Синапсы: медиаторы и комедиаторы синаптической передачи и их классификации

История изучения химической передачи в центральной нервной системе. Структура синапса, его роль в проведении импульсов. Синтез молекул медиатора в нервных окончаниях, его взаимодействие с рецептором. Функции комедиаторов, локализация нейропептидов.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 07.05.2012
Размер файла 24,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

Ульяновский государственный педагогический университет

Имени И.Н. Ульянова

Реферат

Синапсы: медиаторы и комедиаторы синаптической передачи и их классификации

Работа выполнена студентом 3 курса

естественно-географического факультета

группы БХ-07-1

Смолобочкиным А.В.

Проверил Л.Л. Каталымов

Ульяновск 2009

Содержание

История и методы изучения

Структура синапса

Процесс химической передачи

Химические медиаторы

Комедиаторы

Нейропептиды

История и методы изучения

Изучение химической передачи в ЦНС началось в начале ХХ века. Данные о периферической нервной системе получить было достаточно легко. Любой орган можно изолировать, стимулировать его нервный аппарат, собирать и анализировать венозную кровь или перфузат. В ЦНС совсем другое положение: масса волокон и нейронов, "упакованных" глиальными клетками, кровоснабжение которых точно установить невозможно, а также "центры", имеющие много различных входов и локализуемые различно разными физиологами и анатомами.

Обычными методами, ставшими почти классическими, было показано, что в ЦНС имеются ацетилхолин, катехоламины и холинэстеразы. Эта трудоёмкая работа дала возможность нарисовать своего рода химическую карту головного мозга. Ацетилхолин обнаруживается почти везде, но в особенно значительных количествах он содержится в коре головного мозга; с помощью высокоспецифичных и чувствительных тестов обнаружили присутствие ацетилхолинэстеразы в некоторых синапсах, но показали также, что её очень мало в других. Во многих центрах был обнаружен норадреналин, но его непосредственный предшественник - дофамин был найден в значительных количествах только в определённых областях. В различных центрах был идентифицирован также серотонин.

Нейронная теория, разработанная Рамон-и-Кахалом, знаменитым испанским гистологом, подтверждена биохимически. Нейрон, его аксон и окончания синтезируют медиатор, который хранится в особых пузырьках, видимых с помощью электронного микроскопа. Эти пузырьки, под воздействием нервного импульса, приходящего в нервное окончание, разрываются и изливают своё содержимое в синаптическую щель. Пузырьки образуются в теле нейрона, заполняются молекулами медиатора и транспортируются вдоль аксона к нервному окончанию.

Химическими посредниками в процессе передачи нервного импульса являются биологически активные вещества, выделяемые нервными окончаниями. Эти вещества называются нейромедиаторы (синоним - нейротрансмиттер). Для краткости можно употреблять термин медиаторы.

Медиаторы были открыты австрийским ученым Лёви в результате достаточно простого опыта. В физиологический раствор он поместил два изолированных сердца лягушек и соединил их между собой тонкой трубочкой. Раствор Рингера, перфузируемый в одно сердце, переходил во второе. При раздражении симпатического нерва первого сердца, второе также начинало сокращаться. Возникла гипотеза о том, что раздражение нервов влечёт появление в перфузате некоторых веществ, которые оказывают действие на другое сердце, подобное эффекту раздражения симпатического нерва.

Сначала были открыты адреналин и ацетилхолин. В настоящее время открыто более 30 медиаторов, среди которых норадреналин, серотонин, мелатонин, гистамин, дофамин, октопамин, АТФ, ГАМК, глицин, глутамат, аспартат, эндорфины, энкефалины, вазопрессин, окситоцин, вещество P. По химическому составу и механизму действия медиаторы сходны с гормонами. Подробнее медиаторы будут рассмотрены ниже.

Нейроны имеют биохимический аппарат, общий со всеми остальными живыми клетками, в том числе способность генерировать химическую энергию путём окисления пищеварительных веществ, а также восстанавливать и сохранять свою целостность. Нейроны обладают кроме того специфическими свойствами, которых лишены другие клетки и которые связаны с особой функцией нейронов как передатчиков нервных импульсов: необходимость в поддержании ионных градиентов, что требует большой затраты энергии, и свойства, связанные со способностью нейронов производить и выделять набор химических передатчиков - нейромедиаторов. В синапсах - микроскопических участках где тесно соприкасаются окончание одного нейрона и воспринимающая поверхность другого, приход импульса вызывает внезапное выделение молекул медиатора из окончания. Затем эти молекулы диффундируют через заполненную жидкостью щель между двумя клетками и воздействуют на специфические рецепторы постсинаптической мембраны, изменяя при этом электрическую активность воспринимающего нейрона.

