Квантовая механика

Установление абсолютной непригодности законов классической механики в микромире. Принцип неопределенности Гейзенберга и система "копенгагенской интерпретации". Смысл соотношения неопределенностей. Рассмотрение философских выводов из квантовой механики.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 22.11.2012
Размер файла 20,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Введение
  • 1. Принцип неопределенности в квантовой механики
  • 1.1 Смысл соотношения неопределенностей
  • 2. Философские выводы из квантовой механики
  • 2.1 Главный философский вывод
  • Заключение
  • Список использованной литературы
  • Введение
  • Об абсолютной непригодности законов классической механики в микромире свидетельствует установленное видным немецким физиком Вернером Гейзенбергом (1901 - 1976) соотношение неопределенностей: если известно место положения частицы в пространстве, то остается неизвестным импульс (количество движения), и наоборот.
  • Принцип неопределенности Гейзенберга вошел в логически замкнутую систему "копенгагенской интерпретации", которую Гейзенберг и Борн перед встречей ведущих физиков мира в октябре 1927 года объявили полностью завершенной и неизменяемой. Эта встреча, пятая из знаменитых Сольвеевских конгрессов, произошла всего несколько недель спустя после того, как Гейзенберг стал профессором теоретической физики в Лейпцигском университете. Будучи всего двадцати пяти лет от роду, он стал самым молодым профессором в Германии.
  • Принцип неопределенности - фундаментальный принцип квантовой механики, устанавливающий физическое содержание и структуру ее математического аппарата. Кроме того, он играет большую эвристическую роль, так как многие результаты задач, рассматриваемых в квантовой механике могут быть получены и поняты на основе комбинации законов классической механики с соотношением неопределенностей.
  • Этот принцип описывает неотъемлемые ограничения, заложенные в природе измерения физических величин. Например, в случае, когда мы можем определить положение частицы в пространстве с большей точностью, ее движение (по сути, импульс), а, следовательно, и положение в будущем, определяются с гораздо меньшей точностью. Подобным образом, точное знание о движении частицы затрудняет определение ее местонахождения в данный момент. Это ограничение весьма далеко от классической физики, где считается возможным точное определение координат и скорости объекта. В этой, более ранней, детерминистской концепции считается возможным рассчитать точный курс будущего движения объекта. Принцип неопределенности отвергает это точное знание для любой частицы.
  • 1. Принцип неопределенности в квантовой механики
  • Этот принцип сформулировал выдающийся немецкий физик В. Гейзенберг в виде соотношения неточностей при определении сопряженных величин в квантовой механике, который теперь обычно называют принципом неопределенности.
  • Соотношение неопределенности Гейзенберга. Логическим развитием идеи о корпускулярных свойствах света ("волны могут вести себя подобно частицам") явилось признание волновых свойств у частиц (электрон, нейтрон, протон и т.д. мало отличаются от фотонов и подобно им могут проявлять волновые свойства). Например, в случае очень близкого расположения небольших щелей в опыте Юнга с источником электронов вместо светового так же возникает интерференционная картина. Рентгеновские лучи (фотоны с очень большой энергией) при дифракции на трехмерной кристаллической структуре дают картинку, сходную с получающейся при дифракции электронов.
  • Рассуждения, аналогичные ранее проделанным для интерферирующих фотонов, требуют признания невозможности постановки эксперимента по выяснению через какое из двух отверстий пролетел электрон при условии сохранения интерференционной картины. В отличие от фотона, электрон (или другая элементарная частица) в принципе могут быть зарегистрированы без их обязательного поглощения (например, по рассеянному на них свету). Однако, любое взаимодействие обладающих малыми частиц с другими телами (даже со светом) неизбежно приводит к существенным изменениям состояний самих наблюдаемых частиц, что ведет к разрушению интерференционной картины. Многочисленные мысленные эксперименты приводят к выводу о невозможности одновременного измерения координаты и импульса частиц со сколь угодно высокой наперед заданной точностью. Выражающее принципиальные ограничения на точность измерений неравенство, связывающее минимально возможные погрешности было предложено Гейзенбергом и носит название соотношения неопределенности.
