Планетные системы. Генетическая интерпретация биологической эволюции

Анализ космогонических гипотез происхождения Солнечной системы, сменявших одна другую на протяжении двух последних столетий. Современная теория эволюции, типы механизмов естественного отбора. Последствия нерационального использования природных ресурсов.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 28.09.2012
Размер файла 29,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Содержание:

Задание № 1. Планетные системы

Задание № 2. Генетическая интерпретация биологической эволюции

Задание № 3. Пример последствий нерационального использования природных ресурсов

Список литературы

Задание № 1. Планетные системы

Тысячелетиями пытливое человечество обращало свои взгляды на окружающий мир, стремилось постигнуть его, вырваться за пределы микромира в макромир.

Величественная картина небесного купола, усеянного мириадами звезд, с незапамятных звезд волновала ум и воображение ученых, поэтов, каждого живущего на Земле.

Что есть Земля, Луна, Солнце, звезды? Где начало и где конец Вселенной, как долго она существует, из чего состоит и где границы ее познания?

Изучение Вселенной, даже только известной нам её части является грандиозной задачей. Чтобы получить те сведения, которыми располагают современные ученые, понадобились труды множества поколений.

Вот уже два века проблема происхождения Солнечной системы волнует выдающихся мыслителей нашей планеты. Этой проблемой занимались, начиная от философа Канта и математика Лапласа, плеяда астрономов и физиков XIX и XX столетий.

И все же мы до сих пор довольно далеки от решения этой проблемы. Но за последние три десятилетия прояснился вопрос о путях эволюции звезд. И хотя детали рождения звезды из газово-пылевой туманности еще далеко не ясны, мы теперь четко представляем, что с ней происходит на протяжении миллиардов лет дальнейшей эволюции.

Переходя к изложению различных космогонических гипотез, сменявших одна другую на протяжении двух последних столетий, начнем с гипотезы великого немецкого философа Канта и теории, которую спустя несколько десятилетий независимо предложил французский математик Лаплас. Предпосылки к созданию этих теорий выдержали испытание временем.

Точки зрения Канта и Лапласа в ряде важных вопросов резко отличались. Кант исходил из эволюционного развития холодной пылевой туманности, в ходе которого сперва возникло центральное массивное тело - будущее Солнце, а потом планеты, в то время как Лаплас считал первоначальную туманность газовой и очень горячей с высокой скоростью вращения. Сжимаясь под действием силы всемирного тяготения, туманность, вследствие закона сохранения момента количества движения, вращалась все быстрее и быстрее. Из-за больших центробежных сил от него последовательно отделялись кольца. Потом они конденсировались, образуя планеты.

Таким образом, согласно гипотезе Лапласа, планеты образовались раньше Солнца. Однако, несмотря на различия, общей важной особенностью является представление, что Солнечная система возникла в результате закономерного развития туманности. Поэтому и принято называть эту концепцию “гипотезой Канта-Лапласа”.

Однако эта теория сталкивается с трудностью. Наша Солнечная система, состоящая из девяти планет разных размеров и масс, обладает особенностью: необычное распределение момента количества движения между центральным телом - Солнцем и планетами.

Момент количества движения есть одна из важнейших характеристик всякой изолированной от внешнего мира механической системы. Именно как такую систему можно рассмотреть Солнце и окружающие его планеты. Момент количества движения можно определить как “запас вращения” системы. Это вращение складывается из орбитального движения планет и вращения вокруг осей Солнца и планет.

Львиная доля момента количества движения Солнечной системы сосредоточена в орбитальном движении планет-гигантов Юпитера и Сатурна.

С точки зрения гипотезы Лапласа, это совершенно непонятно. В эпоху, когда от первоначальной, быстро вращающейся туманности отделилось кольцо, слои туманности, из которых потом сконденсировалось Солнце, имели (на единицу массы) примерно такой же момент, как вещество отделившегося кольца (так как угловые скорости кольца и оставшихся частей были примерно одинаковы). Так как масса последнего была значительно меньше основной туманности (“протосолнца”), то полный момент количества движения кольца должен быть много меньше, чем у “протосолнца”. В гипотезе Лапласа отсутствует какой-либо механизм передачи момента от “протосолнца” к кольцу. Поэтому в течение всей дальнейшей эволюции момент количества движения “протосолнца”, а затем и Солнца должен быть много больше, чем у колец и образовавшихся из них планет. Но этот вывод противоречит с фактическим распределением количества движения между Солнцем и планетами.

