Современные проблемы клонирования
Раскрытие содержания и изучение истории клонирования как процесса воспроизведения биологических объектов: первые опыты и развитие генной инженерии в СССР. Анализ биологических и этических принципов клонирования людей и животных. Клоны с измененной ДНК.
Рубрика | Биология и естествознание |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 11.11.2012 |
Размер файла | 1,7 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ГОУ ВПО ЧГМА
КУРСОВАЯ РАБОТА
на тему: «Современные проблемы клонирования»
Выполнил:
Банзатов Н.Ж. 209 гр.
Проверил:
Гомбоева А.Ц.
г. Чита 2012
Содержание
1. Актуальность темы
2. Первые опыты по клонированию
3. Клонирования в СССР
4. Принцип клонирования
5. Клонирования животных
6. Клонирования людей
7. Клоны с измененной ДНК
8. Этические аспекты
Заключение
Список литературы
1. Актуальность темы
По поводу клонирования существует огромное количество споров и дискуссий, так даже актуальность этой темы доказывается простым примером - кол-вом существующих фильмов и сериалов про клонирование («Парк Юрского Периода», «Секретные материалы», «Пришельцы», сериалы «Клон*» и т.д.). Также по поводу КЛОНИРОВАНИЯ высказали свои мнения наиболее известные люди нашего времени:
"Мы не должны снимать с людей копии, поскольку нам следует относиться к каждому ребенку как к индивиду, а не как к копии другого человека" Йен Вилмут
"Когда-то общество считало аборт убийством. Несколько десятилетий спустя он стал конституционным правом американки. То же самое и с Долли. Дело не в том, что она -- овца, а в том, что мы ведем себя, как бараны" Раввин Моисей Тендлер
Религиозный университет, Нью-Йорк
"Сейчас уже говорят, что клонированием можно достичь того, что все человечество будет состоять из гениев, равных Толстому и Эйнштейну. Этого не будет и не надо (это был бы кошмар), но к концу следующего столетия (хотите пари?) большинство населения планеты будет состоять из клонированных (никакие указы нынешних правителей и церковных иерархов от этого искушения человечество не избавят)". Владимир Войнович
клонирование люди генный инженерия
2. Первые опыты по клонированию
Возможность клонирования эмбрионов позвоночных впервые была показана в начале 50-х годов в опытах на амфибиях. Американские исследователи Бриггс и Кинг разработали микрохирургический метод пересадки ядер эмбриональных клеток с помощью тонкой стеклянной пипетки в лишенные ядра (энуклеированные) яйцеклетки. Большой вклад в эту область внес английский биолог Гердон. Он первым в опытах с южноафриканскими жабами Xenopus laevis (1962) в качестве донора ядер использовал не зародышевые клетки, а уже вполне специализировавшиеся клетки эпителия кишечника плавающего головастика. Ядра яйцеклеток реципиентов он не удалял хирургическим путем, а разрушал ультрафиолетовыми лучами. В большинстве случаев реконструированные яйцеклетки не развивались, но примерно десятая часть их них образовывала эмбрионы. Появление нескольких взрослых особей в таких условиях могло быть связано с тем, что среди клеток эпителия кишечника развивающегося головастика довольно длительное время присутствуют первичные половые клетки, ядра которых могли быть использованы для пересадки. В последующих работах, как сам автор, так и многие другие исследователи не смогли подтвердить данные этих первых опытов.
Позже Гердон модифицировал эксперимент. Поскольку большинство реконструированных яйцеклеток (с ядром клетки кишечного эпителия) погибают до завершения стадии гаструлы, он попробовал извлечь из них ядра на стадии бластулы и снова пересадить их в новые энуклеированные яйцеклетки, (такая процедура называется "серийной пересадкой" в отличие от "первичной пересадки"). Число зародышей с нормальным развитием после этого увеличивалось, и они развивались до более поздних стадий по сравнению с зародышами, полученными в результате первичной пересадки ядер. Затем Гердон вместе с Ласки (1970) стали культивировать in vitro (вне организма в питательной среде) клетки почки, легкого и кожи взрослых животных и использовать уже эти клетки в качестве доноров ядер. Примерно 25% первично реконструированных яйцеклеток развивались до стадии бластулы. При серийных пересадках они развивались до стадии плавающего головастика. Таким образом, было показано, что клетки трех разных тканей взрослого позвоночного (X. laevis) содержат ядра, которые могут обеспечить развитие, по крайней мере, до стадии головастика.
В свою очередь ДиБерардино и Хофнер использовали для трансплантации ядра неделящихся и полностью дифференцированных клеток крови - эритроцитов лягушки Rana pipiens. После серийной пересадки таких ядер 10% реконструированных яйцеклеток достигали стадии плавающего головастика. Однако даже с помощью многократных серийных пересадок (более 100 клеточных циклов) реконструированные яйцеклетки дальше стадии головастика не развивались.
Таким образом, во многих работах показано, что в случае амфибий донорами ядер могут быть лишь зародыши на ранних стадиях развития. Некоторые авторы называют подобные эксперименты клонированием амфибий, хотя правильнее называть их клонированием эмбрионов амфибий, так как в этом случае мы размножаем бесполым путем не взрослых животных, а зародышей. Опыты с амфибиями показали, что ядра различных типов клеток одного и того же организма генетически идентичны и в процессе клеточной дифференцировки постепенно теряют способность обеспечивать развитие реконструированных яйцеклеток, однако серийные пересадки ядер и культивирование клеток in vitro в какой-то степени увеличивает эту способность.
