Введение в микробиологию
Понятие микробиологии, мир микроорганизмов: бактерии, дрожжи, вирусы. Л. Пастер как основоположник всех основных направлений современной микробиологии. Основные особенности размножения грибов. Анализ причин гибели микроорганизмов, влияние внешней среды.
Рубрика | Биология и естествознание |
Вид | лекция |
Язык | русский |
Дата добавления | 05.05.2012 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Микроорганизмы могут осуществлять жизнедеятельность при активности воды от 0,999 до 0,62.
Существуют различные пути снижения активности воды: сушка, вяление. В сухом виде хранят муку, крупу, сухофрукты и т.д. При хранении таких продуктов необходимо соблюдать определенную температуру и влажность.
Осмотическое давление (концентрация растворенных веществ в среде). Осмотическое давление внутри клеток микроорганизмов несколько выше, чем в среде. Это является условием нормальной жизнедеятельности микроорганизмов.
Осморегуляция - поддержание клетками оптимального для данного микроорганизма осмотического давления. Функцию осморегуляции осуществляет механизм активного транспорта веществ. Изменение привычной концентрации среды может привести к нарушению обмена веществ в клетках микроорганизмов, а иногда может вызвать их гибель.
При попадании микроорганизма в субстрат с ничтожно малой концентрацией растворенных веществ (например: в дистиллированную воду) в клетках наблюдается плазмоптис (чрезмерное насыщение цитоплазмы водой), что может привести к разрыву цитоплазматической мембраны и гибели микроорганизма.
При попадании микроорганизма в субстрат с концентрацией веществ выше оптимальных значений наступает плазмолиз - обезвоживание цитоплазмы. При этом клетки впадают в состояние анабиоза.
Микроорганизмы, способные существовать в субстратах с высоким осмотическим давлением называются осмофилами.
Галофилы - микроорганизмы, способные расти на средах с высоким содержанием поваренной соли. Умеренные галофилы развиваются при концентрации соли 1-2%, хорошо растут при 10% соли и могут выносить содержание соли 20%. Крайние галофилы не развиваются при содержании соли ниже15% и могут хорошо расти при концентрации соли в среде 30% (насыщенный раствор).
Неспособность большинства микроорганизмов расти на средах с высокими концентрациями соли и сахара используют в пищевой промышленности для консервирования различных продуктов. В отличие от поваренной соли, растворы сахара являются хорошей питательной средой и гибель микроорганизмов наступает лишь при концентрации сахара в растворе 65-70%.
Влияние химических факторов на микроорганизмы
Влияние концентрации водородных ионов (рН среды)
В зависимости от отношения к рН среды микроорганизмы делятся на три группы:
* нейтрофилы - предпочитают нейтральную реакцию среды. Растут в диапазоне значений рН от 4 до 9. К нейтрофилам относятся большинство бактерий, в то числе гнилостные бактерии;
* ацидофилы (кислотолюбивые). Растут при рН 4 и ниже. К ацидофилам относятся молочнокислые, уксуснокислые бактерии, грибы и дрожжи.
* алкалофилы (щелочелюбивые). К этой группе относятся микроорганизмы, которые растут и развиваются при рН 9 и выше. Примером алкалофилов является холерный вибрион.
Если рН не соответствует оптимальной величине, то микроорганизмы не могут нормально развиваться, так как активная кислотность оказывает влияние на активность ферментов клетки и проницаемость цитоплазматической мембраны.
Некоторые микроорганизмы, образуя продукты обмена и выделяя их в среду, способны изменять реакцию среды.
Для бактерий кислая среда более опасна, чем щелочная (особенно для гнилостных бактерий). Это используется для консервирования продуктов путем маринования или квашения. При мариновании к продуктам добавляют уксусную кислоту, при квашении создаются условия для развития молочнокислых бактерий, которые образуют молочную кислоту и тем самым способствуют подавлению роста гнилостных бактерий.
Окислительно-восстановительные условия среды Степень аэробности среды (насыщения среды кислородом) может быть охарактеризована величиной окислительно-восстановительного потенциала, который выражают в единицах гН2. В среде, окислительные свойства которой соответствуют насыщению среды кислородом rН2 = 41. В среде с высокими восстановительными условиями гН2 = 0. При равновесии окислительных и восстановительных процессов гН2 = 28.
Облигатные анаэробы (микроорганизмы, для которых кислород является ядом) живут при гН2 меньше 12-14, но размножаются при rH2 менее 3-5. Факультативные анаэробы (микроорганизмы, способные расти как в аэробных, так и в анаэробных условиях) развиваются при rH2 от 0 до 20-30, а аэробы - при гН2 от 12-15 до 30.
Регулируя окислительно-восстановительные условия среды можно затормозить или вызвать активное развитие той или иной группы микроорганизмов. Например, в виноделии, для предотвращения развития уксуснокислых бактерий емкости с вином нужно заполнять полностью, чтобы снизить степень насыщения среды кислородом.
Химические вещества. Многие химические вещества действуют губительно на микроорганизмы. Такие вещества называют антисептиками. Их действие зависит от концентрации и продолжительности воздействия, а также от рН среды и температуры.
Из неорганических соединений наиболее сильно действуют на микроорганизмы соли тяжелых металлов (золота, меди и, особенно, серебра). Например, ионы серебра адсорбируются на поверхности клетки, вызывая изменения свойств и функций цитоплазматической мембраны.
Бактерицидным действием обладают многие окислители (хлор, йод, перекись водорода, калий марганцево-кислый), минеральные соли (сернистая, борная, фтористоводородная). Эти вещества вызывают активные окислительные процессы, не свойственные метаболизму клетки, а также разрушают ферменты.
Органические соединения (формалин, фенол, карболовая кислота, спирты, органические кислоты - салициловая, уксусная, бензойная, сорбиновая) также могут губительно воздействовать на микроорганизмы.
Органические соединения вызывают коагуляцию клеточных белков, растворяют липиды и т. д. Бактерицидным действием обладают также эфирные масла, дубильные вещества, многие красители (фуксин, метиленовая синь, бриллиантовая зелень).