За последние годы достигнуты значительные успехи в познании различных медиаторных веществ, в составлении карт, их распределении по мозгу и в выяснении молекулярных процессов синаптической передачи. Такими исследованиями установлено, что действие многих лекарственных веществ и нейротоксинов на поведение основано на их способности прерывать или модифицировать химическую передачу от нейрона к нейрону. В них есть также указания на то, что причинами психических болезней, возможно, окажутся в конечном счёте нарушения функции специфических медиаторных систем мозга.

Методика исследования функционального химизма мозга очень сложна, так как медиаторы содержатся в ничтожно малых количествах, ткань мозга структурно и химически очень сложна и выделить для исследования определённую медиаторную структуру нелегко. Одну из методик разработали В. Уиттейкер и Э. де Робертис. При осторожном разрушении ткани мозга путём гомогенизации в растворе сахарозы многие нервные окончания отрываются от своих аксонов и образуют особые замкнутые частицы, названные "синаптосомами". Синаптосомы содержат механизмы синтеза, хранения, высвобождения и инактивации медиатора, связанные с нервным окончанием; центрифугированием можно очистить от других компонентов нейрона. Эта методика дала нейрохимикам возможность изучать механизмы синаптической передачи в пробирке.

Эти методики показали, что медиаторы, расположены не диффузно по всей ткани мозга, а в высшей степени локально в ограниченных центрах и путях - составлены карты для многих медиаторов. Например, многие клетки мозга, содержащие норадреналин сосредоточены в стволе и образуют скопление, аксоны этих нейронов сильно ветвятся и проецируются в различные области - гипоталамус, мозжечок и передний мозг. Норадреналиновые нейроны причастны к поддержанию бодрствования, к системе поощрения (центр удовольствия), к сновидениям и к регуляции настроения. нейроны, содержащие дофамин посылают свои аксоны в передний мозг (эмоции) и в область полосатого тела (регуляция сложных движений). Деградация дофаминовых волокон в данной части мозга приводит к ригидности мышц и тремору, симптомам, характерным для болезни Паркинсона. Избыток дофамина в лимбической системе переднего мозга, возможно причастен к шизофрении.

Структура синапса

синапс медиатор рецептор нейропептид

Типичный синапс - аксодендритический химический. Такой синапс состоит из двух частей: пресинаптической, образованной булавовидным расширением окончанием аксона передающей клетки и постсинаптической, представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае - участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

Между обеими частями имеется синаптическая щель, края которой укреплены межклеточными контактами. Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели называется пресинаптической мембраной. Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной.

В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки, содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент, разрушающий этот медиатор. На постсинаптической и пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

Процесс химической передачи

Нейрохимики изучили не только молекулярную структуру и анатомическое распределение разных медиаторов, но и достигли больших успехов в понимании точной последовательности биохимических явлений, участвующих в синаптической передаче. Процесс химической передачи проходит ряд этапов: синтез медиатора, его накопление, высвобождение, взаимодействие с рецептором и прекращение действия медиатора. Каждый из этих этапов детально охарактеризован, и найдены препараты, которые избирательно усиливают или блокируют конкретный этап. Эти исследования позволили проникнуть в механизм действия психотропных лекарственных средств, а также выявить связь некоторых нервных и психических болезней со специфическими нарушениями синаптических механизмов:

Синтез молекул медиатора в нервных окончаниях. Каждый нейрон обычно обладает только таким биохимическим "аппаратом", какой ему нужен для синтеза медиаторов, которые выделяются из всех окончаний его аксона. Молекулы медиатора синтезируются путём соединения предшественников или их изменений в результате ряда ферментативных реакций. Может быть один этап ферментативного катализа (ацетилхолин) или до трёх этапов (адреналин). Аминокислоты синтезируются из глюкозы. Многие этапы синтеза можно блокировать фармакологическими агентами, что лежит в основе действия многих лекарств, влияющих на нервную систему.