Успешные опыты с амфибиями заставили ученых задуматься о клонировании эмбрионов млекопитающих, в частности мышей. МакКиннелл в одной из своих работ отмечал, что все необходимые для этого методы уже существуют, и непонятно, почему мышь до сих пор не клонирована. По его мнению, первыми объектами должны были стать именно мелкие животные, такие как мышь или кролик. Однако предсказание Мак Киннелла не сбылось, хотя в конце 70-х годов опыты на мышах действительно начались и протекали весьма драматично.
Работа методически оказалась довольно трудной, прежде всего потому, что объем яйцеклетки у млекопитающих примерно в тысячу раз меньше, чем у амфибий. Однако эти трудности были успешно преодолены. Экспериментаторы научились микрохирургически удалять пронуклеусы; из зигот (оплодотворенных яйцеклеток) мыши и пересаживать в них клеточные ядра ранних эмбрионов. Однако все полученные разными способами зародыши мышей развивались лишь до стадии бластоцисты;
В 1977 году появилось сенсационное сообщение Хоппе и Илменси о том, что они получили семь взрослых самок мышей, пять из которых имели только материнский, а две - отцовский геном. Их успех был связан, но описанию авторов, с тем, что, удаляя один пронуклеус, они удваивали число хромосом другого, обрабатывая яйца специальным веществом, затем выращивали полученные диплоидные гомозиготные (с двумя одинаковыми наборами генов) зародыши in vitro до стадии бластоцисты и пересаживали в матку самки-реципиента для дальнейшего развития.
Казалось, теперь можно будет быстро получать млекопитающих со 100%-ной гомозиготностью; по всем генам. Это особенно важно в селекции, так как для получения сельскохозяйственных животных, в частности, крупного рогатого скота, с закрепленными особо ценными качествами обычными приемами требуются десятки лет работы.
Значительно усовершенствовав методы извлечения ядер и введения их в клетку, Мак Грат и Солтер провели свою серию экспериментов и сообщили, что высокий выход живых мышей они получили, когда в качестве доноров ядер использовали зиготы, но если донорами были ранние эмбрионы, то реконструированные яйцеклетки, как и прежде, развивались только до стадии бластоцисты. Опыты показали, что для нормального развития млекопитающих требуются два набора хромосом - отцовский и материнский. Поэтому ни у одного из известных видов млекопитающих не описан партеногенез.
В 1982 году были пересажены ядра клеток партеногенетических бластоцист мышей в энуклеированные зиготы Некоторые из этих реконструированных яйцеклеток нормально развивались, и якобы были получены четыре взрослых самки. В свете вышесказанного эти результаты весьма маловероятны.
Гибель партеногенетических (гиногенетических) и андрогенетических зародышей у млекопитающих связана с различной активностью в онтогенезе материнского и отцовского геномов. Механизм, регулирующий эти функциональные различия, был назван геномным импринтингом и изучался в ряде работ, где было показано, что для нормального развития млекопитающих требуется наличие мужского генома. Другая статья Илменси и Хоппе имела еще больший резонанс.
Авторы сообщили о пересадке ядер клеток внутренней клеточной массы бластоцисты в энуклеированные зиготы мышей и получении трех взрослых мышей (двух самок и самца), генетически идентичных донорской линии мышей. Введение ядер-доноров и удаление пронуклеусов из зиготы проводили за один прием, затем реконструированные яйцеклетки культивировали in vitro до стадии бластоцисты и пересаживали в матку самок. Из 16-ти пересаженных бластоцист три развились во взрослых животных. В следующей работе (1982) эти же авторы использовали в качестве доноров ядер клетки эмбрионов еще более поздних стадий (7 суток) и будто бы получили трех половозрелых мышей. Однако никто из работающих в том же направлении не смог добиться подобных результатов, и достоверность данных Илменси и Хоппе была вновь поставлена под сомнение.
Мак Грат и Солтер показали, что ядра 8-клеточных зародышей и клеток внутренней клеточной массы бластоцисты не обеспечивают развитие in vitro реконструированных яйцеклеток даже до стадии морулы, которая предшествует стадии бластоцисты. Небольшая часть (5%) ядер 4-клеточных зародышей дает возможность развиваться только до стадии морулы. В то же время 19% реконструированных яйцеклеток, содержащих ядра 2-клеточных зародышей, смогли достичь стадии морулы или бластоцисты. Эти и многие другие данные показывают, что в эмбриогенезе у мышей клеточные ядра рано теряют тотипотентность; что связано, очевидно, с очень ранней активацией генома зародыша - уже на стадии 2-х клеток. У других млекопитающих, в частности, у кроликов, овец и крупного рогатого скота, активация первой группы генов в эмбриогенезе происходит позднее, на 8-16-клеточной стадии. Возможно, поэтому первые значительные успехи в клонировании эмбрионов были достигнуты на других видах млекопитающих, а не на мышах. Тем не менее, работы с мышами, несмотря на их непростую судьбу, значительно расширили наши представления о методологии клонирования млекопитающих.
