Возникновение европейской науки

Философско-методологическая манифестация научной революции. Опытно-индуктивный метод Бэкона. Самосознание и материя у Декарта. Модели Аристарха Самосского и Коперника. Переход на новую систему летоисчисления. Распространение принципов научности.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 05.05.2012
Размер файла 26,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Общеустановленным считается положение о том, что именно в XVII веке возникла европейская наука (прежде всего это относится к классическому естествознанию), причем "в начале века ее еще не было, в конце века она уже была". Характерно, что возникла она сразу во взаимосвязи всех составляющих: теоретического знания, его логического обоснования и математического описания, экспериментальной проверки, социальной структуры с сетью научных коммуникаций и общественным применением.

Основное внимание при анализе данного периода уделяется рассмотрению соотношения когнитивных, социальных и психологических факторов процесса возникновения науки Нового времени, ее отличию от того, что может быть названо "не наукой". Источниками для изучения темы являются в первую очередь изданные труды творцов науки естественнонаучного, гуманитарного и технического направлений Нового времени - от Ф. Бэкона, Р. Декарта, Г. Галилея до И. Ньютона.

Рассмотрим географию периода. Она включает в себя немало европейских стран и городов, но представляется возможным выделение Италии в начале, и Англии в конце периода, как главных научных центров.

Хронология периода. В данной теме используется специфический критерий периодизации, связанный с науковедческим пониманием небесспорного феномена научной революции. Условно могут быть выделены три этапа. Первый, связанный, прежде всего, с деятельностью Г. Галилея - формирование новой научной парадигмы; второй - с Р. Декартом - формирование теоретико-методологических основ новой науки; и третий - "главным" героем которого был И. Ньютон, - полное завершение новой научной парадигмы - начало современной науки.

Развитию науки в XVII веке посвящено огромное число работ различного плана: скрупулезно изданных многотомных трудов Галилея, Декарта, Лейбница, Ньютона, детальных биографий, переписок, исторических исследований естественнонаучного, философского и социологического характера.

И хотя не все согласны с определением "научная революция", впервые введенным в 1939 году А. Койре и впоследствии столь удачно использованным Т. Куном, но все сходятся в том, что именно в XVII веке была создана наука - классическая наука современного типа. В связи с этим,

XVII веке как целостное историческое явление, чрезвычайно важен для понимания процессов генезиса и современного состояния науки.

1. Философско-методологическая манифестация научной революции

Только спустя несколько веков, оказалось возможным выделить какие-либо тенденции в XVII веке. "Внутри" же него, процессы были мало связаны друг с другом. Мощное эмпирическое движение в естествознании зародилось само по себе - оно отвечало какой-то внутренней потребности познания; философско - методологическое осознание этого "внутреннего движения" развивалось также само собой, и то, что сегодня мы видим их тождественность - весомый аргумент в обосновании научности как таковой.

Первыми "концептуалистами" Нового времени принято считать Фрэнсиса Бэкона (1561 - 1626) и Рене Декарта (1596 - 1650).

Фрэнсис Бэкон - считается основателем опытной науки Нового времени. Он был первым философом, поставившим перед собой задачу создать научный метод. В его философии впервые сформулированы главные принципы, характеризующие философию Нового времени.

С самого начала своей творческой деятельности Бэкон выступил против господствовавшей в то время схоластической философии и выдвинул доктрину "естественной" философии, основывающейся на опытном познании. Взгляды Бэкона сформировались на основе достижений натурфилософии Возрождения и включали в себя натуралистическое миросозерцание с основами аналитического подхода к исследуемым явлениям и эмпиризмом. Он предложил обширную программу перестройки интеллектуального мира, подвергнув резкой критике схоластические концепции предшествующей и современной ему философии.

Бэкон пробовал привести "границы умственного мира" в соответствие со всеми теми грандиозными достижениями, которые происходили в современном Бэкону обществе XV-XVI веков, когда наибольшее развитие получили опытные науки. Бэкон сформулировал решение поставленной задачи в виде попытки "великого восстановления наук", которую изложил в трактатах: "О достоинстве и приумножении наук" (самом большом своем произведении), "Новом Органоне" (его главном произведении) и других работах по "естественной истории", рассматривающих отдельные явления и процессы природы.

