Влияние гиподинамии на морфофункциональное состояние скелетной мускулатуры

Скелетная мускулатура, влияние гипокинезии и гиподинамии на организм. Двигательная активность у детей и подростков. Феноменологическая картина гипокинезии, ее проявление на клеточном уровне. Потребление кислорода как биохимический критерий гиподинамии.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 16.06.2012
Размер файла 301,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Введение
  • Глава 1. Понятие о скелетной мускулатуре
  • 1.1 - Скелетные мышцы
  • |Глава 2. Общая характеристика гипокинезии, гиподинамии
  • 2.1 - Гипокинезия, гиподинамия и их влияние на организм человека
  • 2.1.1 - Понятия гипокинезия и гиподинамия
  • 2.2 - Гиподинамия
  • 2.2.1 - Двигательная активность у детей и подростков
  • 2.2.2 - Влияние недостаточной двигательной активности на организм человека
  • 2.3 - Гипокинезия
  • 2.3.1 - Феноменологическая картина гипокинезии
  • 2.3.2 - Гипокинезия на клеточном уровне
  • Глава 3. Потребление кислорода как биохимический критерий гиподинамии
  • Заключение
  • Литература

Введение

Здоровье - бесценное достояние не только каждого человека, но и всего общества. При встречах, расставаниях с близкими и дорогими людьми мы желаем им доброго и крепкого здоровья, так как это - основное условие и залог полноценной и счастливой жизни. Здоровье помогает нам выполнять наши планы, успешно решать основные жизненные задачи, преодолевать трудности, а если придется, то и значительные перегрузки. Доброе здоровье, разумно сохраняемое и укрепляемое самим человеком, обеспечивает ему долгую и активную жизнь. [3]

К сожалению, многие люди не соблюдают самых простейших, обоснованных наукой норм здорового образа жизни. Последние годы в силу высокой нагрузки на работе и дома и других причин у большинства отмечается дефицит в режиме дня, недостаточная двигательная активность, обусловливающая появление гипокинезии, и как следствие её гиподинамии, которые могут вызвать ряд серьёзных изменений в организме людей.

Людям не только приходится ограничивать свою естественную двигательную активность, но и длительное время поддерживать неудобную для них статическую позу, сидя.

Движение - естественная потребность организма человека. Недостаток движения - причина многих заболеваний. Оно формирует структуру и функции человеческого организма. В ходе длительного эволюционного развития человека сложилась очень тесная связь между его двигательными функциями и деятельностью внутренних органов. [8]

Цель исследования: определить влияние гиподинамии на морфофункциональное состояние скелетной мускулатуры

Для достижения поставленной цели решались следующие задачи:

1. Дать характеристику понятия "скелетные мышцы".

2. Выяснить суть гиподинамии и гипокинезии и их влияние на организм человека.

Глава 1. Понятие о скелетной мускулатуре

Все формы движений тела человека, от простейшего перемещения в пространстве до сложных двигательных актов, обеспечивающих созидательную и творческую деятельность человеческих рук - совершаются благодаря опорно-двигательному аппарату. Кроме двигательной, данный аппарат выполняет опорную и защитную функции. Традиционно опорно-двигательный аппарат подразделяют на активную и пассивную части. Активную часть опорно-двигательного аппарата составляют скелетные мышцы, а пассивную - кости и их соединения. [15]

1.1 - Скелетные мышцы

Мышцы, прикрепляющиеся к костям скелета, способны быстро сокращаться и расслабляться; удерживают тело в определенном положении

В человеческом организме насчитывается около 600 поперечно-полосатых мышц. Они составляют от 35% до 40% веса взрослого человека, у женщин несколько меньше, чем у мужчин, у новорожденных до 20-22%, у стариков до 30%, у атлетов вес мышц может составлять свыше 50% веса тела. Самая маленькая поперечно-полосатая мышца у человека - мышца, приводящая стремечко.

Скелетные мышцы в теле человека выполняют множество функций, имеющих отношение к самым различным сторонам жизнедеятельности организма. Благодаря сокращению скелетных мышц происходит перемещение тела и его частей в пространстве, осуществляются тончайшие движения рук и пальцев, дыхательные движения, жевание, глотание, мимика, артикуляция речи. Скелетные мышцы являются частью вспомогательного аппарата таких органов чувств, как орган слуха и орган зрения. Благодаря большому количеству чувствительных окончаний скелетные мышцы можно рассматривать как один из самых древних органов чувств. Мышцы участвуют в углеводном и энергетическом обмене. Функциональное многообразие скелетных мышц человека достигается особенностями их структуры и соотношений с костными рычагами. Формирование этих особенностей происходит в процессе индивидуального развития. Скелетная мускулатура человека претерпела глубокие изменения в процессе развития человека в связи с прямохождением, трудовой деятельностью и речью. [11]

