее спиральная структура. К настоящему времени исследователи научились синтезировать в необходимом количестве и получать в достаточно чистом виде короткие участки ДНК заданной последовательности.
Строение рекомбинантной ДНК.
Гибридная ДНК имеет вид кольца. Она содержит ген (или гены) и вектор. Вектор - это фрагмент ДНК, обеспечивающий размножение гибридной ДНК и синтез конечных продуктов деятельности генетической системы - белков. Большая часть векторов получена на основе фага лямбда, из плазмид, вирусов SV40, полиомы, дрожжей и др. бактерий. Синтез белков происходит в клетке-хозяине. Наиболее часто в качестве клетки-хозяина используют кишечную палочку, однако применяют и др. бактерии, дрожжи, животные или растительные клетки. Система вектор-хозяин не может быть произвольной: вектор подгоняется к клетке-хозяину. Выбор вектора зависит от видовой специфичности и целей исследования. Ключевое значение в конструировании гибридной ДНК несут два фермента. Первый - рестриктаза - рассекает молекулу ДНК на фрагменты по строго определенным местам. И второй - ДНК-лигазы - сшивают фрагменты ДНК в единое целое. Только после выделения таких ферментов создание искусственных генетических структур стало технически выполнимой задачей.
2. Биотехнология
2.1 Возникновение биотехнологии
Современная биотехнология - это новое научно-техническое направление, возникшее в 60-70-х годах нашего столетия. Особенно бурно она стала развиваться с середины 70-х годов после первых успехов генно-инженерных экспериментов. Несмотря на столь короткий срок своего существования, биотехнология привлекла пристальное внимание как ученых, так и широкой общественности. Биотехнология, в сущности, не что иное, как использование культур клеток бактерий, дрожжей, животных или растений, метаболизм и биосинтетические возможности которых обеспечивают выработку специфических веществ. Биотехнология на основе применения знаний и методов биохимии, генетики и химической техники дала возможность получения с помощью легко доступных, возобновляемых ресурсов тех веществ и которые важны для жизни и благосостояния.
В промышленном масштабе подобная биотехнология представляет собой уже биоиндустрию.
Одно из объяснений живого интереса к биотехнологии можно найти прежде всего в том, что именно к этому времени была осознана действительная острота глобальных проблем, вставших перед человечеством: нехватка продовольствия, ограниченность энергии и минеральных ресурсов, резкое, почти катастрофическое, ухудшение окружающей среды и, как следствие, ухудшение здоровья человека. Стало понятно, что огромный индустриально-промышленный комплекс не только не помогает решить эти проблемы, но и еще более усугубляет их. Возникла настоятельная практическая потребность в принципиально новых технологиях и новых способах организации производства. В это же время физико-химическая биология в союзе с генетикой, молекулярной биологией и микробиологией предложили новую технологию, как будто способную помочь в решении этих проблем. Тем более что первые опыты биотехнологического производства дали неплохие результаты и потому позволили строить оптимистические планы на будущее.
2.2 Специфика биотехнологии
Биотехнология - чрезвычайно наукоемкая технология. Так, например, возникшая первой в США фирма «Дженетек» расходует 76% доходов на исследовательские разработки вместо обычных для других фирм 12%. Среди общего числа работников НБФ около 35% составляют доктора наук.[3]
Таким образом, новая биотехнология-это больше научно-техническое новаторское направление, чем производственное, хотя и с довольно большими производственными перспективами. Однако это такое научно-техническое направление, которое само выступает производства, причем такого производства, которое уже не может сделать буквально ни одного шага без глубоких фундаментальных и систематических прикладных научных разработок. Подчеркивая специфику новой технологии, т. е. отличая ее и от сельского хозяйства, и от традиционной промышленности, можно так определить биотехнологию: это технология промышленного применения и эксплуатации естественных и целенаправленно созданных живых систем, прежде всего микроорганизмов, в качестве автоматически действующих сил природы для удовлетворения.
Возникновение социальных проблем биотехнологии обусловлено прежде всего тем, что это новое производство есть одно из важнейших направлений научно-технического прогресса, качественно преобразующих содержание научно-технической революции. Есть все основания предполагать, что в недалеком будущем биотехнология превратится в одно из важнейших приоритетных направлений научно-технического прогресса и тем самым может привести к переосмыслению и самих критериев этого прогресса. Это предположение зиждется на том, что глобальные проблемы современности, и в особенности экологическую, продовольственную и энергетическую, очень трудно (если не невозможно) будет решать без самого непосредственного и широкого применения биотехнологии. Важнейшие социальные проблемы возникают также и в связи с тем, что развитие биотехнологии ведет к размыванию традиционных границ между сельским хозяйством и промышленностью. Более того, возникающая в настоящее время необходимость сначала экологизации, а затем и в более широком смысле биологизации всей производственной и хозяйственной деятельности человечества может привести не только к перестройке и даже замене (сначала, конечно, частичной) привычного сельского хозяйства биотехнологией, но и к преобразованию промышленности и техники.[3]
Примечательно, что в сфере биотехнологии целый ряд биологических наук, и прежде всего микробиология, генетика и физико-химическая биология, уже превращаются в непосредственную производительную силу.