Понимание науки у Бэкона включало, прежде всего, новую классификацию наук, в основные принципы которой он положил такие способности человеческой души, как память, воображение (фантазия), разум. Соответственно этому главными науками, по Бэкону, должны быть история, поэзия, философия. Высшая задача познания всех наук, согласно Бэкону, - господство над природой и усовершенствование человеческой жизни. По словам главы "Дома Соломона" (своего рода исследовательского центра, Академии, идея которого была выдвинута Бэконом в утопическом романе "Новая Атлантида"), "целью нашего общества является познание причин и скрытых сил всех вещей и расширение власти человека над природою, покуда все не станет для него возможным".

Критерий успехов наук - те практические результаты, к которым они приводят. "Плоды и практические изобретения суть как бы поручители и свидетели истинности философий". Знание - сила, но только такое знание, которое истинно. Поэтому Бэкон проводит различение двух видов опыта: плодоносного и светоносного. Первый - это такие опыты, которые приносят непосредственную пользу человеку, светоносный - те, цель которых состоит в познании глубоких связей природы, законов явлений, свойств вещей. Второй вид опытов Бэкон полагал более ценными, так как без их результатов невозможно осуществить плодоносные опыты. Недостоверность получаемого нами знания обусловлена, считает Бэкон, сомнительной формой доказательства, которая опирается на силлогистическую форму обоснования идей, состоящую из суждений и понятий. Однако понятия, как правило, образуются недостаточно обоснованно. В своей критике теории аристотелевского силлогизма Бэкон исходит из того, что используемые в дедуктивном доказательстве общие понятия - следствие опытного знания, полученного исключительно поспешно. Со своей стороны, признавая важность общих понятий, составляющих фундамент знаний, Бэкон считал, что главное - это правильно образовывать эти понятия, т.к. если это делается поспешно, случайно то нет прочности и в том, что на них построено. Главным шагом в реформе науки, предлагаемом Бэконом, должно быть совершенствование методов обобщения, создания новой концепции индукции.

Опытно-индуктивный метод Бэкона состоял в постепенном образовании новых понятий путем истолкования фактов и явлений природы. Только с помощью такого метода, по мнению Бэкона можно открывать новые истины, а не топтаться на месте. Не отвергая дедукцию, Бэкон так определял различие и особенности этих двух методов познания: "Два пути существуют и могут существовать для отыскания и открытия истины. Один воспаряет от ощущений и частностей к наиболее общим аксиомам и, идя от этих оснований и их непоколебимой истинности обсуждает и открывает средние аксиомы. Этим путем и пользуются ныне. Другой же путь выводит аксиомы из ощущений и частностей, поднимаясь непрерывно и постепенно пока, наконец, не приводит к наиболее общим аксиомам. Это путь истинный, но не испытанный".

Хотя проблема индукции ставилась и раньше предшествовавшими философами, только у Бэкона она приобретает главенствующее значение и выступает первостепенным средством познания природы. В противовес индукции через простое перечисление, распространенное в то время он выдвигает на передний план истинную, по его словам, индукция, дающую новые выводы, получаемые не только на основании наблюдения подтверждающих фактов, сколько в результате изучения явлений противоречащих доказываемому положению. Один-единственный случай способен опровергнуть необдуманное обобщение. Пренебрежение к так называемым инстанциям по Бэкону, - главная причина ошибок, суеверий, предрассудков.

В индуктивный метод Бекона в качестве необходимых этапов входят сбор фактов и их систематизация. Бэкон выдвинул идею составления 3-х таблиц исследования: таблиц присутствия, отсутствия, и промежуточных ступеней. Если - возьмем любимый Бэконом пример - кто-то хочет найти формулу тепла, то он собирает в первой таблице различные случаи тепла, стремясь отсеять все то, что с теплом не связано. Во второй таблице он собирает вместе случаи, которые подобны случаям в первой, но не обладают теплом. Например, в первую таблицу могут быть включены лучи солнца, которые создают тепло, во вторую лучи, исходящие от луны или звезд, которые не создают тепла. На этом основании можно выделить все те вещи, которые наличествуют, когда тепло присутствует, наконец, в третьей таблице собирают случаи, в которых тепло присутствует в различной степени. Используя эти три таблицы вместе мы можем, согласно Бэкону, выяснить причину, которая лежит в основе тепла, а именно - по мысли Бэкона - движение. В этом проявляется принцип исследования общих свойств явлений, их анализ.