Скелетные мышцы наряду с нервными структурами относятся к возбудимым тканям, а составляющие их клетки являются наиболее сложноустроенными в организме. Структурно-функциональной единицей мышечной ткани является поперечно-полосатое мышечное волокно. По функциональным свойствам мышечные волокна делятся на два типа: медленносокращающиеся ("красные" волокна), более выносливые и быстросокращающиеся ("белые" волокна), более сильные, быстрые и быстро утомляющиеся. Подавляющее большинство мышц являются смешанными, состоящими из волокон этих типов в различных пропорциях. Соотношения типов волокон достаточно устойчивы и определяются генетическими факторами. Соотношение этих типов мышц может быть разным, зависимых как от наследственных факторов, так и индивидуального развития, т.е. приобретенные особенности строения мышц, зависимых от вида деятельности человека. Вот почему одни могут быстро бегать, а другие нет, одни могут долго двигаться, работать, а другие нет. [2]

Скелетные мышцы могут быть массивными, как большая ягодичная мышца, или миниатюрными, как стременная мышца в среднем ухе. Большинство мышц соединяют одну кость с другой и прикрепляются одним концом к одной неподвижной кости, а другим концом - к другой, которая должна двигаться. Прикрепление обычно занимает сравнительно большую плоскость на кости, и у некоторых мышц таких точек прикрепления может быть несколько, например две "головки" у бицепса или двуглавой мышцы.

Основная часть мышцы называется "мышечное брюшко". Прикрепляется мышца обычно сухожилием к небольшому участку кости, но может крепиться и при помощи широкой плоской полосы - апоневроза - к другим структурам, как, например, в области спины. Длинные сухожилия, проходящие через другие структуры, например в запястье, обычно окружены "щитами" синовиальных оболочек, уменьшающих силу трения. В этих областях сухожилия удерживаются фиброзными связочными образованиями (уздечками). Короткие сухожилия прикрепляются непосредственно к надкостнице подлежащей кости. [8]

Скелетные мышцы - основа движения. Длинные мышцы, такие как портняжная мышца, сокращаются в длину больше, чем более мощные мышцы типа дельтовидной. Это происходит благодаря параллельному расположению волокон, тогда как дельтовидная мышца напоминает по форме лопасть вентилятора или веер, а ее волокна собраны в небольшие пучки, закрепленные в сухожилии.

Рисунок 1

Мышцы обычно собраны в пары (Рисунок 1), поэтому, когда одна мышца сокращается (1), другая (антагонист) (2) медленно расслабляется, чтобы движение было гладким и управляемым. Мышцы постоянно слегка растягиваются одна относительно другой; это и есть тонус мышц.

гиподинамия гипокинезия скелетная мускулатура

Когда мышца сжимается и приводит в движение сустав, она может выполнять движение, если закреплена неподвижно. Головной мозг управляет движением скелетных мышц и координирует движение, используя информацию, переданную ей от мышц, а также поступающую от зрительного и вестибулярного анализаторов. В мышцах, которые должны выполнять точные движения, как, например, в мышцах кисти или руки, один нерв иннервирует несколько волокон, а в тех, которые выдерживают большие нагрузки, например в ягодичных мышцах, один нерв иннервирует большое количество волокон. [6]

|Глава 2. Общая характеристика гипокинезии, гиподинамии

2.1 - Гипокинезия, гиподинамия и их влияние на организм человека

Снижение физических нагрузок в условиях современной жизни, с одной стороны, и недостаточное развитие массовых форм физической культуры среди населения, с другой стороны, приводят к ухудшению различных функций и появлению негативных состояний организма человека.

2.1.1 - Понятия гипокинезия и гиподинамия

Для обеспечения нормальной жизнедеятельности организма человека необходима достаточная активность скелетных мышц. Работа мышечного аппарата способствует развитию мозга и установлению межцентральных и межсенсорных взаимосвязей. Двигательная деятельность повышает энергопродукцию и образование тепла, улучшает функционирование дыхательной, сердечно-сосудистой и других систем организма. Недостаточность движений нарушает нормальную работу всех систем и вызывает появление особых состояний - гипокинезии и гиподинамии.

Гипокинезия - это пониженная двигательная активность. Она может быть связана с физиологической незрелостью организма, с особыми условиями работы в ограниченном пространстве, с некоторыми заболеваниями и др. причинами. В некоторых случаях (гипсовая повязка, постельный режим) может быть полное отсутствие движений или акинезия, которая переносится организмом еще тяжелее.

Существует и близкое понятие - гиподинамия. Это понижение мышечных усилий, когда движения осуществляются, но при крайне малых нагрузках на мышечный аппарат. В обоих случаях скелетные мышцы нагружены совершенно недостаточно. Возникает огромный дефицит биологической потребности в движениях, что резко снижает функциональное состояние и работоспособность организма. [10]

Некоторые животные очень тяжело переносят отсутствие движений. Например, при содержании крыс в течение 1 месяца в условиях акинезии выживает 60% животных, а в условиях гипокинезии - 80%. Цыплята, выращенные в условиях обездвижения в тесных клетках и выпущенные затем на волю, погибали при малейшей пробежке по двору.