Слияние науки и производства, превращение науки в непосредственную производительную силу, а производства в предметно - воплощающую науку как нельзя лучше характеризует это новаторское направление. Видимо, поэтому оно оказывается тем фокусом, который стягивает в себе как проблематику, традиционно относимую к сфере философии и методологии научного познания, так и проблемы социально-философского и методологического осмысления практики, производства, промышленности. К. Маркс подчеркивал, что превращение производства в материальную творческую науку становится возможным лишь «по отношению к человеку сложившемуся, в голове которого закреплены накопленные обществом знания».[3]
Так, скажем, если Альбер Сассон утверждает, что <развитие биотехнологии и преимущества, которые оно сулит, ставит обширный комплекс проблем, которые связаны с эволюцией общего направления биологических исследований»[2], то интуитивно это кажется верным. Однако детального и аргументированного обоснования этого тезиса не просто достичь, и не только в силу еще очень значительной ограниченности биотехнологического опыта.
Биотехнология привлекает к себе прежде всего возможностью приспособления естественных, органических технологий живой клетки, ткани, организма, биоценоза и биосферы в целом для нужд человека как таких технологий, которые естественным образом смогут быть встроены в биологический круговорот планеты. Однако это только идея, пока существующая еще в качестве труднодостижимой мечты, поскольку теперь действующая биотехнология - это в большей мере химическая технология, в которой используются фрагменты живого. Тем не менее и в качестве даже идеи-мечты она оказывает заметное благотворное воздействие: именно в русле этой мечты родились и задачи экологизации, и - в более широком плане - биологизации всей производственно-хозяйственной деятельности человека на планете.
Еще в начале века крупнейший французский химик П. Бертло считал, что можно создавать идеальную пищу, которая в виде питательных порошков или растворов будет вводиться прямо в желудочно-кишечный тракт или непосредственно в кровь. Эта идея фактически поддерживалась до самого последнего времени (70-е годы), однако теперь ясно, что она никогда не может быть реализована. Как отмечает А. М. Уголев, в последнее время были сделаны крупнейшие открытия, которые влияют на всю стратегию питания. Были «обнаружены неизвестные ранее типы пищеварения (лизосомальное, внутриклеточное и мембранное). А также поглощения пищевых веществ. Кроме того, установлено, что в отношении метаболизма человек (и другие высшие животные) «представляет собой не собственно организм, а надорганизм, поскольку он включает в себя целый комплекс микроорганизмов».[3]. Последнее обстоятельство особенно интересно тем, что оно привело к формированию представлений об эндоэкологии. т. е. внутренней экологии человека и других многоклеточных организмов, а также к представлению о том, что в процессе эволюции мы сформировались как организмы с определенными природными «технологиями», обойти которые не представляется возможным.
2.3 Разделы биотехнологии
Биоэнергетика как раздел биотехнологии
Установление единообразия механизмов энергетических процессов во всем живом мире - от микроорганизмов и растений до человека, и вскрытие механизмов преобразования энергии в живых клетках создало предпосылки управления энергетическими процессами отдельных организмов и их сообществ, а также конструирования биоэнергетических установок различных типов, в том числе биологических генераторов тока. Это позволяет говорить о превращении биоэнергетики в один из разделов биотехнологии и в одно из перспективных направлений НТП, интенсивно развиваемое в настоящее время и обещающее эффективное разрешение энергетической и сырьевой проблем.
Биоэнергетика в широком смысле слова означает совокупную энергетику биологического круговорота биосферы Земли, которая происходит с участием всех населяющих биосферу организмов - микроорганизмов, растений, животных. Восходящая линия биологического круговорота - накопление химической энергии органических соединений в процессе фотосинтеза - химического процесса связывания воды и углекислого газа за счет энергии солнечного излучения с образованием углеводов и других более сложных соединений. На планете за год воспроизводится около 232.5 млрд. тонн сухого органического вещества, что соответствует примерно 6000.10 '2 кДж энергии. Энерговооруженность жизни в ходе эволюции возрастает. Однако деятельность людей в масштабах биосферы все более оказывается разрушительной, ограничивающей возможности дальнейшего развития биоэнергетики. Происходит не только уничтожение отдельных видов растений и животных, не только нарушение их естественных комплексов - биогеоценозов - разрушается структура биосферы, ее циклическая организация, способность к самоочищению. Но с помощью расширяющегося прогнозно-планового регулирования происходит постепенное превращение биосферы в сферу разума - ноосферу. Все в более расширяющихся масштабах будет осуществляться экологизация и биологизация производственной деятельности людей, т. е. все большее включение этой деятельности в биологический круговорот биосферы. Соединение в ноосфере двух способов обеспечения устойчивости систем - энергетического (отбор и сохранение систем с большей энергией) и информационного (отбор более сложных систем, т. е. с большим запасом информации) - приведет к образованию качественно нового состояния биоэнергетики. Наступит эпоха сбалансированной энергетики планеты на возобновляемых энергоресурсах.
Биологизация и экологизация
Еще раз подчеркну, что стратегия преобразования и господства над природой в современном мире уже дискредитировала себя. Мы все больше осознаем необходимость гармоничного, совместного развития природы и человечества. Именно поэтому в настоящее время приобретают популярность идеи экологизации и в более широком смысле биологизации всей хозяйственной и производственной деятельности. Думается, что под экологизацией, как начальным этапом биологизации, можно понимать сокращение вредных выбросов производства в окружающую среду, создание малоотходных и безотходных промышленных комплексов с замкнутым циклом, скажем, по воде или углеводороду и т. п.