3. Клонирования в СССР
Специалисты по клеточной биологии академик РАМН Геннадий Сухих и член-корреспондент РАМН Вадим Репин в книге "Медицинская клеточная биология" пишут: "Схема эксперимента выглядела следующим образом. Донорские клетки выделяли из эпителия молочной железы сукотной шестилетней овцы породы Finn Dorset. Клетки эпителия молочной железы выращивали в "бедной" питательной среде (содержащей в 5 раз меньше концентрации всех компонентов). В этих неблагоприятных условиях ядра дифференцированных клеток <…> полностью переходили в неактивное состояние <…>. Этот способ репрограммирования ДНК соматических клеток в дефицитной питательной среде был первым важным открытием шотландских ученых.
С помощью суперовуляции получали десятки неоплодотворенных яйцеклеток овцы породы Scottish Blackface. Из яйцеклеток с помощью микроманипулятора удаляли пронуклеус. Яйцеклетку без ядра и эпителиальную "голодную" клетку присасывали к концу микропипетки. Когда две клетки образовывали плотный контакт, пропускали электрический разряд. Первый электроразряд применялся для слияния двух клеток. Второй электрозаряд был необходим для запуска <…> дробления клетки. Использование электрического разряда для слияния и запуска развития было вторым важным методическим новшеством лаборатории. (Авторы получили патент на метод слияния и клонирования химерных искусственных зародышевых клеток.)".
Однако, как выясняется сейчас, действительно высококлассный эксперимент шотландских ученых был отнюдь не первым. Первой была работа советских исследователей Чайлахяна Л.М, Вепренцева Б.Н., Свиридовой Т.А., Никитина В.А. Результаты их экспериментов были опубликованы в солидном советском академическом журнале "Биофизика" (том ХХХII, вып. 5, 1987). Подробнейшая, на тринадцати страницах, я бы сказал - классическая статья, так и называлась: "Электростимулируемое слияние клеток в клеточной инженерии". "Статья посвящена обзору работ по реконструкции животных и растительных клеток, в которых используется новый физический метод - электростимулируемое слияние. Обсуждается влияние различных факторов среды на эффективность электрослияния. Подробно описываются собственные исследования авторов по реконструкции мышиных зигот сочетанием микрохирургии и электростимулируемого слияния клеток", - говорится в резюме этой статьи. Авторы - сотрудники Института проблем передачи информации АН СССР (Москва), Института биологической физики АН СССР (Пущино) и ВНИИ физиологии, биохимии и питания сельскохозяйственных животных ВАСХНИЛ (Боровск) - скрупулезно приводят методику экспериментов (конструкции микропипеток, которыми извлекали из клеток ядра; конструкции электродов, через которые подавались импульсы тока и т.п.).
Ради справедливости надо подчеркнуть: наши ученые брали клетки для клонирования из ранних эмбрионов, а не от взрослого животного, как шотландцы. Эмбриональные клетки были как бы уже репрограммированы самой природой. Как бы там ни было, но эксперименты советских исследователей в итоге впервые привели к появлению на свет клонированного млекопитающего - мышки. Эту представительницу лабораторной линии мышей-альбиносов CBWA назвали Машкой.
4. Принцип клонирования
Под руководством Яна Вилмута провели успешные эксперименты по генетическому клонированию овцы. Для этого использовали ядра соматических клеток, полученных из ткани молочной железы взрослой овцы, которые вводили в энуклеированную яйцеклетку. Образовавшуюся диплоидную зиготу стимулировали к дроблению электрошоком и трансплантировали в овцу-реципиента. Через 148 дней приемная мама родила живую овечку - Долли.
В качестве донорного генома использовали три типа клеток, предварительно переведенных в культуру тканевых клеток, выращиваемых на искусственной питательной среде. Ооциты (яйцеклетки) извлекали из овец породы Шотландская черномордая через 28-33часа после инъекции им гонадотропного гормона и у них удалили собственное ядро (энуклеация). При температуре 37 градусов по Цельсию ооциты поместили в искусственную питательную среду с добавлением эмбриональной телячьей сыворотки. В состоянии покоя диплоидные доногые клетки переводили путем уменьшения концентрации сыворотки от 10 до 0,5% в течение пяти дней. Эта процедура приводила клетки к выходу из стадии роста клеточного цикла. Слияние донорской клетки с энуклеированным ооцитом и активацию ооцита вызывали электрическим импульсом. Культивирование реконструированных эмбрионов возможно в яйцеводе овцы, перетянутой лигатурой ближе к рогу матки Ю или в искусственной химической среде. Большинство эмбрионов достигало стадии морулы и бластоцисты. После шести дней культивирования эмбрионы трансплантировали в реципиенту мать овцематку, и эмбрионы развивались дальше. Один, два или три эмбриона трансплантировали в овцу-реципиента и доводили до рождения ягнят (успех составлял 1-2%).
Доказательство генетического происхождения ягнят из генома донорных ядер проводили микросателлитным анализом ДНК ягнятовец-донорови реципиентов по четырем полиморфным овечьим маркерам. Этот метод дает возможность точно идентифицировать генетическое происхождение и широко используется в судебно-медицинской практике.