Многие химические вещества используются в медицине, сельском хозяйстве, пищевой промышленности как дезинфицирующие вещества. Дезинфицирующие вещества вызывают быструю (в течение нескольких минут) гибель бактерий. Они более активны в средах бедных органическими веществами. Уничтожают не только вегетативные клетки, но и споры. Они не вызывают появления устойчивых форм микроорганизмов. В пищевой промышленности в качестве дезинфицирующих веществ применяют вещества, содержащие активный хлор (хлорамин, хлорная известь и т. д.).
Применение антисептиков для консервирования пищевых продуктов ограничено, к использованию допущены немногие химические консерванты (бензойная, сорбиновая кислоты и их соли) в малых дозах (от сотых до десятых процента).
Взаимоотношения между микроорганизмами. Влияние антибиотиков на микроорганизмы
В природе микроорганизмы сталкиваются с действием разнообразных биотических факторов. При симбиозе (совместном существовании) различают ассоциативные (благоприятствующие) и антагонистические (конкурентные) взаимоотношения.
Ассоциативные формы симбиоза. Широко распространены в природе. Именно на них основан круговорот веществ в природе. К ассоциативным формам симбиоза относятся метабиоз, мутуализм, синергизм и комменсализм.
Метабиоз - такая форма симбиоза, когда создаются условия для последовательного развития одних микроорганизмов за счет продуктов жизнедеятельности других. Примером метабиоза может служить порча сахаросодержащих субстратов (плодово-ягодных соков, поврежденных плодов, ягод), когда на них сначала развиваются дрожжи, превращающие сахар в спирт, затем уксуснокислые бактерии, превращающие спирт в уксусную кислоту и, наконец, мицелиальные грибы, которые окисляют уксусную кислоту до углекислого газа и воды.
Мутуализм - такие взаимоотношения между микроорганизмами, которые основаны на взаимной выгоде. Пример: совместное существование в природе анаэробных и аэробных микроорганизмов. Аэробы, поглощая кислород, создают необходимые для анаэробов окислительно-восстановительные условия.
Синергизм - усиление физиологических функций микроорганизмов при совместном культивировании. В кефирном грибке, например, содержатся дрожжи и молочнокислые бактерии. Витамины, синтезируемые дрожжами, стимулируют развитие молочнокислых бактерий, а молочная кислота, образуемая молочнокислыми бактериями, создает благоприятные значения рН для развития дрожжей.
Комменсализм - форма сожительства, когда один организм живет за счет другого, не причиняя ему вреда. Примером комменсалов могут служить бактерии нормальной микрофлоры тела человека.
Антагонистические формы симбиоза. К ним относятся такие формы симбиоза как антибиоз, паразитизм, хищничество.
Антагонизм это такой тип взаимоотношений, когда один организм подавляет или прекращает развитие другого в основном за счет продуктов его жизнедеятельности. Молочнокислые бактерии, например, выделяя молочную кислоту, создают кислую реакцию среды, препятствующую развитию гнилостных бактерий. Это явление используется при квашении капусты, изготовлении кисломолочных продуктов.
Антибиоз - связан со способностью одного вида микроорганизмов выделять в окружающую среду специфические вещества, угнетающие жизнедеятельность других, - антибиотики. Они обладают либо широким спектром действия в отношении ряда микроорганизмов, либо избирательным действием к одному из них.
Паразитизм - это такой тип взаимоотношений, при котором совместное существование одному из симбионтов приносит выгоду, а другому причиняет вред. Примерами могут служить болезнетворные микроорганизмы и вирусы, являющиеся возбудителями инфекционных заболеваний.
Хищничество - это внеклеточный паразитизм. Хищные бактерии образуют подвижную колонию - сетку, улавливающую крупные бактериальные клетки других видов, которые лизируются (разрушаются) и используются ими внутри колонии, а остатки выбрасываются. Хищные бактерии обитают в илах водоемов.
Антибиотики. Фитонциды. Во многих случаях губительное действие микробов-антагонистов связано с выделением специфических биологически активных химических веществ - антибиотиков (анти - против, биос - жизнь). Продуцентами антибиотиков являются некоторые грибы, а также бактерии, чаще актиномицеты.
Характер действия антибиотических веществ на клетки разнообразен. Одни из них задерживают рост и развитие микроорганизмов, другие вызывают их гибель.
В пищевой промышленности для продления сроков хранения пищевых продуктов разрешено использовать только некоторые антибиотики (нистатин и биомицин) и только в ограниченных случаях (например, при транспортировании на дальние расстояния) для сырых продуктов (мясо, рыба), которые в последующем сохраняются на холоде. Ведутся также исследования по использованию специального антибиотика - низина, который не применяется в медицине. Продуцентами низина являются молочнокислые стрептококки. Низин является ингибитором роста стафилококков, многих стрептококков и анаэробных термостойких споровых бактерий рода Clostridium.
Антибиотические вещества вырабатываются не только микроорганизмами, но также растениями и животными.
Фитонциды - антибиотические вещества растительного происхождения. Химическая природа фитонцидов разнообразна. Антимикробным действием обладают многие вещества, находящиеся в растениях: эфирные масла, гликозиды, антоцианы, дубильные вещества и многие другие соединения. Антимикробными свойствами обладают также многие овощи и пряности. Так, из чеснока и лука выделен аллицин, из репы и редьки - рапин, из томатов - томатин. В настоящее время ведутся исследования по использованию фитонцидов при хранении пищевых продуктов. К антибиотическим веществам животного происхождения относятся лизоцим - белковое вещество, содержащееся в яичном белке, слезах, слюне, рыбной икре, эритрин - вещество, получаемое из эритроцитов крови животных; экмолин - получен из тканей рыб.
Использование факторов внешней среды для регулирования жизнедеятельности микроорганизмов при хранении пищевых продуктов
В настоящее время все шире изучают и используют различные способы воздействия на микроорганизмы для повышения сроков хранения пищевых продуктов. Основными принципами хранения пищевых продуктов (по Я.Я. Никитинскому) являются:
* Биоз (bios - жизнь). На этом явлении основано хранение свежих фруктов и овощей. При хранении этих продуктов создаются условия, препятствующие развитию микроорганизмов, путем понижения температуры до 5° С и поддержания определенной влажности. При этом сохраняется естественный иммунитет плодов и овощей, что также предотвращает микробную порчу;
* Абиоз (abiosis - отрицание, уничтожение жизни) достигается физическими и химическими способами. Этот принцип положен в основу хранения мясных и овощных консервов после их термической обработки - стерилизации, а также внесение в продукты консервантов. При абиозе погибают вегетативные и споровые формы бактерий, благодаря чему продукты могут храниться длительное время;
* Анабиоз (anabiosis - задержка жизни) происходит во время сушки, в процессе замораживания при повышении осмотического давления среды. Так хранят рыбные и мясные продукты, фрукты, овощи.