  • 1.1 Смысл соотношения неопределенностей
  • Суть соотношения неопределенностей В. Гейзенберга заключается в следующем. Допустим, ставится задача определить состояние движущейся частица. Если бы можно было воспользоваться законами классической механики, то ситуация была бы простая: следовало лишь определить координаты частицы и ее импульс (количество движения). Но законы классической механики для микрочастиц применяться не могут: не возможно не только практически, но и вообще с одинаковой точностью установить место и величину движения микрочастицы. Только одно из этих двух свойств можно определить точно. В своей книге "Физика атомного ядра" В. Гейзенберг раскрывает содержание соотношения неопределенностей. Он пишет, что никогда нельзя одновременно точно знать оба параметра - координату и скорость. Никогда нельзя одновременно знать, где находится частица, как быстро и в каком направлении она движется. Если ставится эксперимент, который точно показывает, где частица находится в данный момент, то движение нарушается в такой степени, что частицу после этого невозможно найти. И, наоборот, при точном измерении скорости нельзя определить место расположения частицы.
  • Если мы стремимся определить значение одной из сопряженных величин в квантово-механическом описании, например, координаты х, то значение другой величины, а именно скорости или скорее импульса р = mv, нельзя определить с такой же точностью. Иначе говоря, чем точнее определяется одна из сопряженных величин, тем менее точной оказывается другая величина. Это соотношение неточностей, или принцип неопределенности, выражается следующей формулой:
  • ?x?=h,
  • механика гейзенберг неопределенность квантовый
  • где x -- обозначает координату, р -- импульс, h -- постоянную Планка, а ? -- приращение величины.
  • Таким образом, принцип неопределенности постулирует:
  • Невозможно с одинаковой точностью определить а положение, и импульс микрочастицы. Произведение их неточностей не должно превышать постоянную Планка.
  • На практике, конечно, неточности измерения бывав значительно больше, чем тот минимум, который предписывает принцип неопределенности, но речь идет о принципиальной стороне дела. Границы, которые устанавливаются этим принципом, не могут быть преодолены пут тем совершенствования средств измерения. Поэтому принцип неопределенности, по крайней мере в настоящее время, считается фундаментальным положением квантовой механики и неявно фигурирует в ней во всей рассуждениях. Теоретически не исключается возможности отклонения этого принципа и соответственно изменении связанных с ним законов квантовой механики, но в настоящее время он считается общепризнанным.
  • Из принципа неопределенности непосредственно следует, что вполне возможно осуществить эксперимент, с помощью которого можно с большой точностью определить положение микрочастицы, но в таком случае ее импульс будет определен неточно. Наоборот, если импульс будет определен с возможной степенью точности, тогда ее положение станет известным недостаточно точно.
  • В квантовой механике любое состояние системы описывается с помощью так называемой "волновой функции", но в отличие от классической механики эта функция определяет параметры ее будущего состояния не достоверно, а лишь с той или иной степенью вероятности. Это означает, что для того или иного параметра системы волновая функция дает лишь вероятностные предсказания. Например, будущее положение какой-либо частицы системы будет определено лишь в некотором интервале значений, точнее говоря, для нее будет известно лишь вероятностное распределение значений.
  • Таким образом, квантовая теория фундаментально отличается от классической тем, что ее предсказания имеют лишь вероятностный характер и потому она не обеспечивает точных предсказаний, к каким мы привыкли в классической механике. Именно эта неопределенность и неточность ее предсказаний больше всего вызывает споры среди ученых, некоторые из которых стали в связи с этим говорить об индетерминизме квантовой механики. Необходимо отметить, что представители прежней, классической физики были убеждены, что по мере развития науки и совершенствования измерительной техники законы науки станут все более точными и достоверными. Поэтому они верили, что никакого предела для точности предсказаний не существует. Принцип неопределенности, лежащий в основе квантовой механики, в корне подорвал эту веру.