Примерно к 110-му дню беременности в серии экспериментов с трансплантацией эмбрионально делящихся клеток четыре плода были мертвы. У двух наблюдалось ненормальное развитие печени. Эксперименты по трансплантации ядер, культивированию зародышей и пересадке их в организм матери-реципиета технически очень сложны и требуют знания тончайших механизмов биологии развития и высокого профессионального мастерства. Экспериментаторы использовали 236 яйцеклеток, прежде чем удалось получить одну живую, вполне здоровую овечку Долли массой 6,6 кг. У этой овечки нет отца, но зато три матери: овца, давшая свой генетический материал, овца, от которой взяли яйцеклетку, и овца-реципиент, которая вынашивала знаменитого ягненка.
5. Клонирования животных
Американские исследователи Стик и Робл, используя методику МакГрата и Солтера, получили 6 живых кроликов, пересадив ядра 8 клеточных эмбрионов одной породы в лишенные ядра яйцеклетки кроликов другой породы. Фенотип родившихся полностью соответствовал фенотипу донора.
Работа с реконструированными яйцеклетками крупных домашних животных, коров или овец, идет несколько по-другому. Их сначала культивируют не in vitro, a in vivo - в перевязанном яйцеводе овцы - промежуточного (первого) реципиента. Затем их оттуда вымывают и трансплантируют в матку окончательного (второго) реципиента - коровы или овцы соответственно, где их развитие происходит до рождения детеныша. Уиладсин предложил заключать реконструированные яйцеклетки в агаровый цилиндр, который он затем трансплантировал в перевязанный яйцевод овцы. По данным одних авторов реконструированные зародыши лучше развиваются в яйцеклетке, чем в культуральной среде, хотя некоторые исследователи получили неплохие результаты и при культивировании.
Американцы Робл и его сотрудники, используя щадящий метод извлечения ядра без прокалывания мембраны яйцеклетки, пересаживали в зиготы, так называемые кариопласты - мужской и женский про нуклеусы вместе с окружающей их цитоплазмой, а также ядра 2-, 4- или 8-клеточных эбрионов коровы. Сначала зиготы центрифугировали, чтобы освободить про нуклеусы от окружающих их гранул желтка, после чего ядра были хорошо видны под микроскопом, что значительно облегчало их удаление. При помощи манипулятора и заостренной стеклянной микропипетки извлекали один из бластомеров вместе с ядром из ранних зародышей и переносили его в энуклеированную зиготу.
Реконструированные зародыши были заключены в агаровый цилиндр и пересажены в перевязанный яйцевод овцы. Через пять дней культивирования их вымывали, освобождали от агара и исследовали. Реконструктурированные зародыши в этой работе развивались только в тех случаях, когда в зиготы пересаживали пронуклеусы: 17% таких зародышей достигли стадии морулы или бластоцисты. Два зародыша были пересажены второму реципиенту - в матку коровы, и развитие их завершилось рождением живых телят. Если в качестве доноров использовали ядра 2-, 4- или 8-клеточных зародышей, то реконструированные яйцеклетки не развивались даже до стадии морулы.
Позже были и более успешные работы. Уиладсин, в частности. сообщил, что ему удалось получить четырех генетически идентичных бычков холстейнской породы в результате пересадки в реципиентные яйцеклетки ядер бластомеров одного 32-клеточного зародыша. Автор утверждал, что большинство ядер сохраняет тотипотентность на 32-клеточной стадии, а значительная их часть даже на 64-клеточной стадии, обеспечивая нормальное развитие реконструированных яйцеклеток до стадии ранней бластоцисты в яйцеводе овцы. После пересадки в матку коров - окончательных реципиентов, как полагает автор, они могут и дальше нормально развиваться.
Таким образом, клеточные ядра зародышей крупного рогатого скота достаточно долго сохраняют тотипотентность и могут обеспечить полное развитие реконструированных яйцеклеток. Иначе говоря, методические трудности клонирования зародышей крупного рогатого скота практически решены. Но остается основная задача - найти донорские ядра, обладающие тотипотентностью, для клонирования взрослых животных.
Уиладсин еще в 1986 году показал, что и у эмбрионов овец на 16-клеточной стадии развития ядра сохраняют тотипотентность. Реконструированные яйцеклетки, содержащие ядра бластомеров 16-клеточных зародышей, развивались нормально до стадии бластоцисты в перевязанном яйцеводе овцы (в агароом цилиндре), а после освобождения от агара и пересадки в матку овцы - второго реципиента - еще 60 дней. В другом случае донорами служили ядра 8-клеточных зародышей и были получены 3 живых ягненка, фенотип которых соответствовал породе овец - доноров.
В 1989 году Смит и Уилмут трансплантировали ядра клеток 16-клеточного эмбриона и ранней бластоцисты в лишенные ядра неоплодотворенные яйцеклетки овец. В первом случае было получено два живых ягненка, фенотип которых соответствовал породе овец - доноров ядер. Во втором случае один полностью сформировавшийся ягненок погиб во время родов. Его фенотип также соответствовал породе - донору. Поэтому, по мнению авторов, в качестве доноров ядер лучше использовать 16-клеточные эмбрионы или культивируемые in vitro линии эмбриональных клеток, ядра которых обладают тотипотентностью.