При оттаивании замороженных и повышении влажности сухих продуктов жизнедеятельность микроорганизмов восстанавливается, что может привести к порче продуктов.
* Ценоанабиоз - принцип хранения, при котором консервирующее вещество вырабатывают сами микроорганизмы. Основан этот принцип на антагонистических взаимоотношениях микроорганизмов: создаются условия для развития полезных микроорганизмов и тем самым подавляется развитие микроорганизмов - возбудителей порчи. На этом принципе основано квашение овощей, производство кисломолочных продуктов.
Эффективность всех мероприятий, направленных на предупреждение порчи пищевых продуктов, во многом зависит от соблюдения общих санитарно-гигиенических требований и выполнения установленного режима хранения.
Генетика микроорганизмов
Генетика - наука о наследственности и изменчивости организмов.
Наследственность - свойство организмов воспроизводить в поколениях сходный тип обмена веществ, сложившийся в процессе эволюционного развития вида и проявляющийся в определенных условиях внешней среды.
В процессе жизни под влиянием факторов внешней среды свойства микроорганизмов могут изменяться. Приспособление микроорганизмов к новым условиям жизни называется адаптацией. В одних случаях происходит временное, а в других - необратимое изменение этих свойств. Изменчивость - возникновение различий среди нарождающегося потомства.
Наследственность и изменчивость взаимно обусловлены и обеспечивают относительное постоянство видов живых существ в природе и их непрерывное совершенствование вследствие приспособления к изменяющимся условиям среды обитания.
Учение о наследственности и изменчивости было сформулировано Ч. Дарвином в 1859 г. Он доказал, что все существующие на Земле виды живых существ произошли путем серий изменений свойств из немногих или какой либо одной формы.
Основные законы наследственности и изменчивости (генетики) сформулированы в работах Г. Менделя, а также X. Де Фриза, Т. Моргана, Г. Меллера, Н.И. Вавилова, Н.К. Кольцова и других ученых. Ими доказано, что признаки вида закодированы в хромосомах ядра клетки и при делении от клетки к клетке передаются характерные для нее свойства, т.е. таким образом, обеспечивается постоянство видов.
Явления наследственности и изменчивости играют важную роль в жизни микроорганизмов, для которых характерны интенсивный обмен веществ, быстрое размножение и смена поколений, чрезвычайно высокая способность приспосабливаться к новым условиям среды обитания. Поэтому, существовало два противоположных мнения о наследственности и изменчивости микроорганизмов. Одни ученые (полиморфисты) считали что бактерии обладают свойствами неограниченной изменчивости и один и тот же микроорганизм в зависимости от условий среды может иметь различные морфологические и физиологические свойства, вследствие чего они отрицали возможность познания мира микроорганизмов, а следовательно, и их систематизации. Другие (мономорфисты) - считали, что в природе существует множество видов микроорганизмов, свойства которых постоянны, т.е. отрицали возможность направленной изменчивости свойств микроорганизмов. Таким образом, по своей сути оба эти направления были антинаучны.
По современным представлениям, в природе существует множество видов микроорганизмов, обладающих определенными свойствами, которые в зависимости от условий обитания могут изменяться.
Генотип и фенотип микроорганизмов
Материальной основой наследственности, определяющей генетические свойства микроорганизмов, является ДНК (дезоксирибонуклеиновая кислота). Фрагмент молекулы ДНК, контролирующий синтез одного белка называется геном. В генах закодирована генетическая информация о всех свойствах клетки: форме, структуре белков и их функциях. Полный набор генов, которыми обладает клетка, представляет ее генотип. Генотип определяет потенциальную возможность проявления свойств клетки микроорганизма.
Бактериальная клетка имеет множество генов, каждый из которых несет информацию и контролирует синтез одного белка или соответствующего соединения. Гены подразделяются на структурные гены, гены-регуляторы и гены-операторы. В структурных генах закодирована информация о первичном строении контролируемого ими белка, т. е. о последовательности расположения аминокислот, входящих в состав белка. Гены-регуляторы контролируют синтез белков-репрессоров, подавляющих функцию структурных генов, а гены-операторы выполняют роль посредников между генами регуляторами и структурными генами.
Гены обозначают строчными начальными буквами названия синтезируемого под их контролем соединения (например, his - гистидиновый ген, arg - аргининовый ген, lac и mal - гены, контролирующие расщепление coответственно лактозы мальтозы).
Свойства микроорганизмов, проявляемые в тех или иных условиях их существования, называют фенотипом. Фенотип бактерий обозначается теми же символами, что и генотип, но первая буква прописная (His , Arg , Lac и др.)
Формы изменчивости микроорганизмов
Изменчивость микроорганизмов подразделяется на наследственную, обусловленную генотипическими изменениями, и ненаследственную (фенотипическую).
Фенотипические изменения
Адаптация - приспособление микроорганизмов к условиям среды. В настоящее время это явление объясняется не изменением в микробной клетке, а развитием ранее измененных особей и гибелью неприспособленных. Таким образом, происходит естественный отбор.
Модификация - изменение микроорганизмов под влиянием условий среды. Изменяются только фенотипические (внешние) признаки (форма, размеры, цвет колоний). Модификация наблюдается в нормальных условиях жизни, это реакция на внешние раздражения, не связанные с нарушением физиологических процессов в организме.
Генотипические изменения. Изменчивость признаков микроорганизмов, обусловленная перестройкой генетического аппарата, проявляется в виде мутаций и генетических рекомбинации (комбинативные изменения).
Мутации - внезапные, скачкообразные изменения генов. Процесс мутирования генов приводит к таким изменениям, которые передаются по наследству и сохраняются даже тогда, когда вызвавший их фактор перестает действовать.
Спонтанные мутации (без направленного воздействия) очень редки:
примерно одна на 100 тыс. Они характеризуются изменением какого-нибудь одного признака и обычно стабильны.