2. Философские выводы из квантовой механики

Принцип неопределенности, как нетрудно заметить, тесно связан с такой фундаментальной проблемой научного познания, как взаимодействие объекта и субъекта, которая имеет философский характер.

Прежде всего, она ясно показывает, что субъект, т. е. физик, исследующий мир мельчайших частиц материи, частицы. Классическая физика тоже признавала, что приборы наблюдения и измерения оказывают свое возмущающее влияние на изучаемые процессы, но оно было там настолько незначительно, что им можно было пренебречь. Совсем иное положение мы имеем в квантовой механике, ибо приборы и измерительные устройства, используемые для изучения микрообъектов, являются макрообъектами. Поэтому они вносят такие возмущения в движения микрочастиц, что в результате их будущие состояния нельзя определить вполне точно и достоверно. Стремясь точности определить один параметр, получают неточность в измерении другого параметра.

2.1 Главный философский вывод

Важнейший философский вывод из квантовой механики заключается в принципиальной неопределенности результатов измерения и, следовательно, невозможности точного предвидения будущего.

Однако отсюда вовсе не следует, что предсказания в области микромира совершенно невозможны. Речь идея только о том, что воздействия приборов наблюдения и измерения на мельчайшие частицы материи сказываются на их поведении значительно сильнее, чем на поведении макротел. Однако даже в области макромира абсолютно точное предсказание осуществить невозможно. Тем более это касается недоступного нашим чувствам микромира. Неудивительно поэтому, что после возникновения квантовой механики многие заговорили о полной непредсказуемости будущего, о "свободе воли" электрона и подобных ему частиц, о господстве случайности в мире и отсутствии в нем детерминизма.

Соотношение неопределенностей неоднократно являлось предметом философских дискуссий, приводивших некоторых философов к его идеалистическому истолкованию: соотношений неопределенностей, не давая возможности одновременно точно определить координаты и импульса (скорости) частиц, устанавливает границу познаваемости мира с одной стороны, и существования микрообъектов вне пространства и времени - с другой. На самом деле соотношение неопределенностей не ставит какого-либо предела познанию микромира, а только указывает, насколько применимы к нему понятия классической механики.

Соотношение неопределенности Гейзенберга явилось предметом пристального внимания философии, поскольку провозглашаемый принципиальный запрет перекликался с идеями сторонников агностических учений, отрицающих возможность познания окружающего нас мира. Несмотря на то, что подавляющее большинство естествоиспытателей уверено в познаваемости мира, требовался серьезный философский анализ возникшей проблемы. По-видимому, выход состоит в признании неприменимости методов описания макроскопических объектов к объектам микромира: если объект не обладает какими-либо характеристиками, то невозможности их точного экспериментального определения вовсе не означает невозможности изучения объекта (бессмысленность попыток получить экспериментально ответ на вопрос о длине хвоста черта не означает невозможности познания мира в целом). Т.о. соотношение неопределенности является "подсказкой" природы о том, что привычный язык классической кинематики и динамики Ньютона малопригоден для описания процессов с участием объектов микромира.

Заключение

В 1927 году немецкий физик Вернер Гейзенберг сформулировал так называемый принцип неопределенности, указывавший на предел точности наших знаний о координате и скорости частицы и фактически приведший к отказу от понятия траектории.

С точки зрения классической механики, соотношение неопределенностей представляется абсурдом. Чтобы лучше оценить создавшееся положение, нужно иметь в виду, что мы, люди, живем в макромире и в принципе не можем построить наглядную модель, которая была бы адекватна микромиру. Соотношение неопределенностей есть выражение невозможности наблюдать микромир, не нарушая его. Любая попытка дать четкую картину микрофизических процессов должна опираться либо на корпускулярное. Либо волновое толкование. При корпускулярном описании измерение проводится для того, чтобы получить точное значение энергии и величины движения микрочастицы, например, при рассеивании электронов. При экспериментах, направленных на точное определение места, напротив, используется волновое объяснение, в частности, при прохождении электронов через тонкие пластинки или при наблюдении отклонения лучей.