Позднее, в 1993-1995 годах, группа исследователей под руководством Уилмута получила клон овец - 5 идентичных животных, донорами ядер которых была культура эмбриональных клеток. Клеточную культуру получали следующим образом: выделяли микрохирургически эмбриональный диск из 9-дневного овечьего эмбриона (бластоцисты) и культивировали клетки in vitro в течение многих пассажей (по крайней мере до 25). Сначала клеточная культура напоминала культуру стволовых недифференцированных эмбриональных клеток, но вскоре, после 2-3-х пассажей, клетки становились уплотненными и морфологически сходными с эпителиальными. Эта линия клеток из 9-дневного зародыша овцы была обозначена как TNT4. Чтобы донорское ядро и реципиентная цитоплазма находились на сходных стадиях клеточного цикла, останавливали деление культивируемых клеток TNT4 на определенной стадии (GO) и ядра этих клеток пересаживали в энуклеированные яйцеклетки (соответственно на стадии метафазы II). Реконструированные эмбрионы заключали в агар и трансплантировали в перевязанные яйцеводы овец. Через 6 дней эмбрионы вымывали из яйцевода первого реципиента и исследовали под микроскопом. Отбирали те, которые достигли стадии морулы или бластоцисты и пересаживали их в матку овцы - окончательного реципиента, где развитие продолжалось до рождения. Родилось 5 ягнят (самок) из них 2 погибли вскоре после рождения, 3-й в возрасте 10 дней, а 2 оставшихся нормально развивались и достигли 8-9-месячного возраста. Фенотипически все ягнята были сходны с породой овец, от которой получали исходную линию клеток TNT4. Это подтвердил и генетический анализ.
Эта работа, особенно в части культуры эмбриональных клеток, - значительное достижение в клонировании млекопитающих, хотя она и не вызвала столь шумного интереса, как статья того же Уилмута с соавторами, опубликованная в начале 1997 года, где сообщалось, что в результате использования донорского ядра клетки молочной железы овцы было получено клональное животное - овца по кличке Долли. Последняя работа методически во многом повторяет предыдущее исследование 1996 года, но в ней ученые использовали не только эмбриональные, но еще и фибробластоподобные клетки (фибробласты - клетки соединительной ткани) плода и клетки молочной железы взрослой овцы. Клетки молочной железы получали от шестилетней овцы породы финн дорcет, находящейся на последнем триместре беременности. Все три типа клеточных культур имели одинаковое число хромосом - 54, как обычно у овец. Эмбриональные клетки использовали в качестве доноров ядер на 7-9-м пассажах культивирования, фибробластоподобные клетки плода - на 4-6-м пассажах и клетки молочной железы - на 3-6-м пассажах. Деление клеток всех трех типов останавливали на стадии GO и ядра клеток пересаживали в энуклеированные ооциты (яйцеклетки) на стадии метафазы II. Большинство реконструированных эмбрионов сначала культивировали в перевязанном яйцеводе овцы, но некоторые и in vitro в химически определенной среде. Коэффициент выхода морул или бластоцист при культивировании in vitro в одной серии опытов был даже вдвое выше, чем при культивировании в яйцеводе. (Поэтому, видимо, нет строки необходимости в промежуточном реципиенте и можно обойтись культивированием in vitro. Однако для полной уверенности в этом нужны дополнительные данные.)
Выход морул или бластоцист в серии опытов с культурой клеток молочной железы был примерно втрое меньше, чем в двух других сериях, когда в качестве доноров ядер использовали культуру фибробластов плода или эмбриональных клеток. Число живых ягнят в сравнении с числом пересаженных в матку окончательного реципиента морул или бластоцист было также в два раза ниже. В серии опытов с клетками молочной железы из 277 реконструированных яйцеклеток был получен только один живой ягненок, что говорит об очень низкой результативности такого рода экспериментов (0,36%). Анализ генетических маркеров всех семи родившихся в трех сериях экспериментов живых детенышей показал, что клетки молочной железы были донорами ядер для одного, фибробласты плода - для двух и эмбриональные клетки - четырех ягнят. Овца по кличке Долли развилась из реконструированной яйцеклетки, донором ядра которой была культивируемая клетка молочной железы овцы породы финн дорсет и фенотипически не отличается от овец этой породы, но сильно отличается от овцы-реципиента. Анализ генетических маркеров подтвердил этот результат.
6. Клонирования людей
Клонирование человека находится еще только в своем младенчестве. В настоящее время, клонированная клетка должна вынашиваться суррогатной матерю в течение обычного девятимесячного периода беременности, чтобы произвести на свет ребенка, который затем растет обычным образом. В этом нет ничего удивительного. Фактически, он не отличается от близнеца брата или же сестры, но который рожден на несколько лет позже вас. Когда образец вашего генетического кода взят, а затем введен в яйцеклетку, то это просто создание близнеца.
Конечно, этот близнец будет иметь совершенно иное воспитание и жизненный опыт, нежели вы, и тем самым он разовьет отличающеюся индивидуальность. Если бы ваш близнец был клонирован и помещен при рождении в китайскую семью, то он, очевидно, когда вырос, разговаривал бы скорее по-китайски, чем по-английски или по-русски, и смог бы управляться с его палочками для еды гораздо лучше вас, поедая рис! Однако, исследование, проведенное на предмет разлученных с рождения близнецов, продемонстрировало, что они все еще сохраняют одинаковую первоначальную индивидуальность, хотя детали могли отличаться. У них одинаковые вкусы в пищи, книгах, цветовых гаммах, и даже партнерах! Это исследование подтверждает научные открытия, о которых будут обсуждены позже, чтобы показать, каким образом индивидуальность и интеллект генетически предрасположены.