Тяжело переносится снижение двигательной активности человеком. Обследование моряков-подводников показало, что после 1,5 месяцев пребывания в море сила мышц туловища и конечностей уменьшалась на 20-40% от исходной, а после 4 месяцев плавания - на 40-50%. Наблюдались и другие нарушения.

2.2 - Гиподинамия

2.2.1 - Двигательная активность у детей и подростков

Будучи изолированными от общества людей в раннем детстве, человек никак не проявляет активности, потребности в подлинно человеческом познании окружающего мира. И наоборот, чем больше он к этому побуждается специальным педагогическим руководством, тем быстрее и охотнее приобщается к ценностям общечеловеческой культуры. В связи с этим активное приобщение детей к овладению теоретическими основами спорта, физиологическими, тактико-техническими знаниями необходимо не только для спортивного роста, но и для социализации человека, формирования его личности.

Приобщение к активной двигательной деятельности нужно начинать в малом возрасте. Так как высокие способности детей к овладеванию новыми движениями постепенно утрачиваются или одновременно с процессом взросления. С наступлением зрелости и окончанием структурной дифференцировки нервной системы овладение новыми движениями требует больше времени, умственных и физических затрат. Ребенок обладает не только большой пластичностью мозга, но и высокой податливостью (чувствительностью) к специфическим для человека способам стимулирования его развития. Это относится, в частности, к использованию внушения и самовнушения как важнейшего инструмента спортивно - физического роста и развития тренированности. [1, 9]

Физиологически оправданными являются различные средства стимулирования двигательной активности. Физические упражнения, выполняемые с использованием тренажеров и других технических приспособлений являются высокоэффективными средствами тренировки. Несомненную роль играет высокая восприимчивость человеческого мозга к упражнениям с предметами.

Главная социальная функция спорта - совершенствование физической и психической природы человека - в известной мере служит положительному изменению демографической структуры общества. Физическая культура добавляет не только годы к жизни, но и жизнь к годам: продолжительность активной творческой жизни увеличивается, общество получает дополнительный резерв трудоспособного населения.

2.2.2 - Влияние недостаточной двигательной активности на организм человека

Становление человека происходило в условиях высокой двигательной активности, которая была необходимым условием его существования, биологического и социального процесса. Тончайшая сработанность всех систем организма формировалась в процессе эволюции на фоне активной двигательной деятельности. Недостаточность движений в современном обществе - социальный, а не биологический феномен. Спорт способствует формированию популяризации людей, более устойчивых к воздействию издержек цивилизации: малоподвижного образа жизни, увеличение агрессивных агентов среды обитания. В процессе эволюции на Земле выжили только те популяции, у которых генетическая устойчивость к физическим нагрузкам оказалась более высокой. Можно сказать поэтому, что физические нагрузки в эпоху НТР являются фактором элиминируемого отбора. При этом обычные рекомендации по рационализации сводятся к использованию малоинтенсивных форм двигательной активности. Их полезность не вызывает сомнений, однако сила тренирующего воздействия на основные системы жизнеобеспечения, и в первую очередь на сердечно-сосудистую систему, у них оказывается недостаточной. Физические нагрузки, оказывающие мощное тренирующие воздействие на все системы жизнеобеспечения, являются важнейшим фактором эволюции человека на современном этапе его развития. Они способствуют формированию популяции, степень устойчивости которых к агрессивным факторам внешней среды повышается. [14]

Научно-техническая революция ведет к уменьшению доли тяжелого труда, физических нагрузок и на производстве, и в быту, а, следовательно, снижению доли активной двигательной деятельности. Каковы же причины столь неблагоприятных последствий недостаточной двигательной активности (гипокинезии)?

Снижение двигательной активности приводит к нарушению слаженности в работе мышечного аппарата и внутренних органов вследствие уменьшения интенсивности импульсации из скелетных мышц в центральный аппарат регуляции. На уровне внутриклеточного обмена гипокинезия приводит к снижению структур. При гипокинезии изменяется структура скелетных мышц и миокарда. Падает иммунологическая устойчивость, активность.

Также снижается устойчивость организма к перегреву, охлаждению, недостатку кислорода.

Уже через 7-8 суток неподвижного лежания у людей наблюдаются функциональные расстройства; появляются апатия, забывчивость, невозможность сосредоточиться на серьезных занятиях, расстраивается сон, резко падает мышечная сила, нарушается координация не только в сложных, но и в простых движениях; ухудшается сократимость скелетных мышц, изменяются физико-химические свойства мышечных белков; в костной ткани уменьшается содержание кальция.