Для гипотезы Лапласа эта трудность оказалась непреодолимой.

Остановимся на гипотезе Джинса, получившей распространение в первой трети текущего столетия. Она полностью противоположна гипотезе Канта-Лапласа. Если последняя рисует образование планетарных систем как единственный закономерный процесс эволюции от простого к сложному, то в гипотезе Джинса образование таких систем есть дело случая.

Исходная материя, из которой потом образовались планеты, была выброшена из Солнца (которое к тому времени было уже достаточно “старым” и похожим на нынешнее) при случайном прохождении вблизи него некоторой звезды. Это прохождение был настолько близким, что его можно рассматривать практически как столкновение. Благодаря приливным силам со стороны налетевшей на Солнце звезды, из поверхностных слоев Солнца выброшена струя газа. Эта струя останется в сфере притяжения Солнца и после того, как звезда уйдет от Солнца. Потом струя сконденсируется и даст начало планетам.

Если бы гипотеза Джинса была правильной, число планетарных систем, образовавшихся за десять миллиардов лет ее эволюции, можно было пересчитать по пальцам. Но планетарных систем фактически много, следовательно, эта гипотеза несостоятельна. И ниоткуда не следует, что выброшенная из Солнца струя горячего газа может сконденсироваться в планеты. Таким образом, космологическая гипотеза Джинса оказалась несостоятельной.

Выдающийся советский ученый О.Ю.Шмидт в 1944 году предложил свою теорию происхождения Солнечной системы: наша планета образовалась из вещества, захваченного из газово-пылевой туманности, через которую некогда проходило Солнце, уже тогда имевшее почти “современный” вид. При этом никаких трудностей с вращением момента планет не возникало, так как первоначально момент вещества облака может быть сколь угодно большим. Начиная с 1961 года, эту гипотезу развивал английский космогонист Литтлтон, который внес в нее существенные улучшения. По обеим гипотезам “почти современное” Солнце сталкивается с более или менее “рыхлым” космическим объектом, захватывая части его вещества. Тем самым образование планет связывается с процессом звездообразования.

Звезды во Вселенной объединены в гигантские Звездные системы, называемые галактиками. Звездная система, в составе которой, как рядовая звезда находится наше Солнце, называется Галактикой.

Галактика представляет собой гигантские скопления звезд и их систем, имеющие свой центр (ядро) и различную, не только сферическую, но часто спиралевидную, эллиптическую, сплюснутую или вообще неправильную форму. Галактик - миллиарды, и в каждой из них насчитываются миллиарды звезд.

Что касается нашей солнечной системы, она состоит из девяти планет: Меркурия, Венеры, Земли, Марса, Юпитера, Сатурна, Урана, Нептуна, Плутона. Все планеты движутся в одном направлении, в единой плоскости (за исключением Плутона) по почти круговым орбитам.

Меркурий -- четвертая по блеску планета: в максимуме блеска она почти так же ярка, как Сириус, ярче нее бывают только Венера, Марс и Юпитер. Тем не менее, Меркурий - очень трудный объект для наблюдений из-за малости его орбиты и, следовательно, близости к Солнцу. Меркурий медленно вращается вокруг своей оси, будучи всегда обращенным, к Солнцу одной стороной. Таким образом, период обращения вокруг Солнца (меркурианский год) составляет около 88 земных суток, а период вращения вокруг своей оси -- 58 суток.

Венера -- ближайшая к Земле планета. Планета окутана густым слоем белых облаков, скрывающих ее поверхность. Наличие в атмосфере Венеры густых облаков, вероятно, состоящих из ледяных кристаллов, объясняет высокую отражательную способность планеты - 60 % падающего солнечного света отражается от нее. Современные ученые установили, что венерианская атмосфера на 96 % состоит из углекислого газа СОІ. Рельеф Венеры сильно сглажен временем: благодаря атмосферной эрозии выветрены старые метеоритные кратеры, следы которых все же видны на поверхности планеты. 

Наша планета Земля - небольшое астрономическое тело, имеющее довольно толстую атмосферу, прикрывающую тонкий неоднородный слой воды, и даже титулованный спутник Луну диаметром примерно в ј ее диаметра.