В индуктивный метод Бэкона входит и проведение эксперимента. При этом важно варьировать эксперимент, повторять его, перемещать из одной области в другую, менять обстоятельства на обратные и связывать с другими. После этого можно перейти к решающему эксперименту.

Бэкон выдвинул опытное обобщение фактов в качестве стержня своего метода, однако он не был защитником одностороннего его понимания. Эмпирический метод Бэкона отличает то, что он в максимальной степени опирается на разум при анализе фактов. Бэкон сравнивал свой метод с искусством пчелы, которая, добывая нектар из цветов, перерабатывает его в мед собственным умением. Он осуждал грубых эмпиритиков, которые подобно муравью собирают все, что им попадается на пути (имея ввиду алхимиков), а также тех умозрительных догматиков, которые, как паук, ткут паутину знания из себя (имея ввиду схоластов).

В теории познания, для Бэкона, главное - исследовать причины явлений. Причины могут быть разными - или действующими, которыми занимается физика, или конечными, которыми занимается метафизика.

Методология Бэкона в значительной степени предвосхитила разработку индуктивных методов исследования в последующие века, вплоть до XIX века однако Бэкон в своих исследованиях недостаточно подчеркивал роль гипотезы в развитии знания, хотя в его времена уже зарождался гипотетико-дедуктивный метод осмысления опыта, когда выдвигается то или иное предположение, гипотеза и из нее выводятся различные следствия. При этом дедуктивно осуществляемые выводы постоянно соотносятся с опытом. В этом отношении большая роль принадлежит математике, которой Бэкон не владел в достаточной степени, да и математическое естествознание в то время только формировалось.

В конце своей жизни Бэкон написал книгу об утопическом государстве "Новая Атлантида" (опубликована посмертно в 1627 г.). В этом произведении он изобразил будущее государство, в котором все производительные силы общества преобразованы при помощи науки и техники. В нем Бэкон описывает различные удивительные научно-технические достижения, преображающие жизнь человека: здесь и комнаты чудесного исцеления болезней и поддержания здоровья, и лодки для плавания под водой, и различные зрительные приспособления, и передача звуков на расстояния, и способы улучшения породы животных, и многое. Некоторые из описываемых технических новшеств осуществились на практике, другие остались в области фантазии, но все они свидетельствуют о неукротимой вере Бэкона в силу человеческого разума. На современной языке его можно было бы назвать технократом, т.к. он полагал, что все современные ему проблемы можно решить с помощью науки.

Несмотря на то, что он придавал большое значение науке и технике в жизни человека. Бэкон считал, что успехи науки касаются лишь "вторичных причин", за которыми стоит всемогущий и непознаваемый Бог. При этом Бэкон все время подчеркивал, что прогресс естествознания, хотя и губит суеверия, но укрепляют веру. Он утверждал, что "легкие глотки философии толкают порой к атеизму, более же глубокие возвращают к религии".

Влияние философии Бэкона на современное ему естествознание и последующее развитие философии огромно. Его аналитический научный метод исследования явлений природы, разработка концепции необходимости ее экспериментального изучения сыграли свою положительную роль в достижениях естествознания XVI-XVII веков. Логический метод Бэкона дал толчок развитию индуктивной логики. Классификация наук Бэкона была положительно воспринята в истории наук и даже положена в основу разделения наук французскими энциклопедистами. Хотя углубление рационалистической методологии в дальнейшем развитии философии снизило после смерти Бэкона его влияние в XVII веке, в последующие века идеи Бэкона приобрели свое новое звучание. Они не потеряли своего значения вплоть до XX века. Некоторые исследователи даже рассматривают его как предшественника современной интеллектуальной жизни и пророка прагматической концепции истины. Имеется в виду его высказывание: "Что в действии наиболее полезно, то и в знании наиболее истинно".