У юных спортсменов эти расстройства развиваются медленнее, но и у них в результате гиподинамии нарушается координация движений, появляются вегетативные дисфункции. Особенно пагубна гиподинамия для детей. При недостаточной двигательной активности дети не только отстают в развитии от своих сверстников, но и чаще болеют, имеют нарушения в опорно-двигательной функции. [13, 10, 9]

Последние полмиллиона лет человек эволюционирует без изменения в своей генетической программе. Между тем условия, в которых жили наши предки, и условия, в которых живем мы, отличаются, прежде всего, требованиями к объему выполняемых движений. Мы затрачиваем несравненно меньше физических сил, чтобы обеспечить собственное существование. Нормальное функционирование сердечно - сосудистой, дыхательной, гормональной и других систем организма тысячелетиями развертывалось в условиях активной двигательной деятельности, вдруг на последнем 100-50 летнем отрезке эволюции условия жизни предлагают организму совершенно необычную при недостатке движений форму реализации сложившихся способов жизнедеятельности его органов и систем. Природа человека не прощает этого: появляются болезни гипокинезии.

Во время мышечной работы активизируются не только сам исполнительный (нервно-мышечный) аппарат, но и по механизму моторно-висцеральных рефлексов (т.е. рефлексов с мышц на внутренних органов), нервная и гуморальная регуляции. Поэтому снижение двигательной активности ухудшает состояние организма в целом. Страдают и нервно - мышечная система, и функции внутренних органов. [2]

В отличие от механической системы, изнашивающейся от работы, деятельность живого организма сопровождается не только прогрессивными функциональными, но и морфологическими сдвигами. Возрастающие адаптационные процессы и резервы приводят к экономизации функционирования скелетных мышц и внутренних органов - на единицу выполняемой работы затрачивается меньше энергии, быстрее идут восстановительные процессы.

В центральной нервной системе гипокинезия и гиподинамия вызывают потерю многих межцентральных взаимосвязей, в первую очередь, из-за нарушения проведения возбуждения в межнейронных синапсах, т.е. возникает асинапсия. При этом изменяется психическая и эмоциональная сфера, ухудшается функционирование сенсорных систем. Поражение мозговых систем управления движениями приводит к ухудшению координации двигательных актов, возникают ошибки в адресации моторных команд, неумение оценивать текущее состояние мышц и вносить коррекции в программы действий. [5]

В двигательном аппарате отмечаются некоторые дегенеративные явления, отражающие атрофию мышечных волокон - снижение веса и объема мышц, их сократительных свойств. Ухудшается кровоснабжение мышц, энергообмен. Происходит падение мышечной силы, точности, быстроты и выносливости при работе (особенно статической выносливости). При локомоциях усиливаются колебания общего центра масс, что резко снижает эффективность Движений при ходьбе и беге.

Дыхание при недостаточной двигательной активности характеризуется уменьшением ЖЕЛ, глубины дыхания, минутного объема дыхания и максимальной легочной вентиляции. Резко увеличивается кислородный запрос и кислородный долг при работе. Основной обмен понижается.

Нарушается деятельность сердечно-сосудистой системы. Возникает атрофия сердечной мышцы, ухудшается питание миокарда. В результате развивается ишемическая болезнь сердца. Уменьшение объема сердца приводит к меньшим величинам сердечного выброса (уменьшение систолического и минутного объема крови). Частота сердечных сокращений при этом повышается как в покое, так и при физических нагрузках.

Ослабленные скелетные мышцы не могут в должной мере способствовать венозному возврату крови. Недостаточность или полное отсутствие их сокращений практически ликвидирует работу "мышечного насоса", облегчающего кровоток от нижних конечностей к сердцу против силы тяжести. Выпадение помощи со стороны этих "периферических сердец" еще более затрудняет работу сердца по перекачиванию крови. Время кругооборота крови заметно возрастает. Количество циркулирующей крови уменьшается.

При низких физических нагрузках и малом увеличении глубины дыхания при работе почти не помогает кровотоку и "дыхательный насос", так как присасывающее действие пониженного давления грудной полости и работа диафрагмы ничтожны. Все эти следствия пониженной двигательной активности вызывают в современном мире огромный рост сердечно-сосудистых заболеваний. [7]

В эндокринной системе отмечается снижение функций желез внутренней секреции, уменьшается продукция их гормонов.

В случаях акинезии происходят наиболее глубокие поражения организма, и происходит сглаживание суточных биоритмов колебания частоты сердцебиения, температуры тела и других функций.

2.3 - Гипокинезия

2.3.1 - Феноменологическая картина гипокинезии

Тот факт, что двигательная активность совершенствует физические особенности, повышает работоспособность, общеизвестен. Он подтвержден неоднократно в специальных экспериментах и наблюдениях.

Не менее известно, что научно-техническая революция ведет к уменьшению доли тяжелого физического труда и на производстве, и в быту, а, следовательно, к неуклонному снижению доли активной двигательной деятельности. Каковы же причины неблагоприятных последствий гипокинезии?