Когда в 1965 году американская станция Маринер-4 с малого расстояния впервые получила снимки Марса, эти фотографии вызвали сенсацию. Астрономы были готовы увидеть что угодно, только не лунный ландшафт. Один известный астроном из Пулковской обсерватории даже звонил в редакции газет, чтобы проверить, не спутали ли газетчики Луну с Марсом. Увы, типичный лунный пейзаж принадлежал знаменитой Красной планете. Именно на Марс возлагали особые надежды те, кто хотел найти жизнь в космосе. Но эти чаяния не оправдались -- Марс оказался безжизненным.

 Юпитер, крупнейшая из планет Солнечной системы, по своей природе есть нечто среднее между карликовой звездой и планетами земного типа. В телескоп Юпитер выглядит как золотой диск, пересеченный темными и светлыми полосами, идущими примерно параллельно. В глаза бросаются красноватые или коричневые оттенки цветов, в то же время можно заметить неправильной формы облакообразные пятна, нарушающие однородность полос.

Среди бесчисленного множества небесных объектов одним из самых красивых является планета Сатурн. Если смотреть вечером, в сумерки, когда небо еще светлое, то золотисто-желтый шар планеты и ее неправдоподобно прекрасные кольца, мерцающие в яркой синеве, кажутся скорее редким произведение искусства, чем явление природы. Кольца состоят из отдельных обломков, каждый из которых движется по своей собственной орбите вокруг Сатурна согласно закону всемирного тяготения Ньютона.

Уран и Нептун - две планеты, похожие друг на друга как близнецы, являются гигантскими планетами, движущимися в самых отдаленных областях солнечной системы. Разглядеть какие-либо детали на поверхности Нептуна очень трудно, а на Уране видны лишь слабо выраженные пояса, - эти планеты, конечно, окутаны атмосферами, похожими на атмосферы Юпитера и Сатурна. Поглощение желтого и красного света парами метана для Урана и Нептуна настолько велико, что планеты при прямых наблюдениях имеют зеленоватый цвет; зеленоватая окраска Нептуна, интенсивнее, чем Урана. Все эти планеты быстро вращаются, имеют огромной толщиной атмосферы, состоящие из метана и, вероятно, аммиака, и содержат в своем составе легкие газы - гелий, водород. Несмотря на грандиозность размеров, а может быть, именно вследствие этого, планеты-гиганты не предоставляют никаких благоприятных возможностей в качестве обители для существования жизни в каких-либо известных нам проявлениях.

Самая далекая от Солнца из всех открытых до сих пор планет совершенно не похожа на другие планеты, находящиеся во внешних областях солнечной системы. При зарождении и эволюции планеты в ее недрах происходили менее активные процессы, нежели на других планетах Солнечной системы. На Плутоне не обнаружено видимых признаков атмосферы. Маловероятно, что неон может там концентрироваться хотя бы в малых количествах, так как столь малая планета не способна удержать столь легкий газ. Нахождение на Плутоне живых организмов равно нулю, так как с точки зрения современной науки ни один организм Земли не смог бы выжить в таких суровых условиях.

Задание № 2. Генетическая интерпретация биологической эволюции

Издавна люди пытались найти объяснение многообразию и причудливости мира. На протяжении тысячелетий господствовало элементарное объяснение, которое состояло в том, что будто бы все виды организмов были созданы однажды в их нынешних формах и больше никогда не изменялись. Так сказано в Библии, таких же взглядов придерживался Аристотель. Служители христианской церкви до сих пор верят, что все многообразие организмов, населяющих Землю, явилось результатом акта божественного творения мира за шесть дней, а любое другое объяснение они воспринимают как оскорбление своей религиозной веры.

Эта концепция, признающая неизменность видов живых существ и рассматривающая многообразие живого мира как результат его творения Богом, получила название креационизма (от лат creation - создание, творение).

Однако человек устроен так, что он осваивает мир, не полагаясь только на религиозную веру. Он пытается понять его также и с помощью разума, опираясь на знания, полученные путем размышлений, логических доказательств.