Биологизацию же следует, видимо, понимать более широко, как радикальное преобразование производственной деятельности на основе биологических законов биотического круговорота биосферы. Целью подобного преобразования должно быть встраивание всей хозяйственно-производственной деятельности в биотический круговорот.
Особенно наглядно эта необходимость видна на феномене стратегической беспомощности химической защиты растений. Дело в том, что в настоящее время нет в мире ни одного пестицида, к которому бы не приспособились вредители растений. Более того, теперь отчетливо выявилась закономерность подобного приспособления: если в 1917 г. появился один вид насекомых, приспособившихся к ДДТ, то в 1980 г. таких видов стало 432. Применяемые пестициды и гербициды крайне вредны не только для всего животного мира, но и для человека. Точно так же в настоящее время становится понятной и стратегическая бесперспективность применения химических удобрений. В этих условиях совершенно естествен переход к биологической защите растений и биоорганической технологии с минимумом химических удобрений. Решавшую роль в процессе биологизации сельского хозяйства может сыграть биотехнология.
Можно и нужно говорить также и о биологизации техники, промышленного производства и энергетики. Она особенно настоятельна не столько с экономической точки зрения, сколько для судеб человечества и сохранения биосферы. Активно развивающаяся биоэнергетика обещает революционные преобразования, поскольку она ориентирована на возобновляемые источники энергии и сырья. Нефть, уголь, природный газ и даже уран - это не возобновляемые источники, и, как известно, запасы их на Земле крайне ограниченны.
Биологизация энергетики призвана сыграть решающую роль в процессе освобождения человечества от атомной энергетики, поскольку мы теперь уже можем говорить также и о стратегической бесперспективности атомных электростанций. Дело здесь не только в том, что запасы урана также ограниченны, но главным образом в том, что к настоящему времени в мире скопилось уже много десятков тысяч тонн отработавшего топлива, представляющего грозную опасность для всего живого. Как известно, проблема захоронения отработавшего топлива (его радиоактивность после использования в АЭС многократно возрастает) до сих пор не решена. Однако, самая главная опасность состоит в возможности серьезных аварий на АЭС.
3. Генная инженерия
3.1 Генная инженерия
За последние 10-15 лет были созданы принципиально новые методы манипулирования с нуклеиновыми кислотами in vitro, на основе которых зародился и бурно развивается новый раздел молекулярной биологии и генетики - генная инженерия. Принципиальное отличие генной инженерии от использовавшихся ранее традиционных приемов изменения состоит в том, что она дает возможность конструировать функционально активные генетические структуры in vitro в форме рекомбинантных ДНК. Понятия «генная» и «генетическая» инженерия часто употребляют как синонимы, хотя последнее является более широким и включает манипулирование не только с отдельными генами, но и с более крупными частями генома. Работа по переделке генотипа животных или растений с помощью скрещиваний ограничены пределами вида либо близких в видовом отношении форм. Напротив, генная инженерия, как будет показано ниже, стирает межвидовые барьеры, обеспечивая возможность создания организмов с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств. Генная инженерия представляет собой совокупность методов, позволяющих не только получать реконбинантные ДНК из фрагментов геномов разных организмов, но и вводить такие реконбинантные молекулы в клетку, создавая условия для экспрессии в ней введенных, часто совершенно чужеродных генов. Таким образом, в этом случае исследователь оперирует непосредственно с генами, причем их перенос может не зависеть от таксономического родства используемых организмов. Эта особенность генной инженерии представляет ее главное отличие от ранее использовавшихся приемов изменения генотипа.
Первенствующую роль в формировании генной инженерии сыграла генетика микроорганизмов, идеи и методы, разработанные молекулярной генетикой и химией нуклеиновых кислот. Формальной датой рождения генной инженерии считают 1972 г., когда группа П. Берга в США создала первую рекомбинантную ДНК in vitro, объединившую в своем составе генетический материал из трех источников: полный геном онкогенного вируса обезьян SV40, часть генома умеренного бактериофага К и гены галактозного оперона Е. coli. Сконструированная рекомбинантная молекула не была исследована на функциональную активность, поскольку у авторов этой работы возникли опасения, что методы генной инженерии могут привести к появлению микроорганизмов, опасных для здоровья человека, например бактерий Е. coli, способных перенести онкогенные вирусы животных в кишечник человека. Разработанные позднее правила работы с рекомбинантными молекулами позволили практически устранить возможность вредных последствий создания рекомбинантных ДНК, объединяющих в своем составе гены разного происхождения.
3.2 Методы генной инженерии
Возможность выделения отдельных генов в составе относительно небольших фрагментов ДНК была продемонстрирована незадолго до возникновения генной инженерии в экспериментах in vitro. В 1969 г. Дж. Беквит, Дж. Шапиро и другие опубликовали работу по выделению генов лактозного оперона Е. coli, основанную на сочетании традиционных методов генетики микроорганизмов и физических методов выделения и гибридизации молекул ДНК.
Отдельные гены с целью их последующего молекулярного клонирования в составе рекомбинантных ДНК методами генной инженерии могут быть получены следующими способами:
непосредственным выделением из природных источников;
путем химического синтеза;
3) копированием соответствующей гену и РНК для получения комплиментарной ДНК-вой реплики (к ДНК).
Первый метод широко использовался на раннем этапе развития генной инженерии. Тотальную ДНК из разных источников подвергали деградации различными рестриктазами, сшивали с векторными молекулами, вводили в реципиентные клетки и отбирали клоны с гибридными молекулами, включавшими требуемый ген, по появлению соответствующих маркеров донора (например, устойчивости к определенному антибиотику) либо с помощью специальных иммунологических и гибридизационных методов. Этот метод не утратил своего значения и успешно применяется, например для создания банка генов.