Снижение двигательной активности приводит к нарушению слаженности в работе мышечного аппарата и внутренних органов вследствие уменьшения интенсивности проприоцептивной импульсации из скелетных мышц в центральный аппарат нейрогуморальной регуляции (стволовый отдел мозга, подкорковые ядра, кору полушарий большого мозга).

На уровне внутриклеточного обмена гипокинезия приводит к снижению воспроизводства белковых структур: нарушаются процессы транскрипции и трансляции (снятие генетической программы и ее реализация в биосинтезе). При гипокинезии изменяется структура скелетных мышц и миокарда. Падает иммунологическая активность, а также устойчивость организма к перегреванию, охлаждению, недостатку кислорода. [6]

Уже через 7-8 суток неподвижного лежания у людей наблюдаются функциональные расстройства; появляются апатия, забывчивость, невозможность сосредоточиться на серьезных занятиях, расстраивается сон; резко падает мышечная сила, нарушается координация не только в сложных, но и в простых движениях; ухудшается сократимость скелетных мышц, изменяются физико-химические свойства мышечных белков; в костной ткани уменьшается содержание кальция.

У юных спортсменов эти расстройства развиваются медленнее, но и у них в результате гиподинамии нарушается координация движений, появляются вегетативные дисфункции. Особенно пагубна гиподинамия для детей. При недостаточной двигательной активности дети не только отстают в развитии от своих сверстников, но и чаще болеют, имеют нарушения осанки и опорно-двигательной функции.

Последние полмиллиона лет человек эволюционирует филетически, т.е. без изменений в своей генетической программе. Между тем условия, в которых жили наши далекие предки, и условия, в которых живем мы, отличаются, прежде всего, требованиями к объему выполняемых движений. То, что было необходимо древним людям, стало ненужным современному человеку. Мы затрачиваем несравненно меньше физических сил, чтобы обеспечить собственное существование. Но закрепленная тысячелетиями в геноме человека норма двигательной активности не стала для него анахронизмом, ибо не просто при неизменном геноме освободиться от обусловленных им программ жизнедеятельности. [4]

Действительно, нормальное функционирование сердечно-сосудистой, дыхательной, гормональной и других систем организма тысячелетиями развертывалось в условиях активной двигательной деятельности, и вдруг на последнем 100-50-летнем отрезке эволюции условия жизни предлагают организму совершенно необычную при недостатке движений форму реализации сложившихся способов жизнедеятельности его органов и систем. Природа человека не прощает этого: появляются болезни гипокинезии. Их развитие связано с глубокими функциональными и структурными изменениями на уровне воспроизводства клеточных структур в цепи ДНК - РНК - белок.

2.3.2 - Гипокинезия на клеточном уровне

Какими механизмами порождаются видимые невооруженным глазом расстройства физиологических функций при гипокинезии? Ответ на этот вопрос получен при исследовании внутриклеточных механизмов роста и развития организма.

Многочисленные экспериментальные факты свидетельствуют о том, что гипокинезия для теплокровных животных и человека является стрессорным агентом. Аварийная стрессорная фаза экспериментальной гипокинезии продолжается с первых по пятые сутки. Для нее характерно резкое повышение продукции катехоламинов и глюкокортикоидов, преобладание катаболических процессов. Вес животных падает. Наиболее интенсивному разрушительному влиянию на этой стадии подвергается тимус вследствие миграции лимфоцитов, составляющих около 90% его клеточных популяций. Повышенная чувствительность лимфоцитов к стресс-гормонам может рассматриваться как главная причина их миграции и падения массы тимуса.

В последующие 10 суток разрушительному воздействию подвергаются селезенка и печень. Практически неизменными остаются полушария большого мозга. С 30-х по 60-е сутки гипокинезии вес животных стабилизируется, но, как показали исследования, останавливается нормальный физиологический рост. Содержание нуклеиновых кислот в клетках коррелирует с процессами роста животных и его остановкой при гипокинезии. [14]

Менее всего подвержен влиянию гипокинезии головной мозг. В первые 10 дней гипокинезии в нем отмечается увеличение ДНК при сохранении исходного уровня РНК. Концентрация и общее содержание РНК в сердце снижается, что приводит к нарушению биосинтеза белка в миокарде. Отношение РНК/ДНК падает, следовательно, уменьшается и скорость транскрипции (считывания программы биосинтеза) с генетических матриц ДНК. В первые 20 суток гипокинезии падает и абсолютное содержание ДНК, начинаются деструктивные процессы в сердце.

С 20-х по 30-е сутки содержание ДНК в сердце растет. Этот рост связан с ее увеличением в эндотелии и фибробластах сердца (60 % ДНК сердца находится в фибробластах и эндотелиальных клетках, 40% - в мышечных клетках - кардиомиоцитах). Известно, что количество мышечных клеток сердца с 20-х суток постнатального онтогенеза не увеличивается.