Декарт ( - французский философ и математик, являясь одним из основоположников "новой философии", основатель картезианства, был глубоко убежден, что на истину "... натолкнется скорее отдельный человек, чем целый народ". При этом он отталкивался от "принципа очевидности" при котором всякое знание должно было проверяться с помощью естественного "света разума". Это предполагало отказ от всех суждений принятых на веру ( например обычаи, примеры, как традиционные формы передачи знаний).

Великий философ, предложивший свою систему координат в математике - декартова - прямоугольная система координат ( хотя у Декарта были и косоугольными и произвольными), предложил и точку отсчета для общественного сознания.

По Декарту научное знание должно было быть построено как единая система в то время как до сих пор оно было лишь собранием случайных истин. Незыблемым основанием (точкой отсчета) такой системы должно было стать наиболее очевидное и достоверное утверждение (своеобразная "истина в последней инстанции"). Декарт считал абсолютно неопровержимым суждение "мыслю, следовательно, существую". Этот аргумент предполагает убеждение в превосходстве умопостигаемого над чувственным, не просто принцип мышления, а субъективно пережитый процесс мышления от которого невозможно отделить собственно мыслящего. Однако самосознание как принцип философии еще не обрело полной автономии - истинность исходного принципа как знания ясного и отчетливого гарантировано у Декарта наличием Бога - существа всемогущего, вложившего в человека естественный свет разума.

Самосознание у Декарта не замкнуто на себя и открыто Богу, который выступает источником мышления: все смутные идеи - продукт человека (а поэтому ложны), все ясные идеи идут от Бога, следовательно истинны. И здесь у Декарта возникает метафизический круг: существование всякой реальности (в том числе и Бога) удостоверяется через самосознание, которое (значимость выводов этого сознания) обеспечивается опять-таки Богом.

Материя по Декарту делима до бесконечности (атомов и пустоты не существует) а движение объяснял с помощью понятия вихрей. Данные предпосылки позволили Декарту отождествить природу с пространственной протяженностью, таким образом оказалось возможным изучение природы представить как процесс ее конструирования (как, например, геометрические объекты). В отличие от Бэкона, Декарт ищет обоснование знания не столько в сфере его практической реализации, сколько в сфере самого знания.

Науку по Декарту конструирует некоторый гипотетический мир и этот вариант мира (научный) равносилен всякому другому, если он способен объяснить явления, данные в опыте т.к. это Бог является "конструктором" всего сущего и он мог воспользоваться для осуществления своих замыслов и этим (научным) вариантом конструкции мира. Такое понимание мира Декартом как системы тонко сконструированных машин снимает различие между естественным и искусственным. (Растение такой же равноправный механизм, как и часы, сконструированные человеком с той лишь разницей, что искусность пружин часов настолько же уступает искусности механизмов растения насколько искусство Высшего Творца отличается от искусства творца конечного (человека)). Впоследствии аналогичный принцип был заложен в теорию моделирования разума - кибернетику: "Ни одна система не может создать систему сложнее себя самой." Таким образом, если мир - механизм, а наука о нем - механика, то процесс познания есть конструирование определенного варианта машины мира из простейших начал, которые находятся в человеческом разуме. В качестве инструмента Декарт предложил свой метод в основу которого легли следующие правила:

. Начинать с простого и очевидного.

· Путем дедукции получать более сложные высказывания.

· Действовать таким образом, чтобы не упустить ни одного звена (непрерывность цепи умозаключений) для чего нужна интуиция, которая усматривает первые начала, и дедукция, которая дает следствия из них.

Как истинный математик Декарт поставил математику основой и образцом метода, и в понятии природы оставил только определения, которые укладываются в математические определения - протяжение (величина), фигура, движение. Важнейшими элементами метода являлись измерение и порядок. Понятие цели Декарт изгнали из своего учения т.к. было устранено понятие души (как посредника между неделимым умом (духом) и делимым телом).