Искусственный синтез гена впервые осуществлен химическим путем в 1969 г. группой Кораны с сотрудниками. Химическому синтезу генов существенно способствовало совершенствование методов изучения первичной структуры белков или других продуктов, кодируемых синтезируемым геном, а также методов определения первичной структуры (секвенирования) нуклеиновых кислот. Секвенирование ДНК играет большую роль не только в работах по химическому синтезу генов, но и при изучении их функции, их регуляторных последовательностей, а также целых генетических систем, например мобильных диспергированных генов у эукариот.
Анализ первичной структуры ДНК, т. е. установление последовательности нуклеотидных остатков в ее молекуле, в настоящее время основан на двух методах - методе химической деградации (А. Максам и В. Гилберт, 1977) и методе полимеразного копирования с использованием терминирующих аналогов нуклеотидов (Ф. Сэнгер, 1977).
В практике генной инженерии широко распространен и третий метод искусственного получения генов, основанный на их ферментативном синтезе с помощью механизма обратной транскрипции. Этот механизм связан с активностью РНК-зависимой ДНК-полимеразы или обратной транскриптазы - фермента, впервые обнаруженного при исследовании репликации РНК онкогенных вирусов. Фермент способен строить ДНК-копии на разных РНК, включая синтетические полирибонуклеотиды. С помощью обратной транскриптазы, называемой иногда ревертазой, можно синтезировать практически любой индивидуальный ген в присутствии соответствующих иРНК, методы выделении которых достаточно разработаны. В 70-е годы появились методы выделения в чистом виде фрагментов ДНК с помощью электрофореза. В руки ученых попали "молекулярные ножницы". Транспортным средством переноса генетической информации в клетку стал вирус. Явление трансдукции - переноса генов из одной клетки в другую с помощью вирусов изучали еще с 50-х годов. Но вирус не должен был сразу уничтожать всю клетку, поэтому не все вирусы подходили для этой роли. Известно, что бактериальные клетки могут обмениваться генетическим материалом при помощи плазмид (небольших частиц с фрагментами ДНК). Поэтому введение нужного гена в плазмиду позволяет в дальнейшем перенести этот ген в бактерию (это еще один из механизмов транспорта в генной инженерии). Появилась возможность изучать распределение нуклеотидов в определенном гене или получать нужный белок. Для этого создается рекомбинантная ДНК, которая возникает, когда ДНК одного организма внедряется в клетки другого. В качестве последнего используются клетки организма, который размножается много быстрее первого, например, бактерии. Так, в 80-е годы были разработаны интерфероны ~ белки, способные подавлять размножение вирусов. Были выбраны наиболее подходящие для переноса гены и мобильные участки ДНК. Например, культурным растениям вводят гены, повышающие их иммунитет и устойчивость.
В 1983г. Барбара Мак-клинток при изучении генетики кукурузы обнаружила в ее геноме один "подвижный" ген, отвечающий за цвет початка. Независимо от нес подвижные гены были открыты методами молекулярной генетики советским ученым Г. П. Георгиевым. В 1981 г. процесс выделения генов и получения из них различных цепей был автоматизирован.
При всем разнообразии методов основная схема любой генно-инженерной работы остается неизменной. Она включает:
обработку кольцевой векторной молекулы рестриктазой с образованием линейной формы ДНК;
сплавление ее с фрагментом чужеродной ДНК, ведущее к формированию гибридной структуры;
введение гибрида в клетку реципиента;
отбор клонов трансформированных клеток на селективных средах;
доказательство присутствия рекомбинантной ДНК в этих клонах путем ее выделения из клеток, обработки соответствующими рестриктазами и анализа образовавшихся фрагментов методом электрофореза в агарозном геле.
Известно несколько методов объединения фрагментов ДНК из разных источников, позволяющих включить клонируемую донорную ДНК в состав вектора. Один из них основан на соединении фрагментов, каждый из которых несет идентичные «хлипкие» концы, полученные под действием одной и той же рестриктазы. При другом методе, ферментативном, используется возможность соединения двухцепочных концов фрагментов ДНК с помощью ДНК-лигазы. Для повышения эффективности лигазы к концам сшиваемых фрагментов ДНК химически присоединяют комплиментарные однонитевые олигонуклеотиды, например поли-А и поли-Т, создавая тем самым искусственные «липкие» концы.
Методы введения рекомбинантных молекул в клетки зависят от особенностей самих клеток и используемых векторов. В тех случаях, когда векторами служат плазмиды, рекомбинантные ДНК вводят в реципиентные бактерии путем трансформации. Разработаны и методы трансформации клеток животных, а также протопластов растений. Для защиты экзогенного клеточного материала, вводимого в клетки млекопитающих или в протопласты растений, используют липосомы - сферические тельца, оболочка которых состоит из фосфолипидов. В составе липосом в клетки высших эукариот введены крупные вирусные РНК. Во всех случаях липосомы надежно защищали молекулы нуклеиновых кислот от разрушения нуклеазами.