После выработки молекул медиатора они накапливаются и хранятся в окончании аксона в маленьких мешочках, связанных с мембраной. В одном окончании могут быть тысячи синаптических пузырьков, каждый из которых содержит от 10 тыс. до 100 тыс. молекул медиатора.

Высвобождение Приход нервного импульса в окончание аксона вызывает высвобождение множества молекул медиатора из окончания в синаптическую щель. Механизм такого выделения остаётся спорным: одни исследователи полагают, что синаптические пузырьки прямо сливаются с синаптической мембраной и выбрасывают своё содержимое в синаптическую щель; другие утверждают, что подвижное скопление молекул медиатора выходит через специальные каналы. Но в любом случае известно, что нервный импульс запускает выход медиатора, повышая проницаемость нервного окончания для ионов Ca2+, которые устремляются в него и активируют механизм высвобождения молекул.

Взаимодействие с рецептором. Вышедшие молекулы медиатора быстро проходят через наполненную жидкостью щель между окончанием аксона и мембраной воспринимающего нейрона. Здесь они взаимодействуют со специфическими рецепторами постсинаптической мембраны. Рецепторы фактически представляют собой крупные белковые молекулы, погружённые в полужидкую матрицу клеточной мембраны: части их торчат над и под мембраной подобно айсбергам. Выходящий на поверхность участок рецепторного блока и молекула медиатора имеют одинаковые очертания, они соответствуют друг другу как ключ и замок. Существует 2 основных типа медиаторных рецепторов: быстро действующие - осуществляют передачу, регулируя проницаемость ионной поры, и медленно действующие, которые вызывают образование второго посредника, который в свою очередь опосредует эффекты, производимые медиатором в постсинаптическом нейроне.

Окончательное действие Взаимодействие медиатора с его рецептором меняет трёхмерную форму рецепторного белка, инициируя этим определённую последовательность событий. Это взаимодействие может вызвать возбуждение или торможение нейрона, сокращение миоцита, а также образование и выделение гормона клеткой железы. Во всех этих случаях рецептор "переводит сообщение, закодированное в молекулярной структуре медиатора, в специфическую физиологическую реакцию. Как только молекула медиатора свяжется со своим рецептором, она должна быть инактивированна во избежание слишком длительного её действия и нарушения точного контроля передачи.

Существуют разнообразные механизмы рецепции на молекулярном уровне.

Ацетилхолин взаимодействует с рецепторным белком в постсинаптической мембране. АХ является лигандом, когда имеют ввиду, что он связывается с определенным участком белка. И это вызывает изменение проницаемости мембраны. Реакция мембраны может быть либо быстрая либо медленная. Действие АХ обрывается гидролизом, наступающем под действием фермента ацетилхолинэстеразы, с обратным захватом холина (80%) в пресинаптическое окончание.

ГАМК может связываться с 2 типами мембранных рецепторов - с высоким и низким сродством. Эти рецепторы в свою очередь контролируют ионофор (канал проводимости) для ионов Cl-, которые движутся во время ГАМК-эргических ТПСП. Бензодиазепиновые препараты вызывают угнетение ГАМК-эргических синапсов и, благодаря этому, используются для лечения тревожных состояний и страха. ГАМК удаляется из щели путем захвата пресинаптическим окончанием, а также клетками глии. Глия играет важную роль как в захвате так и в метаболизме ГАМК.

Молекула медиатора связывается с мембранным белком, при этом имеется механизм очищения щели и для обратного захвата (50%). Однако последующая реакция в постсинаптическом окончании более сложна.

Рецепторный белок аденилатциклаза активирует внутренний рецептор - протеинкиназу, что приводит к фосфорилированию белка. Завершается этот процесс изменением ионной проводимости мембраны.

Этот механизм участвует в опосредовании реакций на такие разные вещества как, например, биогенные амины.

Химические медиаторы

В ЦНС медиаторную функцию выполняет большая группа разнородных химических веществ. Список вновь открываемых химических медиаторов неуклонно пополняется. По последним данным их насчитывается около 30. Хотелось бы также отметить, что согласно принципу Дейла, каждый нейрон во всех своих синаптических окончаниях выделяет один и тот же медиатор. Исходя из этого принципа, принято обозначать нейроны по типу медиатора, который выделяют их окончания. Таким образом, например, нейроны, освобождающие ацетилхолин, называют холинэргическими, серотонин - серотонинергическими... Такой принцип может быть использован для обозначения различных химических синапсов. Рассмотрим некоторые из наиболее известных химических медиаторов:

АЦЕТИЛХОЛИН - один из первых обнаруженных медиаторов (был известен также как «вещество блуждающего нерва» из-за своего действия на сердце).