Декарт отождествил ум и душу, называя воображение и чувство модусами ума. Устранение души в ее прежнем смысле позволило Декарту противопоставить две субстанции природу и дух, и превратить природу в мертвый объект для познавания (конструирования) и использования человеком, но при этом возникла серьезная проблема философии Декарта - связи души и тела, и раз все есть суть механизмы - попытался решить ее механистически: в "шишковидной железе" (где находится вместилище души по Декарту) механические воздействия, передаваемые органами чувств достигают сознания.

Последовательным рационалистом Декарт оставался даже при рассмотрении категорий этики - аффекты и страсти он рассматривал как следствие телесных движений, которые (пока они не освещены светом разума) порождают заблуждения разума (отсюда и злые поступки). Источником заблуждения служит не разум а свободная воля, которая заставляет действовать человека там, где разум еще не располагает ясным (т.е. боговым) сознанием.

научный революция бэкон декарт

2. Разрушение старого Космоса

В каждой революции решаются две проблемы: разрушения и созидания (точнее, разрушения для созидания). В содержательном плане научная революция XVII века ознаменовала собой смену картин мира. Поэтому главной предметной областью проходивших процессов была физика и астрономия.

Разрушение-созидание совпадали (правда, в различной степени) в трудах отдельных "героев" научной революции. Если Возрождение выявило тенденцию к разрушению старого Космоса, то, начиная с 1543 года - года выхода книги Н. Коперника (1473 - 1543) "О вращении небесных сфер" - процесс приобретает четкие научные формы.

“Старый космос" - это мир по Аристотелю и Птолемею. Их модели были призваны воспроизвести с максимальной точностью, то что они непосредственно наблюдали на небе, а не истинную картину мира. Космос имеет шаровидную форму, вечен и неподвижен; за его пределами нет ни времени, ни пространства. В центре его - Земля. Он дихотомичен: изменяющийся подлунный мир и совершенно неизменный надлунный. Пустоты нет: в подлунном мире - 4 элемента: земля, вода, воздух, огонь, в надлунном - эфир. Все движения в космосе - круговые, в соответствии с кинематикой Птолемея.

"Новый космос" (по Копернику) начинался с простой модели, совпадавшей с моделью Аристарха Самосского: вращение Земли происходило вокруг оси, центральное положение Солнца - внутри планетной системы. Земля - планета, вокруг которой вращается Луна. Именно эта модель, как пифагорейский символ гармоничного мира вдохновляла и самого Коперника, Галилея, и Кеплера, поскольку соответствовала астрономическим наблюдениям лучше, чем геоцентрическая модель Птолемея. Нельзя сказать, что теория Коперника позволила с большей точностью толковать астрономические наблюдения: в одних отношениях она была более точной, в других менее. А в одном важном отношении она явно противоречила тому, что считалось неоспоримым: она предсказывала наличие параллактического смещения звезд на протяжении года. Ни сам Коперник, ни кто-либо из его предшественников не могли обнаружить такого рода смещений. Коперник объяснял это удаленностью звезд, вследствие чего параллакс слишком мал, чтобы его заметить. Но возникала другая проблема: если при большой удаленность звезд мы их видим достаточно крупными, то по своим размерам они должны превосходить диаметр земной орбиты. Это противоречило здравому смыслу.

Модель Коперника, когда он попытался ее расширить, оказалась малопригодной для практического применения. Гелиоцентрическая модель была столь же громоздкой, как и геоцентрическая. Не отличалась большой точностью, вытекающие из нее выводы о размерах звезд - абсурдными. К тому же, она сохраняла и весь аппарат птолемеевской модели - круговые орбиты, эпициклы и т.д.. Значительно мощнее оказался удар этой модели по христианскому мировоззрению - недаром Мартин Лютер и Джон Донн в своей сатирической поэме "Святой Игнатий, его тайный совет .." всячески поносили католического священника Коперника. Коперник, "остановив Солнце", лишил Землю сакральности центра мироздания.

В практической же деятельности, как до Коперника, так и после него использовалась видоизмененная астрономическая модель Птолемея. Практика включала два основных направления деятельности: реформу календаря и обеспечение навигации.