Один из путей передачи генетической информации в культуре клеток человека, животных и растений - гибридизация соматических клеток, разработанная Б. Эфрусси и Г. Барски (1960). Эффективность этого метода значительно повысилась после того, как было обнаружено, что частицы инактивированного вируса парагриппа типа Сендай увеличивают частоту слияния клеток из самых разных источников. Показана возможность передачи генов из изолированных хромосом китайского хомячка в клетки соединительной ткани мыши. Описаны гибриды клеток человека и мыши, из которых часть хромосом человека удаляется, а часть остается функционально активной. Для введения ДНК в различные культуры клеток млекопитающих или развивающиеся эмбрионы используют метод микро инъекций ДНК в ядро с помощью микроманипулятора. Развитие методов микрохирургии клеток позволило заменять ядра оплодотворенных яйцеклеток на ядра из соматических клеток и в результате получать абсолютно идентичные организмы. Создание гибридов высших растений в обход полового скрещивания возможно путем слияния протопластов и соматической гибридизации растительных клеток, в результате чего в ряде случаев появляются целые гибридные растения. Все эти методы могут быть использованы для конструирования новых форм микроорганизмов, животных и растений путем введения и стабильного наследования в них рекомбинантных ДНК, несущих, гены, детерминирующие желаемые признаки.[4]
Следует, однако, отметить, что, несмотря на очевидные успехи подобных работ по созданию микроорганизмов, синтезирующих ряд важных продуктов эукариотического происхождения, проблема экспрессии чужеродных генов у прокариот имеет ряд ограничений. Некоторые из них связаны с тем, что при сверхпродукции полезных для человека и не нужных клетке соединений, кодируемых гибридной плазмидой, усиливается неустойчивость самих гибридов и вероятность элиминации из них встроенных генов. Стабильность гибридных ДНК снижается и с увеличением размеров вставки в вектор. Поэтому разрабатываются методы, направленные на сохранение целостности гибридной структуры. Использование регулируемых промоторов предохраняет клетку от чрезмерной для нее метаболической активности, связанной с избыточной продукцией чужеродного белка. Вместе с тем проблема стабильности гибридных молекул окончательно не решена. Ограничения возможностей конструирования микроорганизмов - гиперпродуцентов ценных препаратов - распространяются на случаи клонирования и экспрессии любых генов как про -, так и эукариотического происхождения.
Наряду с этим существуют и ограничения, специфически связанные с выражением эукариотических генов в прокариотах.
Первое из них определяется тем, что эукариотические промоторы могут не распознаваться бактериальной РНК - полимеразой.
Второе заключается в том, что и РНК транскрибирующаяся с эукариотических генов, не содержит последовательности Шайн-Далгарно, необходимой для ее связывания с рибосомами.
В-третьих, такая иРНК может содержать интроны, которые следует вырезать.
Наконец, эукариотические белки часто становятся субстратами для бактериальных протеаз, опознающих такие белки как чужеродные.[4].
Первые два ограничения преодолеваются за счет создания векторов, несущих собственные промоторы и последовательность Шайн-Далгарно, третье можно обойти путем использования кДНК либо химически синтезированных генов. Протеазная активность реципиентных бактерий подавляется мутациями.
Преодоление всех этих ограничений открывает дальнейшие перспективы использования методов генной инженерии при создании микроорганизмов - продуцентов гормонов, вакцин, антисывороток и ферментов, представляющих интерес для медицины, ветеринарии, сельского хозяйства и микробиологической промышленности.
3.3 Генетическая рекомбинация in vitro
Генетическая рекомбинация заключается в обмене генами между двумя хромосомами. По определению, данному Понтекорво в 1958 г., рекомбинация-это любой процесс, способный привести к возникновению клеток или организмов с двумя или более наследственными детерминантами, по которым их родители различались между собой и которые соединены новым способом. Такая рекомбинация обязательно происходит у млекопитающих при образовании половых клеток. В ходе мейоза гомологичные хромосомы обмениваются генами; именно эти обмены позволяют объяснить перетасовку наследственных признаков в ряду поколений. У вирусов и бактерий генетическая рекомбинация происходит реже, чем у животных. Обмен генетическим материалом, за которым следует рекомбинация, происходит между организмами одного и того же или близких видов. Все живые организмы обладают рестрикционными эндонуклеазами, которые узнают чужеродную ДНК, проникшую в организм, и расщепляют ее, таким образом сводя на нет генетическую рекомбинацию между эволюционно удаленными геномами.
Обмен генами, равно как и введение в клетку гена, принадлежащего другому виду, можно осуществить посредством генетической рекомбинации in vitro. Этот подход был разработан на бактериях, в частности на кишечной палочке, в клетки которой вводили гены животных и человека и добивались их репликации.
Метод рекомбинации in vitro заключается в выделении ДНК из разных видов, получении гибридных молекул ДНК и введении рекомбинантных молекул в живые клетки с тем, чтобы добиться проявления нового признака, например синтеза специфического белка.
Выделение генов, которые представляют собой сегменты ДНК, осуществляется на основе биохимических методов; сложность выделения зависит от величины генома. В то время как определенный ген вируса выделить относительно просто, для гена человека это очень сложная задача. Поэтому исследователи прибегают к косвенному методу, основанному на выделении информационной РНК (мРНК). В клетках животных транскрипция мРНК на ДНК осуществляется в клеточном ядре; молекулы мРНК переносят информацию из ядра в цитоплазму, где она используется при трансляции белков, аминокислотные последовательности которых закодированы в последовательностях нуклеотидов мРНК (т. е. в конечном счете в ДНК). В клетках бактерий (прокариот), которые не имеют ядра, транскрипция и трансляция происходят одновременно и сопряжены; мРНК связана с рибосомами, в которых осуществляется соединение аминокислот с образованием белков. Рибосомы играют ключевую роль в трансляции и в клетках животных.