Индуцированные (мутагенные) мутации возникают вследствие воздействия факторов среды. Они встречаются сравнительно часто. Мутагенным действием обладают ультрафиолетовые, рентгеновские и радиоактивные излучения, которые вызывают повреждение генетического аппарата клетки. К химическим мутагенам относятся сильнодействующие вещества: отравляющие (иприт), лекарственные (йод, перекись водорода), кислоты и др. Примером биологических мутагенов может быть ДНК.
Бактериальные клетки, в которых произошла мутация, называют мутантами.
Генетические рекомбинации заключаются в объединении и обычно немедленной перетасовке генов, принадлежащих близкородственным, но генотипически различным организмам.
Генетические рекомбинации у эукариот - это образование индивидумов с новым сочетанием продуктов в результате полового процесса.
У прокариот комбинативные изменения проявляются в результате трансформации, трансдукции, конъюгации.
Трансформация - перенос генетической информации от бактерии донора (в форме отдельных фрагментов ее ДНК) в клетку реципиента. Наиболее эффективно трансформация происходит у бактерий одного и того же вида или близкородственных видов. При этом в хромосому реципиента включается только одна нить ДНК донора с образованием молекулярной гетерозиготы.
Обычно бактериальная клетка в результате трансформации приобретает одно свойство. С помощью трансформирующей ДНК передаются такие признаки как капсулообразование, ферментативная активность, устойчивость к ядам, антибиотикам и т.д.
Трансдукция - перенос генов (фрагментов ДНК) от донорской клетки бактерии к реципиентной посредством умеренного фага.
При трансдукции возможен перенос генов, контролирующих особенности питания бактерий, двигательный аппарат (жгутики) и другие свойства.
Конъюгация - форма полового процесса, при котором происходят соединение мужской и женской микробных клеток и обмен между ними ядерным веществом через цитоплазматический мостик, образующийся между клетками. При этом генетический материал клетки-донора переходит в клетку-реципиент. После рекомбинации и деления клетки образуются формы с признаками конъюгирующих клеток.
Таким образом, все три формы комбинативной изменчивости одинаковы по существу. При трансформации участок ДНК клетки-донора входит в клетку-реципиент; при трансдукции эту роль выполняет фаг, а при конъюгации перенос генетической информации осуществляется через цитоплазмитический мостик (пили).
Вследствие генетических рекомбинаций образуются новые бактериальные клетки - рекомбинанты, у которых имеются наследственные признаки обоих «родителей».
Практическое значение изменчивости микроорганизмов
Наследственность и изменчивость - это неразделимо связанные категории биологических явлений, определяющих направление эволюционного развития живых организмов на любом уровне биологической организации.
Вследствие этого учение о наследственности и изменчивости микроорганизмов является научной основой систематики микроорганизмов и их идентификации.
Знания закономерностей модификационной и мутационной изменчивости позволяют проводить целенаправленную селекцию (отбор) из популяций микроорганизмов особей с нужными человеку свойствами. Таким путем получены высокоактивные штаммы многих продуцентов различных органических соединений.
Селекцию микроорганизмов для выделения полезных мутантов осуществляют несколькими путями:
* благодаря поиску и отбору полезных форм микроорганизмов из природных источников;
* в результате адаптации микроорганизмов путем выращивания при постоянно изменяющихся условиях культивирования;
* благодаря повторному выделению чистых культур из производственных штаммов;
* путем отбора индуцированных штаммов;
* путем использования явлений трансформации, трансдукции и конъюгации для получения штаммов с новыми свойствами.
В настоящее время получило развитие новое направление молекулярной биологии - генная инженерия. Генная инженерия занимается конструированием, выделением и пересадкой определенных генов из одних клеток в другие. В результате клетки приобретают новые свойства.
Еще одним примером использования учения о наследственности и изменчивости является борьба с возбудителями инфекционных заболеваний. Селекционируя бактерии по признаку вирулентности, токсичности и антигенной структуре, удается получить культуры с низкой вирулентностью и использовать их в качестве вакцин для профилактики заразных заболеваний.
Биохимические процессы вызываемые микроорганизмами
Спиртовое брожение - микробиологический процесс превращения углеводов в спирт и углекислый газ. Вызывается аскомицетовыми дрожжами рода Saccharomyces, некоторыми бактериями и отдельными представителями мукоровых грибов.
Суммарное уравнение реакции:
С6 H12 O6 > 2 СНзCH2 ОН + 2 СО2 + Е
глюкоза этиловый спирт
Как и любое брожение это сложный многоступенчатый процесс (см. 7.2), который протекает при участии комплекса ферментов. Наряду со спиртом могут образовываться побочные продукты: глицерин, уксусный альдегид, уксусная, яблочная кислоты, сивушные масла (смесь высших кислот).
Основными возбудителями спиртового брожения являются дрожжи - сахаромицеты.
Это факультативно-анаэробные микроорганизмы. В аэробных условиях дрожжи получают энергию путем полного окисления моно- и дисахаридов до углекислого газа и воды, т.е. путем аэробного дыхания. При этом интенсивно накапливается биомасса (эффект Пастера). Поэтому производство хлебопекарных дрожжей ведут в аэробных условиях.
Условия проведения спиртового брожения
1. Источники питания. В качестве источника углерода используют глюкозу, фруктозу, сахарозу, мальтозу. Крахмал дрожжи не сбраживают, так как амилолитические ферменты у них отсутствуют. Поэтому крахмалсодержащее сырье подвергают осахариванию при участии амилаз различного происхождения. Концентрация сахара 10-15% наиболее благоприятна для большинства дрожжей. В качестве источника азота используются аммонийные соли органических кислот и аминокислоты;
2. Анаэробные условия;
3. Температура. По отношению к температуре сахаромицеты делятся на низовые и верховые дрожжи. Дрожжи верхового брожения вызывают бурное и быстрое брожение при температуре 20-28 °С. При этом они всплывают на поверхность под действием выделяющегося диоксида углерода. Низовые дрожжи осуществляют более спокойное брожение, которое ведут при 5-10°С;
4. Концентрация этилового спирта. Этиловый спирт, накапливающийся в среде, оказывает неблагоприятное действие на дрожжи. Угнетающее действие спирт оказывает уже при концентрации в среде 2-5 % об., а при 12-15 % об. брожение прекращается;
5. Активная кислотность среды (рН). Спиртовое брожение протекает в кислой среде (рН 4-4,5). При подщелачивании среды до рН 8 дрожжи в качестве основного продукта брожения накапливают не спирт, а глицерин. Это так называемая глицериновая форма спиртового брожения:
2С6Н1206 > 2CН20HCHOHСН20Н+СНзСН20Н+СНзСООН+2С02 + Е
глюкоза глицерин этиловый уксусная
спирт кислота
Практическое использование спиртового брожения
Спиртовое брожение лежит в основе производства этилового спирта, пива, вина, используется в хлебопечении. Совместно с молочнокислым брожением оно используется при производстве кваса, кефира, кумыса. Основными потребителями этилового спирта являются пищевая и химическая промышленность, а также медицина.