Согласно принципу неопределенности, одновременное измерение двух сопряженных переменных, таких как положение и импульс движущейся частицы, неизбежно приводит к ограничению точности. Чем более точно измерено положение частицы, тем с меньшей точностью можно измерить ее импульс, и наоборот.

Гейзенберг заявил, что пока справедлива квантовая механика, принцип неопределенности не может быть нарушен.

Список использованной литературы

1) Карпенков С. Х. Концепции современного естествознания. - М.: Культура и спорт, ЮНИТИ, 1997. - 520 с.

2) Лавриненко В. Н., Ратников В. П. и др. Концепции современного естествознания. - М.: ЮНИТИ - ДАНА, 2000. - 303 с.

3) Прохоров А. М. Физика. Большой энциклопедический словарь. - 4-е изд. - М.: Большая Российская энциклопедия, 1998. - 944 с.

4) Рузавин Г. И. Концепции современного естествознания. - М.: ЮНИТИ, 2001. - 287 с.

5) Самыгин С. И. Концепции современного естествознания. - Ростов н/Д: "Феникс", 1997. - 448 с.

Размещено на Allbest.ru


Подобные документы

  • Предмет квантовой механики. Описание явлений микромира. Понятие кванта и корпускулярно-волновой дуализм света. Принцип дополнительности Бора. Отличие квантовой механики от классической. Термин "физическая реальность" в методологии физического познания.

    реферат [38,8 K], добавлен 06.09.2015

  • Физика и естествознание. Формирование квантовой механики и квантовой физики, специфика их законов и принципов. Основные понятия "элементарность", "простое-сложное", "деление". Многообразие и единство элементарных частиц, проблема их классификации.

    реферат [533,5 K], добавлен 02.01.2008

  • Особенность квантовой механики, теории элементарных частиц. Значение закона неравномерности развития различных направлений физической науки. Эволюция законов движения от классической механики к теории относительности. Принцип тождества противоположностей.

    реферат [26,5 K], добавлен 27.12.2016

  • Классическая механика как фундамент естественнонаучной теории. Возникновение и развитие классического естествознания. Система Коперника. Галлилео Галлилей. Исаак Ньютон. Формирование основ классической механики. Метод флюксий.

    контрольная работа [99,8 K], добавлен 10.06.2007

  • Основы современной космологии. Открытие Хаббла, модель горячей Вселенной. Квантовая теория гравитации. Православное богословие о творении мира. Детерминизм Лапласа и неопределённость квантовой механики. Особенности соотношения детерминизма и вероятности.

    дипломная работа [97,1 K], добавлен 23.08.2011

  • Концепция детерминизма - одна из фундаментальных онтологических идей, положенных в основу классического естествознания. Сущность небесной механики — раздели астрономии, применяющего законы механики для изучения движения небесных тел. Механика Ньютона.

    реферат [65,3 K], добавлен 26.03.2011

  • Суть законов Кеплера. Основные законы классической механики. Фундаментальные типы взаимодействий в физике. Молекулярная картина процессов испарения и конденсации. Понятие "биосфера", ее функции и характер ее оболочки. Понятие генетики и что она изучает.

    контрольная работа [26,9 K], добавлен 12.02.2009

  • Принципы неопределенности, дополнительности, тождественности в квантовой механике. Модели эволюции Вселенной. Свойства и классификация элементарных частиц. Эволюция звезд. Происхождение, строение Солнечной системы. Развитие представлений о природе света.

    шпаргалка [674,3 K], добавлен 15.01.2009

  • Основные компоненты естествознания как системы естественных наук. Александрийский период развития науки. Основные законы механики Ньютона. Этапы создания учения об электромагнетизме. Квантовая механика. Стехиометрические законы. Явление катализа.

    контрольная работа [39,9 K], добавлен 16.01.2009

  • Идея о существовании атомов, опыты Резерфорда. Создание физических теорий, описывающих поведение и внутреннюю структуру элементарных частиц. Основные положения квантовой механики: частицы и кванты. Ядерная энергия, ее мирное и военное применение.

    реферат [2,6 M], добавлен 20.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.