Наряду с информацией о структуре белков (записанной с помощью генетического кода) молекула ДНК содержит ряд регуляторных сигналов, записанных в виде специфических нуклеотидных последовательностей. Эти сигналы служат точками начала транскрипции или трансляции, другие (в частности, между генами) указывают точки прекращения считывания генетической информации. Генетический код, по-видимому, универсален для всех живых организмов, иными словами, данная последовательность ДНК обязательно кодирует один и тот же белок в клетках разных организмов, тогда как регуляторные сигналы в клетках животных и в бактериальных клетках не одинаковы. В клетках животных информация о структуре белка может кодироваться не одним непрерывным участком ДНК, а несколькими сегментами, разделенными участками ДНК, носящими название нитронов. Информационная РНК, которая транскрибируется с ДНК, подвергается расщеплению, в ходе которого все интроны удаляются из ее последовательности, а остальные остающиеся фрагменты, или экзоны, сшиваются вместе с образованием молекулы мРНК, которая обладает последовательностью, кодирующей последовательность аминокислот белка, а также содержит регуляторные сигналы, необходимые для начала и прекращения процесса трансляции.
Для экспрессии в бактериальной клетке гена из клетки животного необходимо, чтобы в клетку была введена молекула ДНК с последовательностью нуклеотидов, кодирующей белок, из которой интроны уже удалены; иными словами, нужна молекула ДНК, синтезированная на соответствующей мРНК обратной транскриптазой. Более того, регуляторные сигналы должны быть похожи на таковые бактериальной клетки. Наконец, для получения нужного белка в достаточных количествах бывают необходимы дополнительные изменения бактериальной клетки.[2]
3.4 Методы введения ДНК в бактериальные клетки
биотехнология генная инженерия клонирование
Для введения ДНК (генов) в клетки бактерий используются два метода. Первый основан на применении плазмиды в качестве вектора.
В начале 1950-х гг., вскоре после открытия Ледербергом процесса конъюгации Escherichia coli, было установлено, что типы «спаривания» клеток бактерий обусловлены генетически и что генетическая информация переносится из клеток мужского типа в клетки женского типа, или реципиентные клетки. Способность служить донорными клетками (или фактор плодовитости F) передавалась при конъюгации значительно чаще, чем любой другой генетический признак. F-фактор передавался также независимо от любого другого известного гена донорной клетки. Ледерберг подметил, что F-фактор напоминает внехромосомные генетические элементы, имеющиеся в цитоплазме высших организмов. Это наблюдение позволило ему в 1952 г. присвоить подобным внехромосомным генетическим системам общее название-плазмиды.
В 1953 г. Хэйс, который в то время работал в больнице Хаммерсмита в Лондоне, установил, что в определенных условиях F-фактор может оказаться сцепленным с генетическими маркерами и индуцировать последовательный их перенос в ходе конъюгации. F-фактор присоединяется к бактериальной хромосоме в специфическом участке (сайте); именно в этой точке хромосома разрывается при конъюгации и начинается ее перенос в реципиентную клетку. F-фактор способен также отделяться от хромосомы, захватывая подчас небольшие фрагменты хромосомы; поэтому его можно рассматривать как виехромосомный элемент, который иногда интегрирует в хромосому.
Жакоб и Вольман, сотрудники Института Пастера в Париже, отметили сходство в поведении F-фактора, умеренного бактериофага X, и другой плазмиды-Со1Е1 (которая кодирует колицин-белок, убивающий клетки Е. coli). Для обозначения генетического элемента, который может реплицироваться либо в свободном состоянии, либо соединившись с бактериальной хромосомой, они предложили новый термин-«эписома».
В 1959 г. в Японии при исследовании больных бактериальной дизентерией, которые не поддавались лечению обычно эффективными антибиотиками, было сделано замечательное открытие. В клетках патогенных бактерий (Shigella dysenteriae) были найдены гены, придававшие им устойчивость одновременно к нескольким антибиотикам; такая устойчивость передавалась другим кишечным бактериям во многом подобно тому, как передается F-фактор. Эти факторы устойчивости (называемые R-факторами) обладали сходством с F-фактором; так, они были способны индуцировать передачу самих себя от клетки к клетке при конъюгации. Позже удалось показать, что некоторые из них содержат последовательности нуклеотидов, близкие к таковым F-фактора.
В начале 1960-х гг. Новик обнаружил подобные факторы устойчивости у стафилококков; они содержали ген, кодирующий фермент пенициллин-в-лактамазу, или пенициллиназу; последняя расщепляет пенициллин и таким образом обеспечивает устойчивость к этому антибиотику. R-факторы стафилококков, по-видимому, не способны обеспечивать передачу самих себя посредством конъюгации и переносятся лишь пассивно в процессе трансдукции, т. е. при их встраивании в ДНК бактериофага. Это открытие указывало на наличие нескольких R-факторов в клетках кишечных бактерий.
К середине 1960-х гг. стало очевидным, что большинство R-факторов кишечных бактерий и стафилококков (как и плазмида Со1Е1) отличаются от F-фактора и фага л тем, что остаются внехромосомными элементами; их обратимого встраивания в хромосому клетки не происходит. В строгом смысле они не соответствовали определению эписомы. В 1963 г. Новик предложил пользоваться предпочтительно термином «плазмида», как более общим, а не «эписома». В настоящее время термин «плазмида» является общепринятым.