Используя рациональные методы, ряд ученых, например, Ж.Л.Л. Бюффон во Франции, Э.Дарвин (дед Ч. Дарвина) в Англии, И.В. Гете в Германии, М.В. Ломоносов в России пришли к выводу, что организмы, населяющие Землю, не неизменны, а претерпевают эволюцию. Этот вывод позволили им сделать обнаруженные в разных местах Земли ископаемые останки странных животных и растений, совершенно непохожих на современных.

Концепция креационизма постепенно стала сдавать свои позиции под натиском эволюционных идей.

Интенсивное проникновение эволюционной парадигмы в биологию началось в конце XVIII века. Благодаря работам выдающегося французского биолога Ж.Б. Ламарка. Он известен не только тем, что предложил впервые термин «биология». Ламарк объяснил изменчивость видов двумя факторами: влиянием внешней среды (питание, климат, упражнение органов) и наследственности.

Учение о биологической эволюции есть наука о причинах, движущих силах и закономерностях изменения и развития живых организмов. Эволюционное учение является теоретической основой современной биологии, обобщает результаты, полученные частными биологическими науками.

В природе нельзя обнаружить два совершенно одинаковых, тождественных организма. Ч. Дарвин различает два типа изменчивости. К первому он относит ту, которая передается по наследству («индивидуальная» или «неопределенная» изменчивость»). Второй тип он характеризует как «определенную» или «групповую» изменчивость, поскольку ей подвержены те группы организмов, которые оказываются под воздействием определенного фактора внешней среды. В дальнейшем «неопределенные» изменения обычно стали называть мутациями, а «определенные» - модификациями.

С точки зрения теории эволюции, все многообразие живой природы является результатом действия трех взаимосвязанных факторов: наследственности, изменчивости и естественного отбора.

Эти выводы теории эволюции, или ее основные принципы, базируются на следующих трех наблюдениях.

В любой популяции, виде животных наблюдается изменчивость составляющих ее особей. В этом можно убедиться, сравнивая, например, одного человека с другим.

Некоторые из этих изменений имеют генетическую основу, т.е. унаследованы от родительских особей, получены уже при рождении, а другие являются результатом приспособления к окружающей среде, приобретены в течение жизни.

Рождается, как правило, значительно большее число организмов, чем доживает до размножения; многие гибнут на стадии семян, зародышей, птенцов, личинок. Причем выживают те организмы, которые обладают сочетанием генов, повышающих вероятность их выживания и размножения, а также вырабатывают в течение своей жизни некоторые признаки, способствующие выживанию.

Отсюда вытекает главный вывод, что весь ход эволюции видов ведет к тому, что генетические и иные признаки, обеспечивающие выживание, встречаются от поколения к поколению все чаще в данном виде (популяции), определяя главное направление его (ее) развития.

Популяция - это длительно существующие группы особей, устойчиво сохраняющиеся на протяжении жизни многих поколений. Именно здесь активно происходят обмен генетическим материалом, процессы естественного отбора и другие изменения. Именно здесь интенсивно осуществляется случайное, свободное скрещивание.

Появление элементарных эволюционных изменений в популяции, т.е. ее новых устойчивых признаков, передающихся по наследству через несколько поколений, зависит от следующих эволюционных факторов: перестройки носителей наследственности - генов, популяционных волн, изоляции и естественного отбора.

Перестройка генов, или мутационный процесс, является основой разнообразия особей в популяциях. Но этот процесс все же не является решающим фактором эволюции. Будучи основан на случайности, он не определяет ее направления.

То же самое можно сказать и о популяционных волнах, т.е. резких колебаниях численности особей из-за различных природных колебаний: урожай, засуха, похолодание и т.п. Этот фактор также не определяет направления эволюции. Однако он может резко менять число редко встречающихся мутаций, создавая те или иные новые предпосылки для эволюционных изменений.

Изоляция, или возникновение барьеров, препятствий, уменьшающих возможности обмена генетической информацией с другими группами особей данного вида, выступает как фактор, закрепляющий начальную стадию дифференциации генофонда обособившейся группы. Но и изоляция не задает направления эволюционному процессу, хотя и выполняет роль его мощного усилителя.

Естественный отбор является основным фактором, направляющим эволюционные изменения. Именно он определяет магистральную линию исторического развития живого, формирует у живых организмов оптимальные способности к выживанию и самовоспроизведению. Результаты естественного отбора проявляются в ходе смены многих поколений. Объектом отбора являются отдельные виды живого. Особь, прошедшая отбор, тем самым вносит свой вклад в генофонд популяции. Отбору подвергаются все признаки, свойства живого. Он действует на всех стадиях развития особи и имеет четкую направленность - повышение способности к выживанию, к оставлению потомства.