С 30-х по 60-е сутки прироста содержания ДНК в сердце не происходит. Снижается плоидность кардиомиоцитов. В нормальных условиях жизнедеятельности число кардиомиоцитов, имеющих более двух ядер, увеличивается. Следовательно, активность генетического аппарата клетки находится в тесной связи с интенсивностью ее функционирования, а гипокинезия выступает как фактор торможения биосинтеза. Особенно демонстративны эти изменения в скелетных мышцах: если при нормальном содержании животных количество РНК за 2 месяца увеличивается на 60 %, то при двухмесячной гипокинезии становится ниже нормы.

Концентрация нуклеиновых кислот в печени при гипокинезии остается на уровне нормы, но снижается их абсолютное (т.е. на массу всего органа) содержание. В печеночной ткани наблюдаются дистрофические изменения, падает количество полиплоидных и делящихся клеток, т.е. клеток с увеличивающимся количеством ДНК, угнетается синтез матричной и рибосомальной РНК. Снижение общего количества ДНК - результат гибели части клеток печени.

В тимусе и селезенке начиная с первых дней гипокинезии и до 20-х суток падает и концентрация, и общее содержание нуклеиновых кислот.

Содержание и скорость биосинтеза белковых структур клетки тесно связаны с изменениями количества ДНК и РНК. В первые 20 дней гипокинезии отмечается преобладание катаболических процессов в клетках и тканях экспериментальных животных. Вследствие деструктивных изменений в клетках тимуса и печени, скелетных мышц, концентрация катепсина Д, фермента распадающихся тканевых белков, уже к третьим суткам гипокинезии превышает уровень контроля в два раза.

С 20-х по 30-е сутки гипокинезии наблюдается стабилизация белкового состава внутренних органов. В клетках печени и кардиомиоцитах количество белка начинает расти, но в последующие дни - от 30-го до 60-го - уровень его остается стабильным. [4]

Возвращение в условия нормальной жизнедеятельности после гипокинезии приводит к активизации биосинтеза нуклеиновых кислот и белка. В тимусе уже к десятым суткам восстановительного периода их содержание достигает уровня контрольных животных. В скорости восстановительных процессов проявляется одна из закономерностей биологического развития: низкодифференцированные структуры восстанавливаются быстрее, чем высокодифференцированные. К концу 30-го дня восстановительного периода подопытные животные практически не отличались от контрольных. Этот факт убедительно свидетельствует о том, что гипокинезия не вызывает необратимых изменений в генетическом аппарате клетки.

Глава 3. Потребление кислорода как биохимический критерий гиподинамии

Жизненный комфорт современного человека вызвал резкое ограничение ежедневной двигательной активности, что приводит к отрицательным изменениям в деятельности различных систем организма. Особенно большие изменения в условиях дефицита движений происходят в сердечно-сосудистой и дыхательной системах.

Определив уровень потребления кислорода, можно оценить функциональные возможности кардиореспираторной системы современных школьников.

Гиподинамия отрицательно влияет как на взрослых, так и на детей и подростков. Систематическое обследование детей школьного возраста позволило у трети из них обнаружить патологию сердечно-сосудистой системы. Это указывает на необходимость принятия срочных мер, направленных на усиление двигательной активности растущего организма. [10]

Сегодня, изучив предельные возможности систем дыхания и кровообращения у человека, можно определить максимальное потребление кислорода (МПК). По мнению Всемирной организации здравоохранения, МПК - один из наиболее информативных показателей функционального состояния кардиореспираторной системы. А так как системы кровообращения и дыхания - ведущие в процессах аэробного энергообеспечения, то по их показателям судят также о физической работоспособности организма в целом.

Обычно МПК определяют в лабораторных условиях. Каждый испытуемый в течение 6-8 мин на велоэргометре выполняет предельную трехступенчатую работу нарастающей мощности. На последней минуте, когда частота сердечных сокращений (ЧСС) достигает 180-200 уд/мин, выдыхаемый воздух забирают в так называемые мешки Дугласа, анализируют его и после определения минутного объема дыхания рассчитывают максимальное потребление кислорода. Полученную величину делят на массу тела (кг) - это и есть показатель максимального потребления кислорода (МПК/кг), который объективно отражает работоспособность человека.

На основании экспериментального материала, опубликованного в специальной литературе, можно оценить работоспособность школьников обоего пола, исходя из относительных величин МПК. [12]

Изучив функциональные возможности кардиореспираторной системы, мы получили доказательства, что у современных школьников постепенно снижаются относительные величины МПК, а, следовательно, ухудшается физическая работоспособность. Оказалось, что функциональные возможности кардиореспираторной системы современных школьников ниже, чем их сверстников и 1950-1970-х годах. Особенно заметны сдвиги у девочек, у которых отмечено снижение с возрастом исследуемого показателя. В возрасте 9-10 лет физическая работоспособность школьниц оценивалась как удовлетворительная (37,8 мл/кг), а в 15-16 лет - неудовлетворительная (29,9 мл/кг). Ухудшение функциональных возможностей систем кровообращения и дыхания сопровождалось постепенным увеличением с возрастом жировой ткани (в организме девочек в возрасте 9-10 лет содержание жира составляло свыше 24% от всей массы тела, в 13-14 - свыше 25%, а в 15-16 лет - около 29%).