Молочнокислое брожение: гомо- и гетероферментативное. Химизм процесса. Характеристика молочнокислых бактерий. Практическое значение молочнокислого брожения
Молочнокислое брожение - процесс превращения углеводов молочнокислыми бактериями в молочную кислоту.
Возбудители молочнокислого брожения подразделяются на 2 группы:
гомоферментативные и гетероферментативные, которые в свою очередь вызывают гомоферментативное и гетероферментативное молочнокислое брожение. В основу этого деления положены конечные продукты, образуемые при гомо- и гетероферментативном молочнокислом брожении.
Гомоферментативное молочнокислое брожение и его возбудители. При гомоферментативном молочнокислом брожении образуется преимущественно молочная кислота.
Химизм процесса:
С6H12О6 > 2 СНзСНОНСООН + Е
глюкоза молочная кислота
К гомоферментативным молочнокислым бактериям относятся молочнокислые стрептококки: Streptococcus lactis, Streptococcus cremoris, Streptococcus thermophilus, а также молочнокислые палочки: Lactobacillus delbrueckii, Lactobacillus acidophilus, Lactobacilus bulgaricus, Lactobacillus ptantarum.
Гетероферментативное молочнокислое брожение и его возбудители.
Конечными продуктами при этом брожении являются не только молочная кислота, но и побочные продукты: уксусная кислота, этиловый спирт, янтарная кислота, диоксид углерода, водород. Суммарное уравнение процесса имеет вид:
С6H12О6 > СНзСНОНСООН + СООНСН2СН2СООН + СНзСООН +
глюкоза молочная кислота янтарная кислота уксусная кислота
+ СНзСН2ОН + C02+Н2 +Е
этиловый спирт
К гетероферментативным молочнокислым бактериям относятся бактерии рода Streptococcus: Streptococcus diacetilactis, Streptococcus acetoinicus; бактерии рода Lactobacillus: Lactobacillus brevis, Lactobacillus helveticus, а также бактерии рода Leuconostoc: Leuconostoc mesenteroides, Leuconostoc cremoris.
Характеристика молочнокислых бактерий
Все молочнокислые бактерии грамположительные, факультативные анаэробы. Среди молочнокислых бактерий есть мезофилы (предпочитают температуру около 30 °С) и термофилы (Streptococcus thermophilus, Lactobacillus bulgaricus), оптимальной температурой для которых является температура около 40-50 °С.
Молочнокислые бактерии отличает высокая требовательность к питательной среде: они нуждаются в полном наборе готовых аминокислот, в витаминах группы В12, в компонентах нуклеиновых кислот, что и определяет их распространение в природе.
Молочнокислые бактерии обитают, в основном, на растениях, плодах, овощах, в желудочно-кишечном тракте, в молоке и молочных продуктах, а также в местах разложения растительных остатков.
В качестве источника углерода используют лактозу, мальтозу.
Оптимальное значение рН для развития молочнокислых бактерий около 4. Молочнокислые бактерии образуют от 1 до 3,5 % молочной кислоты.
Практическое значение молочнокислого брожения
Оно находит широкое применение при изготовлении кисломолочных продуктов, сливочного масла, маргарина, используется в хлебопечении, при квашении овощей, силосовании кормов и производстве молочной кислоты.
Многие мезофильные гетероферментативные молочнокислые бактерии и лейконосток являются вредителями в производстве спирта, пива, вина, безалкогольных напитков, сахара и др.
Пропионовокислое брожение. Химизм процесса, возбудители. Практическое использование пропионовокислого брожения
Вызывается пропионовокислыми бактериями, относящимися к роду Propionibacterium.
Единственным источником энергии для пропионовокислых бактерий является процесс сбраживания различных веществ: моносахаридов (гексоз, пентоз), молочной, яблочной кислот, глицерина и других в пропионовую и уксусную кислоту, диоксид углерода и воду.
Химизм пропионовокислого брожения:
ЗС6H12О6 > 4СНзCH2СООН + 2СНзСООН + 2CO2 + 2H2O +Е
глюкоза пропионовая уксусная
кислота кислота
Пропионовокислые бактерии - небольшие, неподвижные грамположительные палочки, не образующие спор, факультативные анаэробы. Обитают, в основном, в кишечном тракте жвачных животных и в молоке.
Практическое применение пропионовокислого брожения
Пропионовокислое брожение используется в сыроделии. Летучие кислоты (пропионовая и уксусная) придают сырам кисловато-острый вкус, а выделяющийся в виде пузырьков углекислый газ образует «глазки» в сыре.
У пропионовокислых бактерий обнаружена способность к активному синтезу витамина В1, поэтому они используются в качестве продуцента в микробиологической промышленности для получения этого витамина.
Маслянокислое брожение. Химизм процесса. Возбудители. Практическое использование и роль в процессах порчи пищевых продуктов
Маслянокислое брожение - анаэробное окисление органических веществ маслянокислыми бактериями в масляную кислоту.
Химизм процесса:
С6H12О6 > СНзСН2СН2СООН + 2 С02 + 2Н2 +Е
глюкоза масляная кислота
Возбудители маслянокислого брожения
Маслянокислые бактерии относятся к роду Clostridium. Это крупные, подвижные грамположительные палочки, образующие устойчивые споры, при образовании которых клетка приобретает форму веретена или теннисной ракетки, облигатные (строгие) анаэробы.
Маслянокислые бактерии широко распространены в природе. Обитают там, где много органических веществ и нет доступа воздуха - в иловых отложениях водоемов, навозе, почве и т.д.