Следующим шагом, Этапом №2, будет использование технологии, названной ускоренным процессом роста (УПР), для клонирования людей непосредственно в совершеннолетие. Они сразу станут эквивалентом физического возраста 15-17 лет, когда их физические возможности находятся на своем пике. Эти клоны - всего лишь физические копии. Как компьютерное «железо» или чистая кассета, они не имеют памяти или индивидуальности. Третий Этап потребует технологии, что уже развивается в Японии, которая позволит нам загружать в компьютер человеческую память и индивидуальность.
И тем самым, мы могли бы продолжать существовать в компьютере до бесконечности и связываться с нашей окружающей средой после смерти наших физических тел, особенно если этот компьютер оборудован сенсорами, такими как камеры и микрофоны. Мы могли бы даже разговаривать с нашими друзьями через громкоговорители, узнавать наших старых одноклассников и предаваться воспоминаниям о былых временах. Мы даже могли бы играть с ними в виртуальном мире. Мы даже могли бы пожелать загрузиться временно, или скорее загрузиться в компьютер лишь для достижения знаний, или узнать что-то в виртуальном тренировочном полигоне, чтобы, по возвращению в наше исходное тело после короткого пребывания, мы сохранили дополненный навык или информацию.
Однако, в случае клонирования на Третьем Этапе, вместо загрузки нашей индивидуальности и памяти в компьютер, они передаются непосредственно в молодое тело, которое мы только что клонировали от самих себя. Это лишь вопрос вставки программного обеспечения в «железо», а затем мы просыпаемся в молодом теле со всеми неповрежденными воспоминаниями и индивидуальностью, с готовностью прожить еще один цикл жизни. Этот процесс может повторяться бесконечно, перемещая себя из одного клонированного тела в другое заново клонированное.
7. Клоны с измененной ДНК
Появилось сообщение, что ученым из уже знаменитой своей овцой Долли шотландской фирмы PPL Therapeutics (коммерческого отделения Розлин Института в Эдинбурге) удалось получить успешные клоны овечек с измененной ДНК. Шотландские ученые смогли осуществить клонирование, при котором генетический материал клона был "подправлен" с лучшую сторону.
Все началось с овечки Долли, которая была клонирована в 1996 году учеными из той же шотландской лаборатории, что и сегодняшние овечки. Клетка взрослой овцы сливалась с взятой у другой овцы яйцеклеткой, из которой предварительно было удалено ядро, содержащее наследственную информацию. Цитоплазма яйцеклетки и ядро взрослой клетки соединялись в своеобразное подобие оплодотворенной яйцеклетки. Из нее выращивался эмбрион, который уже имплантировался третьей овце. То есть в случае с Долли был "обойден" половой процесс и связанная с ним роль случая при комбинировании наследственных задатков. Например, у Долли - белая морда финско-дорсетской породы (от генетической матери), хотя она была выношена черномордой шотландской яркой. После этого открытия начались многочисленные случаи "другого" клонирования-копирования. Многие из них, при том же названии, тем не менее, не повторяют эксперимента с Долли.
Есть до сей поры несколько проблем, связанных с Долли:1. Первая, судя по всему, успешно разрешена. Она заключалась в том, что Долли была не единственным клоном, полученным шотландскими учеными. Клонов было несколько десятков. В живых осталась только одна Долли. Но за четыре года, прошедших с ее рождения, судя по всему, ученым удалось настолько отточить технику клонирования, что брак стал минимальным. Судя по сообщениям информационных агентств, в нынешнем эксперименте было имплантировано 80 эмбрионов, из них 14 родилось, три овцы дожили до шестимесячного возраста. Результат намного лучше, чем с Долли.
2. Вторая проблема гораздо серьезней и масштабней, с научной точки зрения. Несмотря на все победные фанфары в случае с Долли, до сих пор неясным остается ее возраст и связанные с ним проблемы. Дело в том, что, возможно, возраст шестилетней матери настолько сильно "запечатлелся" в ее клетках, что при рождении Долли уже была немолодой особой. В случае работы доктора Чикара Кубота из Kogashima Cattle Breeding Development Institute и доктора Джерри Янга из Animal Transgenic Facility университета Коннектикута это были клетки из ушной раковины 17-летнего призового быка, из которых получилось шесть телят. В декабре 1997 года Янг и Кубота взяли образцы клеток и поместили их в питательную среду, причем было остановлено их деление. Затем с клетками была проделана такая же операция, что и с Долли. Но! Пересадка ядра с генетической информацией была осуществлена не сразу, а спустя два месяца в одном случае и через три месяца в другом. Четыре теленка родились в декабре 1998 года, два - в феврале 1999 года. Причем, чем больше клетки "мариновались" в пробирке, тем стремительней было их развитие в чреве матери. Таким образом, ученым удалось показать, что возможен и не смертелен перерыв в "сборе" и "пересаживании" клеток к приемной матери.