Переход на новую систему летоисчисления был узаконен папской буллой от 24 февраля 1582 года. Она предписывала всем христианам по всей Европе принять григорианский календарь со следующего года. Необходимость реформы календаря была очевидна с XIV века, но отсутствовали точные астрономические данные. Прежде всего, не была известна истинная величина тропического года (промежуток времени между двумя последовательными прохождениями центра Солнца через точку весеннего равноденствия).

Для ориентации корабля, как и вообще для определения положения планет на небесной сфере, использовались альфонские таблицы, составленные по указанию Альфонса X еще в 1252 году. В 1474 году в Нюрнберге впервые были напечатаны "Эфемериды" Региомонтана, а следующее их издание уже содержало таблицы для решения самой сложной задачи - определения широты места. Все великие мореплаватели XV века - Диас, Васко да Гама, Америго Веспуччи и Колумб пользовались этими таблицами. С их помощью Веспуччи определил в 1499 году долготу Венесуэлы, а Колумб смог поразить туземцев, сообщив им о предстоящем солнечном затмении 29 февраля 1504 года.

3. Новая модель Космоса

Первый "рабочий чертеж" новой модели мира суждено было выполнить Иоганну Кеплеру, на которого с детства выпало столько личных несчастий, что трудно найти более тяжелую судьбу. Кеплер был открытым и последовательным пифагорейцем и совершенство своей астрономической модели искал (и нашел) в сочетании правильных многогранников и описывавших их окружностей, правда, нашел их в своей третьей геометрической модели, отказавшись при этом от круговой орбиты небесных тел.

В книге "Новая астрономия” завершенной в 1607 году, Кеплер приводит два, из своих трех знаменитых законов движения планет:

· Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

· Каждая планета движется в плоскости, проходящей через центр Солнца, причем, линия соединяющая Солнце с планетой (радиус-вектор планеты), за ее равные промежутки времени описывает равные площади.

Эти законы были выведены в следствии изучения движения планеты Марс, когда Кеплер стал помощником датского астронома Тихо Браге. Кеплер внес несколько коренных изменений в геометрическую модель мира Аристарха:

· Планетарные орбиты, которые в модели Аристарха целиком лежали в оной плоскости, следовало поместить в различные плоскости. Плоскости должны проходить через Солнце.

· Принцип равномерного кругового движения, который неизменно лежал в основе математического подхода к астрономии с момента зарождения до конца XVI века, следовало заменить новым - отрезок прямой, соединяющий планету с Солнцем, описывает равные площади за равные промежутки времени.

· Движение планет по круговой орбите заменить эллиптическим, поместив в один из фокусов эллипса Солнце.

Никаких промежуточных моделей за всю предшествующую историю астрономии не было. Для достижения этих идей от Кеплера требовалось беспрецедентные по точности наблюдения, самоотверженность, математический гений.

Кеплер не смог объяснить причины планетных движений: он считал, что их "толкает" Солнце, испуская при своем вращении особые частицы (species immateriata), при этом эксцентричность орбиты определяется магнитным взаимодействием Солнца и планеты. Все его усилия ушли на математическое описание предложенной геометрической модели. Сколь не простой была эта задача, свидетельствует множество безуспешных попыток Кеплера совместить его закон площадей с круговыми формами орбит. В отчаянии он усомнился в верности закона, пока не преодолел стереотип мышления: "Загипнотизированный общепринятым представлением, я заставлял их (планеты) двигаться по кругам, подобно ослам на мельнице".

Закон площадей Кеплера - это первое математическое описание планетарных движений, исключившее принцип равномерного движения по окружности как первооснову:

· Квадраты периодов обращения планет вокруг Солнца соотносятся как кубы больших полуосей их орбит.

Более того, он впервые выразил связь между мгновенными значениями непрерывно изменяющихся величин угловой скорости планеты относительно Солнца и ее расстояния до него. Этот "мгновенный" метод описания, который Кеплер впоследствии вполне осознано использовал при анализе движения Марса, стал одним из выдающихся принципиальных достижений науки XVII века - методом дифференциального исчисления, оформленного Лейбницем и Ньютоном.