Эти бактерии могут сбраживать многие углеводы, в т. ч. (крахмал, гликоген, пектиновые вещества, целлюлозу), спирты (этиловый, маннит, глицерин) и аминокислоты. По характеру используемых субстратов маслянокислые бактерии делятся на две группы: сахаролитические клостридии, которые сбраживают в основном углеводы (Ctostridium butyricum) и протеопитические клостридии, которые разлагают белки и пептоны до аминокислот и затем их сбраживают (Clostridium sporogenes, Clostridium subterminalis, Clostridium perfringens, Clostridium botulinum).
Практическое значение маслянокислого брожения. Маслянокислое брожение используется в промышленности для получения масляной кислоты (продуцент Clostridium butyricum). Хотя масляная кислота обладает резким, неприятным запахом прогорклого масла, ее эфиры отличаются приятным ароматом: метиловый эфир имеет яблочный запах, этиловый - грушевый, амиловый - ананасный. Эфиры масляной кислоты используют в кондитерской, безалкогольной, парфюмерной промышленности.
Маслянокислые бактерии участвуют в круговороте веществ в природе. С другой стороны, маслянокислые бактерии могут вызвать массовую гибель картофеля и овощей, вспучивание сыров, порчу консервов, прогоркание масла и маргарина, увлажненной муки и других продуктов, чем наносят большой урон народному хозяйству. Борьба с маслянокислыми бактериями затруднена из-за высокой устойчивости спор.
Уксуснокислое брожение. Химизм процесса. Возбудители. Практическое использование и роль в процессах порчи пищевых продуктов
Уксуснокислое брожение - аэробное окисление углеводов и спирта уксуснокислыми бактериями в уксусную кислоту. Таким образом, это брожение относится к неполным окислениям или окислительным брожениям. Суммарное уравнение процесса имеет вид:
С6H12O6 + 2 02 > 2СНзСООН + 2CO2 + 2Н20 + Е или
глюкоза уксусная кислота
СНзСН2ОН + O2 > СНзСООН + Н2О + Е
этиловый спирт уксусная кислота
Возбудителями уксуснокислого брожения являются уксуснокислые бактерии, относящиеся к двум родам: Gluconobacter и Acetobacter. Это короткие, подвижные грамотрицательные палочки, не образующие спор. Оптимальная температура развития - 30 ?С. Бактерии кислотоустойчивы, оптимальное значение рН для развития 5,4-6,3. Обитают на цветах, зрелых фруктах, ягодах, овощах, в прокисших соках, пиве, вине, квашеных овощах.
Практическое значение уксуснокислого брожения
Используется в промышленности для получения натурального спиртового уксуса (продуцент Acetobacter aceti). Кроме того, производят также винный уксус (из вина) и яблочный уксус (из яблочного сока).
С другой стороны, уксуснокислые бактерии являются вредителями спиртового, пивоваренного, консервного производств, виноделия, производства безалкогольных напитков.
Окисление жиров и высших жирных кислот микроорганизмами. Микроорганизмы - возбудители порчи жиров
Жиры представляют собой сложные эфиры глицерина и высших жирных кислот.
Так как жиры - высокомолекулярные соединения, то в неизменном виде внутрь клетки они попасть не могут. Поэтому вначале происходит гидролиз жира при участии фермента липазы, которая имеется у многих микроорганизмов. В результате образуется глицерин и высшие жирные кислоты. Этот процесс не обеспечивает клетки энергией, поэтому образовавшиеся продукты гидролиза используются различными микроорганизмами в качестве энергетического материала. Процесс протекает только в аэробных условиях.
Глицерин подвергается окислению уксуснокислыми бактериями до диоксиацетона и далее микроскопическими грибами до углекислого газа и воды.
Высшие жирные кислоты окисляются труднее и медленнее. В процессе окисления образуются промежуточные продукты: кетоны, альдегиды, оксикислоты и др., которые придают окисленному жиру прогорклый вкус.
Возбудители. Наиболее активными микроорганизмами в процессе разложения жира являются бактерии рода Pseudomonas, особенно флуорисцирующие (продуцирующие пигменты) и мицелиальные грибы: Oidium lactis, многие виды Aspergillus, Penicillium.
Практическое значение процесса.
Процесс разложения жиров отмерших животных и растений происходит постоянно и имеет большое значение в круговороте веществ в природе.
С другой стороны, в пищевой промышленности микроорганизмы, окисляющие жиры приносят вред, вызывая порчу пищевых жиров и жира, содержащихся в различных пищевых продуктах.
Следует учитывать, что многие жирорасщепляющие микроорганизмы являются психрофилами, поэтому способны развиваться при хранении пищевых продуктов в охлажденном состоянии.
Гнилостные процессы. Понятие об аэробном и анаэробном гниении. Возбудители. Роль гнилостных процессов в природе, в пищевой промышленности
Гниение - процесс глубокого разложения белковых веществ. Одним из конечных продуктов разложения белковых веществ является аммиак, поэтому процесс гниения называют аммонификацией.
Белки - высокомолекулярные соединения, поэтому вначале они подвергаются внеклеточному расщеплению протеолитическими ферментами микроорганизмов, которые являются экзоферментами.
Расщепление белков происходит ступенчато:
белки > пептоны > полипептиды > аминокислоты
Образовавшиеся аминокислоты диффундируют внутрь клеток и могут быть использованы как в конструктивном, так и в энергетическом обмене.
Расщепление аминокислот начинается путем их дезаминирования и декарбоксилирования. При дезаминировании аминокислот происходит отщепление аминогруппы с образованием аммиака, органических кислот (масляной, уксусной, пропионовой, окси- и кетокислот) и высокомолекулярных спиртов.
В дальнейшем образование конечных продуктов зависит от условий протекания процесса и от вида микроорганизма - возбудителя гниения.
Аэробное гниение. Протекает в присутствии кислорода воздуха. Конечными продуктами аэробного гниения являются, кроме аммиака, диоксид углерода, сероводород и меркаптаны (обладающие запахом тухлых яиц). Сероводород и меркаптаны образуются при разложении серосодержащих аминокислот (цистина, цистеина, метионина).
Анаэробное гниение. Протекает в анаэробных условиях. Конечными продуктами анаэробного гниения являются продукты декарбоксилирования аминокислот (отнятие карбоксильной группы) с образованием дурно пахнущих веществ: индола, акатола, фенола, крезола, диаминов (их производные являются трупными ядами и могут вызывать отравления).