Снижение функциональных возможностей кардиореспираторной системы современных школьников в основном связано с гиподинамией. Обнаружено, что с возрастом двигательная активность (ДА) имеет тенденцию к снижению, особенно четко выраженную у девушек. Отмечено, что среди детей всех возрастов есть подвижные дети, с высоким уровнем ДА, выполняющие в день 18 тыс. шагов, и малоподвижные, с низким уровнем двигательной активности, совершающие менее 11 тыс. шагов.

В результате определения МПК/кг у детей с разным уровнем ДА выявлено четкое изменение этого показателя в зависимости от физической активности детей. Школьники, выполняющие от 12 до 18 тыс. шагов в день, имели достоверно большие величины МПК/кг, чем их малоподвижные ровесники. Эта разница в активности свидетельствует о том, что выполнение в день менее 12 тыс. шагов приводит к развитию гиподинамии. Об этом говорят результаты обследования школьников обычной и школы полного дня, которая отличалась не только организацией учебного процесса, но и двигательным режимом дня. В школе полного дня между уроками практиковалась так называемая "динамическая пауза" и во второй половине дня - спортивный час. Во всех возрастных группах обеих школ с 9 до 16 лет отмечены достоверные различия в относительных показателях МПК/кг.

Методом непрямой калориметрии мы оцепили энергетическую стоимость 11 тыс. шагов. Оказалось, что мальчики 7-9 лет на 1 тыс. шагов тратили 21 ккал, а 14-16 лет - 42 ккал; девочки 7 лет-9 19 ккал, а 14-16 лет - 35 ккал. Повышение с возрастом энергозатрат связано не только с тем, что у школьников старших классов шаг становится шире и размашистее, по и г тем, что большая энергостоимость связана с неодинаковым процентным содержанием скелетных мышц в организме детей и подростков. У ребенка в возрасте 10 лет из всей массы тела на скелетные мышцы приходится 20%, а у 14-летних - 26%. [16]

Исходя из приведенных данных, нетрудно рассчитать, сколько энергии тратят школьники различного возраста и пола на 11 тыс. шагов. Если учесть, что мальчики в возрасте 10-16 лет расходуют в сутки 2200-2900 ккал, а девочки 2000-2700 ккал и что 25-30% этих энергозатрат должно приходиться на двигательную активность, то становится очевидным дефицит движении, который создается при выполнении 10-11 тыс. шагов, приводящий к значительному снижению аэробных возможностей организма. Следовательно, ДА и максимальное потребление кислорода находятся в прямой зависимости: чем выше число локомоций (ходьба), тем лучше функциональное состояние кардиореспираторной системы.

Заключение

Мало подвижное положение отражается на функционировании многих систем организма, особенно сердечно-сосудистой и дыхательной. При длительном сидении дыхание становится менее глубоким обмен веществ, понижается, происходит застой крови в нижних конечностях, что ведёт к снижению работоспособности всего организма и особенно мозга: снижается внимание, ослабляется память, нарушается координация движений, увеличивается время мыслительных операций. Вследствие недостаточной активности возникает дефицит кислорода. Отрицательные последствие гиподинамии и гипокинезии проявляется так же сопротивляемости организма "простудным и инфекционным заболеваниям”, создаются предпосылки к формированию слабого, не тренированного сердца и связанного с этим дальнейшего развития недостаточности сердечно-сосудистой системы.

Единственная возможность нейтрализовать отрицательное явление, возникающего у людей при продолжительном и напряжённом умственном труде, - это активный отдых и организованная физическая деятельность.

При систематических занятиях физической культурой и спортом происходит непрерывное совершенствование органов и систем организме человека. В этом главным образом и заключается положительное влияние физической культуры на укрепление здоровья.

Занятие физическими упражнениями также вызывает положительные эмоции, бодрость, создаёт хорошее настроение. Поэтому становится понятным, почему человек, познавший "вкус” физических упражнений и спорта, стремится к регулярным занятием ими.

Литература

1. Агаджянн, Н.А. Биоритмы, спорт, здоровье/Агаджянн Н.А., Шабатура Н.Н. - М.: Физкультура и спорт, 1989. - 208с.

2. Городничев Р.М., Тхоревский В.И. Физиология нервно-мышечного аппарата: Учебное пособие. - Великие Луки: В.Л. ГАФК, 1993. - 41 с.

3. Ермолаев Ю.А. Возрастная физиология. Учебное пособие для студентов педагогических вузов. - М.: Высшая школа, 1985, 384 с.

4. Лукьянов В.С. О сохранении здоровья и работоспособности. - М.: Медгиз, 1952, 136 с.