Этот эксперимент интересен и тем, что, как уже сейчас стало ясно, биологический возраст бычков из ушной раковины моложе, чем должен был быть и проблема с биологическим возрастом клона разрешена теоретически. Осталось только подобрать ей надежное практическое решение.
Вот таким "поле битвы" научных открытий и идей было до недавнего времени. На этом фоне шотландские ученые сделали еще один, революционный, шаг вперед. Три овцы, которые были рождены в прошлом году и до сих пор живы. Две (Купид и Диана) из них имеют ген, позволяющий им производить молоко с такими же белками, как и у человека. Третья не имеет измененного генома и просто является контрольным экземпляром.
Из 80 эмбрионов выжило только три. Ученые связывают такой отсев не с генетическими модификациями овечек, а с теми же сложностями при клонировании. Вообще-то внедрение "чужеродных" генов в ДНК животных - не редкость. Не редкость - даже внедрение их в половые клетки до оплодотворения. Но это не позволяет нужным признакам сохраниться в ребенке. В противоположность этим работам, шотландским ученым удалось выработать методику внедрения чужеродных генов в клетку овцы до ее пересадки в яйцеклетку овцы-донора и последующего получения точной копии существа. Был внедрен ген, который благополучно прошел множество проверок и теперь добавляет в молоко овец "лечебный" фермент, используемый в современной фармакологии для лечения наследственной эмфиземии - болезни легких. Директор фирмы PPL Therapeutics Алан Колман утверждает что "значение такой методики заключается в том, что мы теперь можем выбирать еще до рождения гены, которые хотим изменить или удалить".
Создание клонов со свойствами, полезными для человека, возможностью выращивания для пересадки человеческих органов внутрь, например свиней. Причем по заданным параметрам и с меньшей вероятностью отторжения.
8. Этические аспекты
Клонирование человека вызывает еще больше возражений.
Во-первых, становление человека как личности, базируется не только на биологической наследственности, оно определяется также семейной, социальной и культурной средой. При клонировании индивида невозможно воссоздать все те условия воспитания и обучения, которые сформировали личность его прототипа (донора ядра).
Во-вторых, при бесполом размножении изначально жесткая запрограммированность генотипа предопределяет меньшее разнообразие взаимодействий развивающегося организма с изменяющимися условиями среды (по сравнению с половым размножением, когда в формировании индивида участвуют два генома, сложным и непредсказуемым образом взаимодействующие между собой и с окружающей средой).
В третьих, практически все религиозные учения настаивают, что появление человека на свет-в "руках" высших сил, что зачатие и рождение должно происходить естественным путем. Подводя итоги, следует признать, что говорить о клонировании человека можно лишь сугубо теоретически. В сущности, речь идет даже не о клонировании, а о получении копии отдельного индивида, поскольку термин "клонирование" предполагает получение некоего множества особей. Но слово уже прижилось, поэтому имеет смысл пользоваться им по-прежнему.
Очевидно, что сегодня вероятность отрицательных последствий этой процедуры значительно перевешивает ее выгоды, поэтому, по моему глубокому убеждению, работы по клонированию человека, как в настоящее время, так и в ближайшем будущем проводить нецелесообразно.
Возможно, через какое-то время, когда будут усовершенствованы все этапы этого сложного биотехнологического метода, ученые, социологи и другие заинтересованные лица смогут вернуться к обсуждению целесообразности клонирования человека. Однако это время, думаю, наступит не скоро, и в любом случае решение вопроса о клонировании того или иного человека будет регламентироваться строгими рамками и правилами, касаясь, возможно, только некоторых медицинских проблем, скажем непреодолимого другими методами бесплодия.
Новые технологии, без сомнения, приносят пользу человечеству, и их необходимо всячески поощрять. Запреты нужны в тех крайних случаях, когда явно просматривается вред или ущерб для здоровья и благополучия людей. Пока клонирование человека можно отнести к этому разряду. Нравственная сторона проблемы, тем не менее, уже стоит в полный рост. Безудержно оптимистическую позицию, как мне представляется, занимают только люди, плохо знающие вопрос. Тем, кто знает его, ясно: переносить еще не решенную методически научную разработку на человека безнравственно. Федерация научных обществ экспериментальных биологов США - а это более 52 тыс. членов - в октябре 1997 года объявила пятилетний мораторий на эксперименты по клонированию человека. Ведь они подразумевают участие множества конкретных людей, которые захотят дать свои клетки, и суррогатных матерей, которые должны будут выносить плод. А если так велико количество повреждений эмбрионов и мертво рождений, если неясен вообще конечный результат, этично ли даже говорить о переносе эксперимента на живых людей? Более того, найдутся безнравственные люди, которые под маркой помощи бесплодным парам, к примеру, начнут выманивать большие деньги, что скомпрометирует саму идею, научный поиск.
Возможно, когда проблема будет полностью решена методически, человечество признает клонирование как метод помощи бесплодным парам, стремящимся иметь родного им ребенка. Хотя говорить, скорее, надо будет не о ребенке как таковом, а об однояйцовом близнеце отца или матери, каким будет клонированный ребенок в биологическом смысле. Но тогда тем более потребуется заранее решить этические и юридические вопросы, как это было для трансплантации органов во многих странах мира. Нормы биоэтики выдвигаются сейчас на первый план. Те нравственные заповеди, которыми человечество пользуется века, к сожалению, не предусматривают новых закономерностей и возможностей, какие вносит в жизнь наука. Поэтому людям и необходимо обсуждать и принимать новые законы общежития, учитывающие новые реальности.