Возбудители гнилостных процессов
Возбудителями аэробного гниения являются спорообразующие бактерии рода Bacillus: Bacillus mycoides (грушевидная бацилла); Bacillus megaterium (капустная бацилла); Bacillus mesentericus (картофельная палочка); Bacillus subtilis (сенная палочка), а также неспорообразующие палочки: Serrate marcencens (чудесная палочка); Proteus vulgaris (палочка протея); Escherichia coli (кишечная палочка) и другие микроорганизмы.
Возбудителями анаэробного гниения являются анаэробные споровые палочки рода Clostridium (протеолитические клостридии): Clostridium sporogenes, Clostridium subterminalis, Clostridium perfringens, Clostridium botulinum.
Практическое значение гнилостных процессов
Гнилостные микроорганизмы нередко наносят большой ущерб народному хозяйству, вызывая порчу богатых белками продуктов питания: мяса и мясопродуктов, яиц, молока, рыбы и рыбопродуктов и др.
В природе (в воде, почве) гнилостные бактерии активно разлагают отмершие животные и растительные ткани, минерализуют белковые вещества и тем самым играют важную роль в круговороте углерода и азота.
Разложение клетчатки и пектиновых веществ микроорганизмами
Разложение пектиновых веществ близко к маслянокислому брожению. Протекает в анаэробных условиях. Под воздействием пектолитических ферментов микроорганизмов прототопектин превращается в растворимый пектин, который разлагается с образованием галактуроновых кислот, углеводов (ксилозы, галактозы, арабинозы), метилового спирта и других веществ. Далее сахара сбраживаются бактериями рода Clostridium с образованием масляной и уксусной кислот, диоксида углерода и водорода.
Все эти процессы приводят к минерализации (распаду) пораженных объектов (плодов, овощей) и к другим видам порчи.
Брожение клетчатки состоит в разложении ее в анаэробных условиях с образованием масляной, уксусной кислот, углекислого газа, этилового спирта, водорода. Этот процесс осуществляют спорообразующие мезофильные и термофильные целлюлозные бактерии, относящиеся к роду Clostridium.
При аэробном разложении клетчатки конечными продуктами являются диоксид углерода и вода. К аэробным микроорганизмам, окисляющим клетчатку, относятся мезофильные аэробные бактерии родов Cytophaga, Anginococcus. Cellvibrio, Pseudomonas, актиномицеты рода Streptomyces и микроскопические грибы (родов Penicillium, Alternaria, Fusarium и др.).
В природе пектиноразлагающие и целлюлозные бактерии играют большую роль в процессах разложения растительных остатков и, следовательно, в круговороте углерода.
Пищевые заболевания
Пищевые заболевания - заболевания, причиной которых служит пища, инфицированная токсигенными микроорганизмами.
Таблица. Сравнительная характеристика пищевых заболеваний
№ |
Пищевые инфекции |
Пищевые отравления |
|
1. |
Заразные заболевания. Могут передаваться и контактным путем. |
Незаразные заболевания. Контактным путем не передаются. |
|
2. |
Возникают и передаются не только через пищу, но и через воду, воздух и другими путями. |
Пища играет основную роль в возникновении и распространении. |
|
3. |
Возбудители в пищевых продуктах не размножаются, но могут длительное время сохраняться. |
Возбудители размножаются в пищевых продуктах. |
|
4. |
Инкубационный период длительный - от нескольких дней и недель до месяцев. |
Инкубационный период сравнительно короткий - от нескольких часов до 1 - 3 суток. |
Пищевые продукты - благоприятная среда для развития микроорганизмов - сапрофитов, в том числе и возбудителей пищевых отравлений. Кроме того, через пищевые продукты могут передаваться и возбудители инфекций - заразных заболеваний, которые непосредственно в пищевых продуктах не размножаются. Таким образом, пищевые продукты при неправильном технологическом режиме их производства и хранения могут служить причиной пищевых заболеваний - пищевых инфекций и пищевых отравлений.
Патогенные и условно - патогенные микроорганизмы. Их основные свойства. Химический состав и свойства микробных токсинов
Возбудителями пищевых инфекций являются патогенные микроорганизмы, к основным свойствам которых относятся:
- патогенность - потенциальная способность определенного вида микробов приживаться в макроорганизме, размножаться и вызывать определенное заболевание. Патогенность является видовым признаком болезнетворных микроорганизмов. Для сравнения и оценки патогенности того или иного микроорганизма используется понятие вирулентность - степень их болезнетворного действия. Вирулентность не является постоянным признаком для данного микроорганизма и под влиянием условий внешней среды (действие света, высушивание) она может быть повышена, понижена и даже утрачена.
- токсикогенность - особенность патогенных микроорганизмов вырабатывать токсины. Токсины обуславливают болезнетворное действие микроорганизмов.
Возбудителями пищевых отравлений являются условно - патогенные микроорганизмы. Эти организмы, постоянно обитающие в организме, в окружающей среде и в обычных условиях не вызывающие заболеваний. Однако, при снижении иммунитета организма эти микроорганизмы могут в больших количествах накапливаться в организме и вызывать незаразные заболевания воспалительного характера. Условно - патогенные микроорганизмы могут размножаться и в пищевых продуктах и, накапливаясь в больших количествах, являться причиной пищевых отравлений.
Общим свойством патогенных и условно - патогенных микроорганизмов является их способность образовывать токсины.
Микроорганизмы могут вырабатывать эндо- и экзотоксины, которые отличаются по химической природе и характеру действия на микроорганизм.
Эндотоксины (внутренние токсины) прочно связаны с микробной клеткой, при жизни микроорганизма не выделяются в окружающую среду. Эндотоксины образуют только грамотрицательные бактерии. По химической природе это липополисахаридный комлпекс, который входит в состав липополисахаридного комлпекса клеточной стенки грамотрицательных микроорганизмов.
Экзотоксины (внешние токсины) выделяются микроорганизмами в процессе их жизнедеятельности. Экзотоксины образуют в основном грамположительные бактерии.