Современная теория эволюции раскрывает также конкретные типы механизмов естественного отбора:

- при стабилизирующем отборе устраняются все заметные отклонения от некоторой средней нормы, вследствие чего не происходит возникновения новых видов. Такой отбор играет незначительную роль в эволюции, поскольку сохраняет уже устоявшиеся формы живых организмов.

- ведущей (движущей) формой отбора является такая, которая подхватывает мельчайшие изменения, способствующие прогрессивным преобразованиям живых систем и возникновению новых, более совершенных видов.

- при дезруптивном отборе, который обычно происходит при резком изменении условий существования организмов, многочисленная группа особей среднего типа попадает в неблагоприятные условия и погибает.

- более сложный характер имеет балансированный отбор, когда речь идет о существовании и смене адаптивных, или приспособительных, форм.

- при отборе с повышенной изменчивостью преимущество в отборе получают те популяции, которые отличаются наибольшим разнообразием по тем или иным признакам.

Учитывая все сказанное, можно сформулировать главный вывод: весь ход эволюции видов ведет к тому, что генетические и иные признаки, обеспечивающие выживание, встречаются от поколения к поколению в данной популяции все чаще, определяя направление развития вида.

Генетика - это биологическая наука о наследственности и изменчивости организмов и методах управления ими. Она является научной основой для разработки практических методов селекции, т.е. создания новых пород животных, видов растений, культур микроорганизмов с нужными человеку признаками.

Центральным понятием генетики является «ген». Это элементарная единица наследственности, характеризующаяся рядом признаков. По своему уровню ген - внутриклеточная молекулярная структура. По химическому составу - это нуклеиновые кислоты, в составе которых основную роль играют азот и фосфор. Гены располагаются, как правило, в ядрах клеток. Они имеются в каждой клетке, и поэтому их общее количество в крупных организмах может достигать многих миллиардов. По своему назначению гены - своего рода «мозговой центр» клеток и, следовательно, всего организма.

В основу генетики легли закономерности наследственности, обнаруженные австрийским биологом Г. Менделем при проведении им серии опытов по скрещиванию различных сортов гороха. Открытия Г. Менделя были по достоинству оценены только после его смерти, а в России - значительно позже, чем в других странах.

В области медицины генетика способствует, в частности, разработке мероприятий по защите человека от вредного мутагенного воздействия окружающей среды.

Крупнейшее открытие современной генетики связано с установлением способности генов к перестройке, изменению. Эта способность называется мутированием (от лат. mutatio - мутация, изменение). Мутации для организма бывают полезными, вредными или же нейтральными. Одним из результатов мутаций может быть появление организма нового вида - мутанта.

Причины мутаций (изменений генной информации) до конца не выяснены. Однако установлены основные факторы, вызывающие мутации. Это так называемые мутагены, рождающие изменения. Известно, например, что мутации могут вызываться некоторыми общими условиями, в которых находится организм: его питанием, температурным режимом и т.д. Вместе с тем они зависят и от некоторых экстремальных факторов, таких, как действие отравляющих веществ, радиоактивных элементов, в результате которых количество мутаций увеличивается в сотни раз, причем возрастает оно пропорционально дозе воздействия.

Одним из наиболее опасных видов мутагенов являются вирусы (от лат. virus - яд). Вирусы - мельчайшие из живых существ. Их можно рассмотреть только в электронный микроскоп. Они не имеют клеточного строения, не способны сами синтезировать белок, поэтому получают необходимые для их жизнедеятельности вещества, проникая в живую клетку и используя чужие органические вещества и энергию. У человека вирусы вызывают множество заболеваний, включая грипп и СПИД.

Успехи современной генетики, ее глубокое проникновение в тайны механизма наследственности явились еще одним свидетельством универсального единства живой природы. Достижения генетиков открыли дорогу для познания сущности жизни, новых способов изменения ее сложившихся форм.

Задание № 3. Пример последствий нерационального использования природных ресурсов

История совместного существования человека и природы представляет собой единство двух тенденций. Во-первых, с развитием общества и его производительных сил постоянно и стремительно расширяется господство человека над природой. Во-вторых, постоянно углубляются противоречия, дисгармония между человеком и природой.