Во всем мире ученые спорят о целесообразности клонирования. А что думают по этому поводу обычные граждане? Среди них был проведен опрос, в котором приняли участие 434 человека и вот что выяснилось. Оказывается, около 40 процентов опрошенных, т. е. 173 участника, считают клонирование прорывом в медицине. Чуть больше 27% явно колеблются и отвечают уклончиво, мо, поживем-увидим. А вот 94 человека (21,66%) просто в ужасе, говорят, что это будет просто конец света! Около 7% (30 человек) остались безразличны, по их мнению ничего от этого самого клонирования не изменится на свете. И, наконец, 19 человек (4,38%) думают, что если человека можно будет клонировать, то наступит не больше, не меньше, а «Золотой век» человечества.
Заключение
Итак, клонирование - это хорошо или плохо? Завершая работу над рефератом невозможно прийти к одному выводу. У каждого человека свое мнение на этот счет.
Ученым необходимо, чтобы наука развивалась дальше. Они будут ставить свои опыты даже несмотря на запреты.
Медики выступают за терапевтическое клонирование - ведь это поможет оказать реальную помощь человеку и спасти ему жизнь.
Представители почти всех конфессий против клонирования вообще, т.к. они утверждают, что человек не может творить подобно Богу.
Общественное мнение направлено в основном тоже против бездумного клонирования всего и вся.
Политики многих стран издали моратории и законопроекты, запрещающие деятельность по клонированию, по крайней мере, в отношении человека.
Я считаю, что наука, конечно, должна развиваться, но биоэтические принципы должны быть обязательно соблюдены. Все достижения науки должны быть использованы во благо человека.
Список литературы
1. Берд К. Начало эпохи клонирования. // КОМПЬЮТЕРРА, 28.01.2001.
2. Вир С. Клонирование человека: Аргументы в защиту. - М.: Медицина, 2002.
3. Висенс А. Природа сама решила поставить запрет на клонировании. // Nature, vol 407, p 318.
4. Дзюбан Ю. Сделайте копию! // КОМПЬЮТЕРРА, 01.02.2003.
5. Смирнов Ю. Дорога к бессмертию. - Ярославль: Наука, 2001.
Размещено на Allbest.ru
Подобные документы
Достижения генной инженерии. Понятие и сущность клонирования. Клонирование животных. Репродуктивное и терапевтическое клонирование. Проблемы клонирования человека: этическая (религиозная), правовая, моральная. Возможные последствия клонирования человека.
доклад [28,1 K], добавлен 21.01.2008История развития и первые шаги к клонированию животных. Метод клонирования известной овечки Долли. Типы клонирования и их характеристика. Процесс, причины и проблемы клонирования растений, животных и человека. Причины запрета клонирования человека.
реферат [38,8 K], добавлен 09.06.2010Понятие и история клонирования, его биологическая сущность. Исторический обзор начала экспериментов по проведению клонирования. Несовершенства технологии клонирования. Громадные потенциальные преимущества клонирования и возможные негативные последствия.
реферат [27,0 K], добавлен 17.02.2010Сущность и технология процесса клонирования. Естественное клонирование (в природе) у сложных организмов. Монозиготные близнецы как естественные клоны у человека. История клонирования овцы по имени Долли. Проблемы и трудности клонирования человека.
презентация [17,9 M], добавлен 18.05.2015Понятие и задачи генной инженерии и молекулярного клонирования. Характеристика векторов на основе плазмид, бактериофагов и космид. Биотехнологические манипуляции с кишечной палочкой, этапы ее трансформации. Применение трансформированных микроорганизмов.
реферат [1,5 M], добавлен 20.12.2013Место генетики среди биологических наук. Генетика и этика – проблемы генной инженерии и клонирования высших организмов и человека. Наследственная система или геном клетки. Совокупность наследственных структур. Открытие и расшифровка двойной спирали ДНК.
реферат [31,7 K], добавлен 31.10.2008История клонирования, эксперименты по клонированию эмбрионов млекопитающих. Первое клонированное животное – овечка Долли. Научные разработки шотландского эмбриолога Яна Уилмута. Идея клонирования человека. Процедура клонирования доктора Вильмута.
презентация [365,8 K], добавлен 15.05.2012Термин "клон", его происхождение. Тотипотентные свойства клетки - способности реализовывать всю генетическую информацию, заложенную в ядре. Отличия клеток растений от клеток животных. Первые попытки клонирования. Процесс клонирования эмбрионов амфибий.
статья [13,4 K], добавлен 04.05.2009Основы и техника клонирования ДНК. Этапы генной инженерии бактерий. Развитие генетической инженерии растений. Генетическая трансформация и улучшение растений с помощью агробактерий, источники генов. Безопасность генетически модифицированных растений.
реферат [26,3 K], добавлен 11.11.2010Объекты, полученные в результате клонирования. Метод "переноса ядра" как наиболее успешный из методов клонирования высших животных. Получение стволовых клеток, генетически совместимых с донорским организмом. Репродуктивное клонирование человека.
презентация [657,4 K], добавлен 21.04.2013