Особенностью ацетилхолина как медиатора, является быстрое его разрушение после высвобождения из пресинаптических окончаний с помощью фермента ацетилхолинэстеразы. Ацетилхолин выполняет функцию медиатора в синапсах, образуемых возвратными коллатералями аксонов двигательных нейронов спинного мозга на вставочных клетках Реншоу, которые в свою очередь с помощью другого медиатора оказывают тормозящее воздействие на мотонейроны.

Холинэргическими являются также нейроны спинного мозга, иннервирующие хромаффинные клетки и преганглионарные нейроны, иннервирующие нервные клетки интрамуральных и экстрамуральных ганглиев. Полагают, что холинэргические нейроны имеются в составе ретикулярной формации среднего мозга, мозжечка, базальных ганглиях и коре.

КАТЕХОЛАМИНЫ - это три родственных в химическом отношении вещества. К ним относятся: дофамин, нор адреналин и адреналин, которые являются производными тирозина и выполняют медиаторную функцию не только в периферических, но и в центральных синапсах. Дофаминергические нейроны находятся у млекопитающих главным образом в пределах среднего мозга. Особенно важную роль дофамин играет в полосатом теле, где обнаруживаются особенно большие количества этого медиатора. Кроме того, дофаминергические нейроны имеются в гипоталамусе. Норадренергические нейроны содержатся также в составе среднего мозга, моста и продолговатого мозга. Аксоны норадренергических нейронов образуют восходящие пути, направляющиеся в гипоталамус, таламус, лимбические отделы коры и в мозжечок. Нисходящие волокна норадренергических нейронов иннервируют нервные клетки спинного мозга.

Катехоламины оказывают как возбуждающее, так и тормозящее действие на нейроны ЦНС.

СЕРОТОНИН - Подобно катехоламинам, относится к группе моноаминов, то есть синтезируется из аминокислоты триптофана. У млекопитающих серотонинергические нейроны локализуются главным образом в стволе мозга. Они входят в состав дорсального и медиального шва, ядер продолговатого мозга, моста и среднего мозга. Серотонинергические нейроны распространяют влияние на новую кору, гиппокамп, бледный шар, миндалину, подбугровую область, стволовые структуры, кору мозжечка, спинной мозг. Серотонин играет важную роль в нисходящем контроле активности спинного мозга и в гипоталамическом контроле температуры тела. В свою очередь нарушения серотонинового обмена, возникающие при действии ряда фармакологических препаратов, могут вызывать галлюцинации. Нарушение функций серотонинергических синапсов наблюдаются при шизофрении и других психических расстройствах. Серотонин может вызывать возбуждающее и тормозящее действие в зависимости от свойств рецепторов постсинаптической мембраны.

НЕЙТРАЛЬНЫЕ АМИНОКИСЛОТЫ - это две основные дикарбоксильные кислоты L-глутамат и L-аспартат, которые находятся в большом количестве в ЦНС и могут выполнять функцию медиаторов. L-глутаминовая кислота, входит в состав многих белков и пептидов. Она плохо проходит через гематоэнцефалический барьер и поэтому не поступает в мозг из крови, образуясь главным образом из глюкозы в самой нервной ткани. В ЦНС млекопитающих глутамат обнаруживается в высоких концентрациях. Полагают, что его функция главным образом связана с синаптической передачей возбуждения.

ПОЛИПЕПТИДЫ - В последние годы показано, что в синапсах ЦНС медиаторную функцию могут выполнять некоторые полипептиды. К таким полипептидам относятся вещества-Р, гипоталамические нейрогормоны, энкефалины и др. Под веществом-Р подразумевается группа агентов, впервые экстрагированных из кишечника. Эти полипептиды обнаруживаются во многих частях ЦНС. Особенно велика их концентрация в области черного вещества. Наличие вещества-Р в задних корешках спинного мозга позволяет предполагать, что оно может служить медиатором в синапсах, образуемых центральными окончаниями аксонов некоторых первичных афферентных нейронов. Вещество-Р оказывает возбуждающее действие на определенные нейроны спинного мозга. Медиаторная роль других нейропептидов выяснена еще меньше.