Плазмиды найдены почти у всех видов бактерий. Штамм, содержащий плазмиду, способен давать начало вариантам, у которых плазмида утрачена; в подобных случаях плазмида теряется окончательно, клетка не способна ее регенерировать и может только получить ее из другой бактериальной клетки.
Плазмиды представляют собой кольцевые молекулы ДНК, по размеру соответствующие 1-3% генома бактериальной клетки, однако даже столь малая часть наследственного аппарата кодирует важные генетические признаки, которые обычно сама бактериальная хромосома не кодирует. Например, они содержат информацию, необходимую для конъюгации бактериальных клеток, ими обусловлен ряд заболеваний растений и животных. Они позволяют клеткам использовать многие сложные соединения в качестве источников питания и обеспечивают устойчивость к разнообразным токсичным агентам, особенно к антибиотикам. Плазмиды стафилококков несут гены устойчивости к пенициллину, соединениям ртути и ряду тяжелых металлов, вызывающих летальный эффект (солям сурьмы, висмута, кадмия и свинца, ионам арсената и арсенита). Гены устойчивости к тяжелым металлам обнаружены также в составе R-плазмид Е. соli. Наличием плазмид обусловлены также некоторые заболевания с выраженной диареей, стафилококковый импетиго, створаживание молока и превращение его в сыр молочнокислыми бактериями, а также разнообразные биохимические реакции, характерные для бактерий рода Pseudomonas.. Плазмиды могут управлять синтезом инсектицида в клетках Bacillus thuringiensis [2]. Использование плазмид в качестве векторов для введения чужеродных генов в бактериальные клетки начиная с 1975 г. послужило толчком для интенсивных исследований их структуры и характера репликации.
Количество плазмид в клетке может колебаться от одной до более сотни; в целом чем крупнее плазмида, тем меньше количество ее копий в клетке. Обычно репликация плазмиды регулируется независимо от репликации хромосомы. Поскольку плазмиды могут различаться по количеству копий водной и той же клетке, количество копий ; должно определяться регуляторной системой, присущей самой плазмиде. Такая система была описана в 1972 г. датчанином Нордстрёмом из Университета Оденсе для плазмиды R1 Е. со1i; сходные регуляторные системы были найдены у плазмид стафилококков. Количество копий плазмиды R1 зависит, по-видимому, от белка или белков, которые подавляют ее репликацию. Сегмент ДНК длиной не более двух тысяч пар нуклеотидов управляет репликацией плазмиды, которая более чем в 50 раз его крупнее.
Долгое время считалось, что генетическая конституция всех клеток данного вида одинакова и не изменяется в течение длительного времени, однако, как оказалось, значительная часть генетических признаков, причем не только у бактерий, но и у высших организмов, нестабильна (эти признаки имеются в одних клетках или штаммах и отсутствуют в других,, клетки могут терять их и приобретать вновь) и мобильна (способна переноситься между клетками или перемещаться в одной и той же клетке из одного локуса в другой). Такая нестабильность объясняется тем, что эти признаки определяются плазмидами и тугими атипичными генетическими системами.
При конъюгации бактериальных клеток может происходить обмен плазмидами между бактериями, принадлежащими к разным видам и даже родам, которые не способны обмениваться генами, находящимися в хромосомах. Наконец, такой обмен может приводить к переносу генов, находящихся в плазмиде, из одного вида в другой при совместном росте и конкуренции, в результате чего реципиентные клетки приобретают способность выживать за счет донорных клеток. Эти свойства показывают, что плазмиды способны к выживанию независимо от судьбы содержащих их клеток, они не только не снижают общей приспособленности клетки, но, напротив, снабжают ее дополнительными адаптивными функциями. В самом деле, плазмиды обладают способностью включать в себя новые гены, а уже содержащиеся в них гены «перетасовывают» так, что это, с одной стороны, не влияет на эффективность репликации самих плазмид, а с другой-наделяет клетку резервуаром генетической информации, которую она использует по мере надобности.
Второй метод, которым исследователи пользуются для введения гена в бактериальные клетки, основан на применении бактериофага в качестве вектора. Ген встраивают в геном вируса (который содержит 10-50 генов), и он реплицируется вместе с генами вируса при размножении последнего в бактериальной клетке.[2]
3.5 Достижения генной инженерии
Группа Кораны синтезировала ген аланиновой тРНК дрожжей, структура которого к тому времени была полностью расшифрована. Этот ген длиной 77 п. н. не содержал регуляторных последовательностей и поэтому не обладал функциональной активностью. Позднее та же группа авторов синтезировала первый функционально активный ген - ген супрессорной тирозиновой тРНК Е. coli длиной около 200 п. н.
Генная инженерия открыла путь для производства продуктов белковой природы путем введения в клетки микроорганизмов искусственно синтезированных кодирующих их генов, где они могут экспрессироваться в составе гибридных молекул. Первой удачной попыткой такого рода стала работа К. Итакуры и Г. Бойера с соавторами (1977) по экспрессии в Е. coil химически синтезированного гена, кодирующего гормон млекопитающих - соматостатин. Ген соматостатина был получен на основе сведений о первичном строении этого пептидного гормона, состоящего всего из 14 аминокислот. Использованный в этой работе подход оказался весьма перспективным для получения и многих других пептидных гормонов.