По характеру действия на организм эндотоксины отличаются от экзотоксинов тем, что не обладают строгой специфичностью и вызывают общие признаки отравления: головную боль, слабость, одышку, повышение температуры, кишечные расстройства. Экзотоксины строго специфичны - действуют только на определенные клетки и ткани, нервные клетки, мышцу сердца и т.д. Кроме того, эндотоксины более устойчивы к высокой температуре (выдерживают длительное кипячение и даже автоклавирование в течение 30 мин.), а экзотоксины разрушаются уже при 60 - 80 С в течение 10 - 60 мин.
Инфекции. Источники и пути передачи инфекции. Виды пищевых инфекций и характеристика возбудителей. Профилактика пищевых инфекций
Инфекционный процесс - сложный биохимический процесс взаимодействия макро- и микроорганизма, который сопровождается совокупностью разнообразных симптомов, возникающих в результате внедрения и размножения патогенных микроорганизмов.
Инфекционное заболевание проявляется не сразу, а через определенное время после проникновения патогенного микроорганизма. Время от внедрения его в организм до проявления первых признаков болезни называется инкубационным периодом (скрытым периодом).
Источники инфекции - больной человек или животное, а также бактерио-, бацилло и вируносители - люди и животные, невосприимчивые к данному заболеванию, а также перенесшие это заболевание.
Пути передачи инфекции:
Прямой контакт (от больного человека к здоровому).
Косвенные пути (фекально - оральный - через воздух, воду, почву, пищевые продукты, загрязненные руки, предметы обихода; воздушно - капельный, трансмисионный - переносчиками являются насекомые, грызуны).
Пищевые инфекции - такие инфекционные заболевания, при которых пищевые продукты являются только передатчиками токсигенных микроорганизмов. Таким образом, в пищевых продуктах патогенные микроорганизмы не размножаются, но могут длительное время сохранять свою жизнеспособность и вирулентность.
Пищевые инфекции делятся на кишечные инфекции и зооантропонозы.
Кишечные инфекции. К ним относятся брюшной тиф, паратифы А и В, дизентерия, холера. Возбудители этих заболеваний выделяются во внешнюю среду с фекалиями, которые попадают в воду и на пищевые продукты.
Возбудителями брюшного тифа и паратифа являются бактерии рода Salmonella. Это грамотрицательные мелкие палочки с закругленными концами, спор и капсул не образуют, подвижны. Инкубационный период этих заболеваний 10 - 20 суток. Болезнь сопровождается воспалением тонких кишок и расстройством желудка. Бактериальная дизентерия вызвана попаданием в макроорганизм бактерий рода Shigella. Это мелкие палочки, сходные с возбудителями брюшного тифа и паратифов, неподвижны, спор и капсул не образуют, грамотрицательны. Характер протекания инфекционного процесса при бактериальной дизентерии следующий: инкубационный период составляет от 2 до 7 суток, болезнь сопровождается воспалением толстых кишок.
Возбудителем холеры является Vibrio cholerae, который имеет форму палочки, изогнутой в виде запятой, подвижной, не образующей спор и капсул, грамотрицательной. Холеный вибрион характеризуется большим полиморфизмом, может встречаться в виде длинных нитей, крупных шаров, мелких гранул. Инкубационный период заболевания - от нескольких часов до нескольких суток.
Возбудители кишечных инфекций сохраняют свою жизнеспособность на пищевых продуктах длительное время (от 10 - 20 дней до нескольких месяцев).
В предупреждении кишечных инфекций большое значение имеет соблюдение санитарно - гигиенических правил и личной гигиены работников на пищевых предприятиях, предохранение пищевых продуктов от контакта с бактерионосителями, борьба с мухами.
Подобные документы
Болезнетворные (патогенные) микроорганизмы и непатогенные (сапрофиты). Классификация микробиологии. Изучение микроорганизмов тел космонавтов и подводчиков. Воздействие космических лучей на микроорганизмы. Значение микробиологии в деятельности врача.
презентация [2,0 M], добавлен 03.04.2012История развития микробиологии. Эвристический, морфологический, физиологический, иммунологический и молекулярно-генетический этапы развития микробиологии. Диссертация Луи Пастера. Работы в области химии, брожения. Изучение инфекционных заболеваний.
презентация [1,5 M], добавлен 21.12.2016Питательные среды в микробиологии, их классификация и разновидности, сферы и особенности использования. Культивирование аэробных и анаэробных микроорганизмов. Методы количественного учета микроорганизмов, основные правила и условия хранения их культур.
реферат [24,6 K], добавлен 25.03.2013Возникновение микробиологии как науки. Изобретение микроскопа Левенгуком. Изучение природы брожения. Заслуги Р. Коха в изучении микроорганизмов как возбудителей заразных болезней. Исследование инфекции и иммунитета. Развитие ветеринарной микробиологии.
презентация [967,8 K], добавлен 27.05.2015Биография Антони ван Левенгука, его роль в развитии микробиологии. Совершенствование конструкции микроскопа, его использование в микробиологических исследованиях. Изучение Левенгуком причинных связей и способов появления и размножения микроорганизмов.
реферат [250,4 K], добавлен 28.10.2015Изучение предмета, основных задач и истории развития медицинской микробиологии. Систематика и классификация микроорганизмов. Основы морфологии бактерий. Исследование особенностей строения бактериальной клетки. Значение микроорганизмов в жизни человека.
лекция [1,3 M], добавлен 12.10.2013Понятие микробиологии как науки, ее сущность, предмет и методы исследования, основные цели и задачи, история зарождения и развития. Общая характеристика микроорганизмов, их классификация и разновидности, особенности строения и практическое использование.
реферат [20,9 K], добавлен 04.05.2009Морфология, классификация и физиология микроорганизмов, распространение в природе, влияние условий внешней среды на их развитие. Пищевые отравления бактериального и немикробного происхождения и их профилактика. Микробиология важнейших пищевых продуктов.
методичка [91,3 K], добавлен 27.01.2013Обзор способов размножения бактерий, актиномицетов, дрожжей, плесневых грибов. Влияние лучистой энергии и антисептиков на развитие микроорганизмов. Роль пищевых продуктов в возникновении пищевых заболеваний, источники инфицирования, меры профилактики.
контрольная работа [21,2 K], добавлен 24.01.2012Изучение особенностей микроорганизмов. Микроэкологический риск при использовании высоких технологий. Характеристика технологии приготовления препаратов и опытов. Правила микроскопирования. Влияние гигиенических навыков на распространение микроорганизмов.
научная работа [23,6 K], добавлен 06.09.2010