Комедиаторы

Сопутствующие (сосуществующие) медиаторы (комедиаторы, котрансмиттеры) - это синаптические посредники, характеризующиеся прежде всего совместной локализацией, совместным высвобождением и общей клеткой-мишенью. Под совместной локализацией понимается синтез и депонирование медиаторов в одном и том же нейроне, их происхождение в одних и тех же пресинаптических окончаниях, но не обязательно в одних и тех же пузырьках. Под совместным высвобождением понимается экзоцитоз двух (и более) медиаторов, в результате одной и той же активации пресинаптического окончания, под которым в данном случае подразумевается не одиночный пресинаптический потенциал действия, а разряд потенциалов действия с одной и той же частотой.

Нейропептиды

За последние годы, после того как в мозге был обнаружен новый класс химических соединений - нейропептиды, число известных систем химических посредников в головном мозге резко возросло. Нейропептиды представляют цепочки из аминокислотных остатков. Многие из них локализованы в аксонных окончаниях. Нейропептиды отличаются от ранее идентифицированных медиаторов тем, что они организуют такие сложные явления как память, жажда, половое поведение и др. Например, соматостатин подавляет выделение гормона роста гипофизом, регулирует секрецию инсулина и глюкагона поджелудочной железой и функционирует в качестве медиатора в спинном и головном мозге.

Размещено на Allbest.ru


Подобные документы

  • Механизм передачи нервных импульсов от одной клетки организма другой, значение синапса в данном процессе. Природа синапсов и их разновидности. Метод Гольджи и его роль в изучении строения нервных клеток. Выделение медиатора при химическом синапсе.

    реферат [65,0 K], добавлен 08.08.2009

  • Гуморальная регуляция физиологических и биохимических процессов через жидкие среды организма. Синтез ацетилхолина. Виды холинорецепторов. Депонирование медиатора и хранение его в везикулах. Синтез медиатора в нервных окончаниях. Распад ацетилхолина.

    презентация [1,2 M], добавлен 23.10.2013

  • Строение нейрона - основной структурно-функциональной единицы нервной системы, обладающей рядом свойств, благодаря которым осуществляется регуляторно-координационная деятельность нервной системы. Функциональные особенности синаптической передачи.

    реферат [424,7 K], добавлен 27.02.2015

  • Строение и классификация синапсов по локализации, развитию в онтогенезе и механизму передачи сигнала. Физиология синаптической передачи при химической трансляции сигнала с нейрона на эффекторную клетку. Характеристика нейромедиаторных систем мозга.

    реферат [20,4 K], добавлен 10.07.2011

  • Механизм и принцип работы ионных каналов, их разновидности в зависимости от проницаемости и характерные признаки. Пути передачи импульсов в нервной системе. Состав и элементы клеточных мембран нервных клеток и оценка их участия в передаче информации.

    реферат [28,6 K], добавлен 24.10.2009

  • Изучение строения биологической мембраны, ионоселективного канала, видов электрических явлений в возбудимых тканях. Характеристика устройства синапса и механизма передачи возбуждения. Анализ возрастных особенностей развития центральной нервной системы.

    курсовая работа [61,7 K], добавлен 09.06.2011

  • Нервная система: анатомическое строение, отделы и виды, нервные связи, формирование энергии передачи информации. Переработка информации в центральной нервной системе. Понятие "сенсорная система". Локализация, особенности, свойства терморегуляторов.

    реферат [270,8 K], добавлен 15.08.2014

  • Препараты регуляторного действия. Ингибирование/индукция ферментов. Воздействие на ионные потоки на рецепторы. Взаимодействие лиганда с рецептором. Строение "типового" химического синапса. Пресинаптические рецепторы: действие на освобождение медиатора.

    презентация [2,4 M], добавлен 23.10.2013

  • Основные анатомические закономерности в деятельности центральной нервной системы. Распространение нервных импульсов. Анатомия спинного и головного мозгов. Характеристика проводящих путей спинного мозга. Клеточные элементы нервной ткани, типы нейронов.

    презентация [7,6 M], добавлен 17.12.2015

  • Основные функции и этапы в эволюции центральной нервной системы. Принципы классификации и структура нейронов. Классификация рефлексов и синапсов. Последовательность событий, происходящих в синапсе. Свойства нервных центров, трансформация возбуждения.

    презентация [1,6 M], добавлен 05.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.