В различных лабораториях в СССР и за рубежом были созданы штаммы Е. coli, синтезирующие в составе гибридных белков гормон роста человека (соматотропин), пептидные гормоны - брадикинин и ангиотензин, нейропептид лей-энкефалин и др.
Ген гормона роста человека длиной 584 п. н.- наиболее длинный из искусственно синтезированных в настоящее время. Он был встроен в плазмиду, реплицирующуюся в Е. coli под контролем промотора триптофанового оперона. Трансформированные полученной химерной плазмидой клетки Е. coli продуцировали при индукции промотора около 3 млн. молекул гормона роста человека в расчете на клетку. Этот полипептид, как было установлено в экспериментах на крысах с удаленным гипофизом, по функциям оказался полностью идентичен гормону роста человека.
В 1976 г. Гилберт и Максам в Гарвардском университете, а также Сэнгер разработали быстрый метод химического анализа ДНК; появилась реальная возможность определять последовательность до 1000 нуклеотидов в неделю силами одного исследователя. В 1982-1985гг. стало возможно создать прибор для автоматического анализа нуклеиновых кислот (а значит, генов). Анализ ДНК позволяет дедуцировать, основываясь на генетическом коде, аминокислотные последовательности белков, синтез которых находится под контролем соответствующих генов. С помощью созданного в результате совершенствования анализа белков микроанализатора Худа- Ханкепиллера (Калифорнийский технологический институт, 1980) за день удается определять последовательность из 100-200 аминокислот, причем для этого требуется всего 10 нг белка (1 нг=10 -9 г)2 [2].
Еще один важнейший этап-это синтез биополимеров по установленной структуре. Первые коммерческие приборы, производящие автоматизированный синтез полипептидов, были разработаны на основе исследований Меррифилда в 1963 г. Они используются в исследовательских лабораториях и в фармацевтической промышленности.
Метод химического синтеза генов обеспечил также возможность получения штаммов бактерий продуцентов инсулина человека, важного лечебного препарата для больных диабетом. «Ген инсулина синтезировали в вида более 40 в основном шестичленных олигонуклеотидов, которые затем объединяли в единую структуру с помощью ДНК-лигазы. Полученные двух цепочечные полинуклеотиды длиной 271 и 286 пар оснований были встроены в плазмидные векторы. Туда же были встроены и регуляторные участки ДНК, обеспечивающие экспрессию гибридных молекул. Клонированные гены кодировали синтез проинсулина, который путем несложной химической обработки можно превратить в активный инсулин, включающий две полипептидные цепи А и В из 21 и 30 аминокислотных остатков, соединенных между собой сульфгидрильными связями» [4].
Подобные документы
Возникновение биотехнологии. Основные направления биотехнологии. Биоэнергетика как раздел биотехнологии. Практические достижения биотехнологии. История генетической инженерии. Цели, методы и ферменты генной инженерии. Достижения генетической инженерии.
реферат [32,4 K], добавлен 23.07.2008Понятие и задачи генной инженерии и молекулярного клонирования. Характеристика векторов на основе плазмид, бактериофагов и космид. Биотехнологические манипуляции с кишечной палочкой, этапы ее трансформации. Применение трансформированных микроорганизмов.
реферат [1,5 M], добавлен 20.12.2013Использование генной инженерии как инструмента биотехнологии с целью управления наследственностью живых организмов. Особенности основных методов и достижений генной инженерии в медицине и сельском хозяйстве, связанные с ней опасности и перспективы.
доклад [15,1 K], добавлен 10.05.2011Пересадка генов и частей ДНК одного вида в клетки другого организма. История генной инженерии. Отношение к генетически модифицированным организмам в мире. Новые ГМ-сорта. Что несёт человечеству генная инженерия. Какие перспективы генной инженерии.
презентация [325,1 K], добавлен 24.02.2015Генная инженерия - метод биотехнологии, который занимается исследованиями по перестройке генотипов. Возможности генной инженерии. Перспективы генной инженерии. Уменьшение риска, связанного с генными технологиями.
реферат [17,3 K], добавлен 04.09.2007Сущность генной и клеточной инженерии. Основные задачи генной модификации растений, анализ вредности их употребления в пищу. Особенности гибридизации растительных и животных клеток. Механизм получения лекарственных веществ с помощью генной инженерии.
презентация [615,8 K], добавлен 26.01.2014Использование клеток, не существовавших в живой природе, в биотехнологических процессах. Выделение генов из клеток, манипуляции с ними, введение в другие организмы в основе задач генной инженерии. История генной инженерии. Проблемы продуктов с ГМО.
презентация [2,2 M], добавлен 21.02.2014Основы и техника клонирования ДНК. Этапы генной инженерии бактерий. Развитие генетической инженерии растений. Генетическая трансформация и улучшение растений с помощью агробактерий, источники генов. Безопасность генетически модифицированных растений.
реферат [26,3 K], добавлен 11.11.2010История развития Биотехнологии. Генетическая инженерия как важная составная часть биотехнологии. Осуществление манипуляций с генами и введение их в другие организмы. Основные задачи генной инженерии. Генная инженерия человека. Искусственная экспрессия.
презентация [604,9 K], добавлен 19.04.2011Основные методы биотехнологии. Размножение организмов с интересующими человека свойствами с помощью метода культуры клеток. Особенности применения методов генной инженерии. Перспективы метода клонирования. Технические трудности применения методов.
презентация [616,1 K], добавлен 04.12.2013