Природа, несмотря на все бесчисленное многообразие своих составных частей, есть единое целое. Именно поэтому воздействие человека на отдельные части внешне покорной и мирной природы одновременно оказывает влияние, причем независимо от воли людей, и на другие ее составляющие. Результаты ответной реакции часто бывают непредсказуемы, они плохо поддаются прогнозированию. Человек распахивает землю, помогая росту полезных ему растений, но из-за ошибок в земледелии смывается плодородный слой. Вырубка лесов под сельхозугодья лишает почву достаточного количества влаги, и в результате поля вскоре делаются бесплодными. Уничтожение хищников снижает сопротивляемость травоядных и ухудшает их генофонд.

Термин «экология», впервые употребленный немецким биологом Э.Геккелем в 1866 году, обозначает науку о взаимоотношениях живых организмов с окружающей средой. Ученый полагал, что новая наука будет заниматься только взаимоотношениями животных и растений со средой их обитания. Однако говоря сегодня о проблемах экологии, мы фактически имеем в виду социальную экологию - науку, изучающую проблемы взаимодействия общества и окружающей среды.

Сегодня экологическую ситуацию в мире можно охарактеризовать как близкую к критической. Первая Конференция ООН по окружающей среде в 1972 году официально констатировала наличие на Земле глобального экологического кризиса всей биосферы. Сегодня налицо уже не локальные (региональные), а глобальные (всемирные) экологические проблемы: уничтожены и продолжают уничтожаться тысячи видов растений и животных; в значительной мере истреблен лесной покров; стремительно сокращается имеющийся запас полезных ископаемых; мировой океан не только истощается в результате уничтожения живых организмов, но и перестает быть регулятором природных процессов; атмосфера во многих местах загрязнена до предельно допустимых норм, чистый воздух становится дефицитом; на Земле практически нет ни одного квадратного метра поверхности, где бы не находилось искусственно созданных человеком элементов.

С началом космических полетов проблемы экологии переместились и в открытое космическое пространство. Неутилизированные отходы от космической деятельности человека накапливаются в космосе, что также становится все более острой проблемой. Даже на Луне американские астронавты обнаружили многочисленные обломки и остатки от искусственных спутников Земли, посланных туда в свое время человечеством. Можно уже сегодня говорить о проблеме космической экологии. Не решен вопрос о влиянии космических полетов на появление озоновых дыр в атмосфере Земли.

Возникла еще одна неведомая ранее проблема - экология и здоровье человека. Загрязнение атмосферы, гидросферы и почвы привели к росту и изменению структуры человеческих заболеваний. Появляются новые болезни, принесенные цивилизацией: аллергические, лучевые, токсические. Происходят генетические изменения в организме. В связи с крайне неблагоприятной экологической ситуацией в крупных промышленных городах во много раз увеличилось число заболеваний верхних дыхательных путей. Сверхвысокий ритм жизни и информационные перегрузки привели к тому, что количество людей с сердечно-сосудистыми, нервно-психическими, онкологическими заболеваниями с каждым годом заметно возрастает.

Используя ресурсы, люди нарушают экологическое равновесие в природе. Такие виды деятельности человека, как туризм, добыча полезных ископаемых и строительство дорог, должны быть тщательно спланированы. Проектировщики обязаны проводить специальные исследования, чтобы проанализировать возможные последствия данного проекта. Если выяснится, что работы нанесут существенный ущерб окружающей среде, проект должен быть изменен.

Становится совершенно очевидной пагубность потребительского отношения человека к природе лишь как к объекту получения определенных богатств и благ.

Стремительно увеличивается число видов растений и животных, заносимых в Красную книгу. Совсем не зря существует эта книга, которую ведут зоологи и ботаники. И делается это не только из любви к природе, ибо под охрану принимаются не одни только полезные виды, а все без исключения. Уменьшение разнообразия - это уменьшение устойчивости, это в конечном счете деградация биосферы.

Пробелы в общем уровне культуры, игнорирование поколениями людей закономерностей и особенностей живого мира, к сожалению, печальная реальность и сегодняшнего дня. Горьким свидетельством тому, как упорно человечество не желает учиться на собственных ошибках, могут служить обмелевшие после вырубки лесов реки, засоленные в результате неграмотного орошения и ставшие непригодными для земледелия поля, высохшие моря (Аральское) и т.п.