В конце концов Кеплеру удалось построить модель Солнечной системы, которая за малым исключением, описывала движение планет и их спутников в пределах точности наблюдений Тихо Браге. Так Кеплер завершил научную программу, начатую последователями Пифагора, и заложил первый камень (вторым - стала механика Галилея) в фундамент, на котором покоится теория Ньютона.

Заключение

Обобщая все вышесказанное можно привести несколько выводов научной революции:

· Старый Космос устарел и был разрушен.

· Новая картина мира, которая заменила старый Космос, больше всего походила на огромные часы - в ней не было ничего живого и неопределенного и, казалось, все можно было рассчитать ("кеплеровский детерминизм").

· Наука обрела свои механизмы и процедуры конструирования теоретического знания, проверки и самопроверки, свой язык, прежде всего, в математической его форме, ставший "плотью" метода.

· Наука стала социальной системой - появились свои профессиональные организации, печатные органы, целая инфраструктура (включая специальный инструментарий). В науке возникли свои нормы и правила поведения, каналы коммуникации.

· Наука через распространение принципов научности становится мощной интеллектуальной силой - школой "правильного" мышления, - влияющей на специальные процессы в самых различных формах.

· Вырастая из мистицизма, наука постепенно преодолевала его.

Размещено на Allbest.ru


Подобные документы

  • Изучение понятия научной революции, глобального изменения процесса и содержания системы научного познания. Геоцентрическая система мира Аристотеля. Исследования Николая Коперника. Законы движения планет Иоганна Кеплера. Основные достижения И. Ньютона.

    презентация [440,1 K], добавлен 26.03.2015

  • Особенности формирования научной картины мира в эпоху становления классического естествознания. Развитие физики как науки. Исследование роли внутренних и внешних факторов в формировании физической картины мира. Новая гелиоцентрическая парадигма Коперника.

    реферат [36,3 K], добавлен 27.12.2016

  • Системность как основная специфическая категория, отличающая научное знание от ненаучного. Теория как высшая организация научного знания. Принципы "верификации" и "фальсификации". Проблема границ научного метода и научности, механизм ее определения.

    контрольная работа [30,2 K], добавлен 28.04.2011

  • Экстенсивные и революционные периоды (научные революции) в развитии науки. Понятие единства науки, отсутствие грани между естественными, техническими, социальными и гуманитарными науками. Современные модели развития науки. Отрасли ненаучного знания.

    реферат [36,3 K], добавлен 15.01.2011

  • Превращение науки в производительную силу, ее переплетение с техникой и производством. Ведущие отрасли научного знания. Специфические характеристики науки. Определение научно-технической революции, ее основные достижения и связь с естествознанием.

    контрольная работа [20,5 K], добавлен 28.01.2011

  • Классическая механика как фундамент естественнонаучной теории. Возникновение и развитие классического естествознания. Система Коперника. Галлилео Галлилей. Исаак Ньютон. Формирование основ классической механики. Метод флюксий.

    контрольная работа [99,8 K], добавлен 10.06.2007

  • Крупнейшие открытия в естествознании на рубеже XIX-XX вв. Вторая половина XX в. как период стремительного развития науки и техники. Основные направления научно-технической революции: изменения в средствах труда, связь науки с материальным производством.

    контрольная работа [18,9 K], добавлен 27.08.2012

  • Наука как способ познания человеком окружающего мира. Отличие науки от искусства и идеологии. Фундаментальные и прикладные науки. Парадигма как метатеоретическое образование, определяющее стиль научных исследований. Научная революция XVI-XVII вв.

    реферат [17,5 K], добавлен 27.08.2012

  • Стадии исторического развития науки. Классический этап научной рациональности и принцип лапласовского детерминизма. Неклассический период и сущность субстанциального подхода. Роль постнеклассического этапа научной рациональности в развитии общества.

    контрольная работа [26,7 K], добавлен 03.03.2009

  • Научная революция и работы Коперника, Кеплера, Галилея и Декарта. Механика Ньютона, атомы микромира и лапласовский детерминизм, теории газов. Электромагнитная картина мира в работах Фарадея, Максвелла и Лоренца. Теория относительности Эйнштейна.

    реферат [599,1 K], добавлен 25.03.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.