5. Начала физиологии: Учебник для вузов / Под редакцией акад.А.Д. Ноздрачева. - СПб.: Издательство "Лань", 2001. - 1088 с.

6. Основы физиологии человека / Под ред. Б.И. Ткаченко. - Санкт Петербург: Международный фонд истории науки, 1994. - Т.2. - С.12-54.

7. Практикум по нормальной физиологии / Под ред. Н.А. Агаджаняна и А.В. Коробкова. - М.: Высшая школа, 1983. - С.217.

8. Румянцева М.Ф., Лосев Т.Н., Бунина Т.П. Руководство к практическим занятиям по физиологии с основами анатомии человека. - М.: Медицина, 1986. - 272 с.

9. Смирнов В.Н., Дубровский В.И. Физиология, физическое воспитание и спорт. Учебник для студентов средних и высших заведений. - М.: Владос-пресс, 2002, 608 с.

10. Солодков А.С., Сологуб Е.Г. Физиология человека общая, спортивная, возрастная. - М.: Тера-спорт, 2001, 520 с.

11. Физиология человека / Под ред.Г.И. Косицкого. - М.: Медицина, 1985. - С.112-155, 466-468, 472-474.

12. Физиология человека / Под ред.В.М. Покровского, Г.Ф. Коротько. - М.: Медицина, 1997. - Т.1. - С.134-189.

13. Физическая культура студента: Учебник/Под ред.В.И. Ильинича. - М.: Гардарики, 1999. - 448 c.

14. Фомин, Н.А. Физиологические основы двигательной активности/Фомин Н.А., Вавилов Ю.Н. - М.: Физкультура и спорт, 1991. - 224с.

15. http://www.fiziolog. isu.ru

Размещено на Allbest.ru


Подобные документы

  • Понятие скелетной (соматической) мускулатуры, ее структура и элементы. Содержание в мышцах сосудов и нервов, их роль и значение в нормальной деятельности мышц. Классификация мышц по форме, внутренней структуре и действию, их виды и характеристика.

    контрольная работа [202,7 K], добавлен 09.02.2009

  • Строение и функции суставов, позвоночника, скелетных мышц. Основные группы мышц и особенности их работы. Возрастные изменения костно-мышечной системы. Последствия гиподинамии, ключевые фазы и виды работоспособности человека. Проблема снятия переутомления.

    реферат [53,9 K], добавлен 14.01.2014

  • Диффузионные процессы в тканях. Математическая модель распределения кислорода и углекислоты в мозге Ю.Я. Кислякова, исследования с ее помощью транспорта кислорода в ткани скелетной мышцы. Влияние межкапиллярного расстояния на транспорт кислорода.

    презентация [4,5 M], добавлен 02.04.2011

  • Курение как вдыхание дыма препаратов, преимущественно растительного происхождения, тлеющих в потоке вдыхаемого воздуха, история развития данного явления и его место в современном обществе. Табак как аллерген, его негативное воздействие на организм.

    контрольная работа [32,0 K], добавлен 16.06.2012

  • Влияние хронической алкоголизации на организм. Влияние пренатального хронического воздействия этанола на организм. Ферменты обмена регуляторных пептидов. ФМСФ-ингибируемая карбоксипептидаза. Регуляторные пептиды и ферменты их обмена в онтогенезе.

    диссертация [219,2 K], добавлен 15.12.2008

  • Сущность, функции и строение мышц. Особенности развития скелета и мускулатуры нижней конечности в связи с приспособлением к вертикальному положению тела человека. Прогрессивная дифференцировка скелета и мускулатуры руки в связи с трудовой деятельностью.

    курсовая работа [4,7 M], добавлен 16.06.2012

  • История возникновения энергетических напитков. Состав энергетических напитков, их стимулирующие эффекты. Влияние кофеина на организм. Классификация безалкогольных напитков. Тестирование и анализ химического состава некоторых напитков на наличие кофеина.

    реферат [31,3 K], добавлен 11.12.2013

  • История открытия витаминов. Влияние на организм, признаки и последствия недостатка, основные источники витаминов А, С, D, Е. Характеристика витаминов группы В: тиамина, рибофлавина, никотиновой и пантотеновой кислот, пиридоксина, биотина, холина.

    презентация [3,4 M], добавлен 24.10.2012

  • Характеристика анатомо-физиологических и нервно-психических особенностей развития подростков. Изучение теорий подросткового возраста. Параметры и формула полового развития девочек и мальчиков. Нервно-психологическое состояние в подростковом возрасте.

    презентация [280,4 K], добавлен 27.10.2014

  • Стиль жизни, способствующий хорошему здоровью и долголетию. Элементы здорового образа жизни: оптимальный режим труда и отдыха, правильное питание, двигательная активность, личная гигиена, закаливание, отказ от вредных привычек, эмоциональное состояние.

    презентация [75,1 K], добавлен 30.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.