Отрицательным как для природы, так и для общества становится бесцеремонное вмешательство человека в окружающую среду в наши дни, ибо последствия его из-за высокого уровня развития производительных сил зачастую носят уже глобальный характер и порождают глобальные экологические проблемы.

Список литературы

биологическая эволюция происхождение солнечная нерациональное

Горелов, А.А. Концепции современного естествознания. - М.: Центр, 2003. - 208 с.

Коробкин, В.И. Экология: учебник. - 6-е изд., доп. и перераб. - Ростов н/Д.: Феникс, 2003.

Лавриненко, В.Н. Концепции современного естествознания. М.: ЮНИТИ-ДАНА, 2006.

Никаноров, А.М., Хоружая, Т.А. Экология. - М.: Изд. ПРИОР, 2001. - 304 с.

Рузавин, Г.И. Концепции современного естествознания: Учебник для вузов. - М.: ЮНИТИ, 2002. - 287 с.

Хорошавина, С.Г. Концепции современного естествознания: учебник. - Ростов н/Д.: Феникс, 2003. - 480 с.

1. Размещено на www.allbest.ru


Подобные документы

  • Основные теории эволюции, положившие начало современному изучению форм естественного отбора. Общее понятие о теории эволюции Ч. Дарвина. Характеристика социобиологии как междисциплинарной науки. Теоретическое обоснование факторов эволюционного процесса.

    курсовая работа [52,2 K], добавлен 10.09.2013

  • Определение теории эволюции, обстоятельства ее появления. Понятие вида как основной единицы биологической классификации. Понятие адаптации, естественного и искусственного отбора, борьбы за существование, приспособления как основные в теории эволюции.

    контрольная работа [40,1 K], добавлен 06.10.2008

  • Эволюционные идеи в античности, Средневековье, эпохи Возрождения и Нового времени. Теория Чарльза Дарвина. Синтетическая теория эволюции. Нейтральная теория молекулярной эволюции. Основные эмбриологические доказательства биологической эволюции.

    реферат [26,6 K], добавлен 25.03.2013

  • Проблема происхождения и эволюции жизни на Земле. Моделирование как метод естественнонаучных исследований. Открытие принципа униформизма Ч. Лайелем. Учение Чарльза Дарвина о факторах эволюции путем естественного отбора, современные представления о ней.

    контрольная работа [19,5 K], добавлен 18.08.2009

  • Становление и развитие эволюционных идей. Теория естественного отбора Ч. Дарвина. Механизмы биологической эволюции отдельных групп организмов и всего живого мира в целом, а также закономерности индивидуального развития организма. Стадии эволюции человека.

    реферат [312,5 K], добавлен 27.03.2010

  • Возникновение теории эволюции и ее значение. Представление о градации живых существ и теория изменчивости видов. Законы эволюции Ж.Б. Ламарка. Концепция искусственного отбора. Значение теории эволюции Ч. Дарвина. Результаты действия естественного отбора.

    контрольная работа [34,9 K], добавлен 13.11.2009

  • Научные труды Чарлза Дарвина. Происхождение биологического разнообразия в результате эволюции. История написания издания "Происхождения видов". Основание дарвинизма и материалистической теории эволюции органического мира. Теория естественного подбора.

    реферат [30,5 K], добавлен 06.04.2017

  • Выявление и общая характеристика движущих сил биологической эволюции как необратимого процесса исторического развития органического мира. Ч. Дарвин и теории приспособления и изменения генетического состава организмов. Анализ значения факторов эволюции.

    реферат [12,3 K], добавлен 20.01.2012

  • Вехи биографии автора теории эволюции Чарльза Дарвина. История написания и издания "Происхождения видов". Основные положения эволюционного учения. Предпосылки и движущие силы эволюции. Мнения ученых о теории Ч. Дарвина. Анализ положений антидарвинизма.

    реферат [59,1 K], добавлен 07.12.2014

  • Характеристика общих представлений об эволюции и основных свойствах живого, которые важны для понимания закономерностей эволюции органического мира на Земле. Обобщение гипотез и теорий происхождения жизни и этапы эволюции биологических форм и видов.

    курсовая работа [38,6 K], добавлен 27.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.