Основы вирусологии
Проникновение вирусов в клетку. Культивирование вирусов в организме лабораторных животных. Структурная организация генома клеток. Применение молекулярных вакцин. Вирус катаральной лихорадки овец. Основные события вирусного инфицирования макроорганизма.
Рубрика | Биология и естествознание |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 13.04.2012 |
Размер файла | 31,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство сельского хозяйства Российской Федерации
Ульяновская государственная сельскохозяйственная академия
Кафедра: микробиологии, вирусологии ,эпизоотологии и ВСЭ
Контрольная работа
по предмету: Вирусология
выполнила студентка
3 курса, Факультета Ветеринарной Медицины
Заочного отделения специальность: ВСЭ ССО
срок обучения :4года
Мулендеева М.Г.
09017
Ульяновск 2011
1. МЕХАНИЗМЫ ПРОНИКНОВЕНИЯ ВИРУСОВ В КЛЕТКУ. БИОХИМИЧЕСКИЕ И ЦИТОФИЗИОЛОГИЧЕСКИЕ АСПЕКТЫ
Вирусные инфекции составляют многочисленную группу инфекционных заболеваний, возбудители которой относятся к единственным известным в настоящее время неклеточным формам жизни, паразитирующим на молекулярно-генетическом уровне клетки. Внеклеточно вирион биологически инертен и не способен к репродукции и индукции обменных процессов. После проникновения в клетку вирус начинает функционировать как самостоятельная генетическая единица. Таким образом, основные события вирусного инфицирования макроорганизма происходят на клеточном уровне, и изучение закономерностей течения инфекции в клетке позволяет понять механизмы развития патологического процесса в целом.
Известно, что вирусы млекопитающих проникают в клетки, используя их рецепторы, но только в последнее десятилетие начались исследования молекулярных механизмов поэтапного проникновения этих инфекционных агентов. Данный процесс определяет последующую транспортировку вирусной геномной информации к сайтам ее считывания и репродукции в клетке-хозяине. На настоящий момент термином "вход" обозначается четыре этапа инициации жизненного цикла вирусов в клетках-мишенях.
К первому этапу относится присоединение вирионов к рецепторам клеточной мембраны, при котором происходят первоначальные конформационные изменения белков наружной оболочки вирусов. Ко второму, - взаимодействие с корецепторами посредниками проникновения вируса в клетку. Этот процесс сопровождается дальнейшими конформационными изменениями белковых компонентов вирусной оболочки, а также изменениями клеточной плазмалеммы. Третьим этапом является непосредственное перемещение вируса в клеточной мембране, обозначаемое термином проникновение или "penetration" и осуществляемое с помощью различных механизмов. К заключительному - четвертому, этапу входа относится освобождение генома вируса от нуклеокапсидной оболочки и начало транскрипции его РНК.
На третьем этапе входа вирусов в клетку необходимо остановиться, поскольку именно в последние годы были сделаны определенные открытия, связанные с возможностью использования новых методов исследования, позволяющих изучать молекулярную основу различных процессов в живых клетках. Так, ранее относительно механизмов входа вируса в клетку было принято, что отдельный или несколько гетерогенных вирионов могут проникать в клетку различными способами, такими как: микрофагоцитозом - виропексисом, локальным нарушением целостности клеточной плазмалеммы, а также путем прямого слияния с нею оболочки вируса. По данным современной литературы различают 6 способов проникновения вирусов в клетки: макропиноцитоз, три вида эндоцитоза (клатрин-зависимый, клатрин-независимый и холестерол-зависимый), с помощью образования кавеол (вогнутости плазматической мембраны) и подобный последнему механизм, зависимый от динамина.
Как известно, взаимодействие вируса и клетки может происходить двумя путями: неспецифическим (инициируется при случайном столкновении, когда вирионы удерживаются на клеточной поверхности за счет электростатических сил) и специфическим (осуществляется при наличии на клеточной поверхности рецепторов, обеспечивающих прочное прикрепление вируса к клетке). После адгезии вирус проникает через плазмалемму и затем происходит перемещение его генома к определенным участкам цитоплазмы и ядра клетки, где инициируется процесс репродукции.
2. Культивирование вирусов в организме лабораторных животных
Выбор экспериментальных животных определяется целью работы и видовой чувствительностью к изучаемому вирусу. Для заражения используют обезьян, кроликов, морских свинок, хомячков, белых крыс и мышей.
Лабораторных животных заражают различными способами в зависимости от тропизма вируса к определенным тканям. Так, например, для культивирования нейротропных вирусов заражение производят преимущественно в мозг (вирусы бешенства, клещевого энцефалита и др.), культивирование респираторных вирусов осуществляется при интраназальном инфицировании животных (вирусы гриппа), дерматотропных (вирус оспы) - путем накожного и внутрикожного заражения. Наиболее часто используются накожное, внутрикожное, внутримышечное, внутрибрюшинное и внутримозговое заражение.
При первичном заражении животные могут не заболеть, поэтому через 5-7 дней внешне здоровых животных убивают, а из их органов готовят суспензии, которыми заражают следующие партии животных. Эти последовательные заражения называются `пассажами'.
Индикацию, т.е. обнаружение факта размножения вируса, устанавливают на основании развития типичных признаков заболевания, патоморфологических изменений органов и тканей животных или положительной реакции гемагглютинации (РГА). РГА основана на способности некоторых вирусов вызывать агглютинацию (склеивание) эритроцитов различных видов животных, птиц и человека за счет поверхностного вирусного белка - гемагглютинина.В настоящее время использование животных для культивирования вирусов ограничено.
Культивирование вирусов в куриных эмбрионах
Большинство известных вирусов обладают способностью размножаться в курином эмбрионе (рис.4). Используют эмбрионы в возрасте от 8 до 14 дней в зависимости от вида вируса, способа заражения и задач исследования. Вирусы гриппа культивируются в 9-10, осповакцины - в 12, паротита - в 7-дневных куриных эмбрионах. Размножение вируса в куриных эмбрионах происходит в разных частях зародыша, что связано с особенностями тропизма вируса. Методику выращивания вируса в курином эмбрионе широко используют при промышленном культивировании.
3. Организация генома эукариот
Количественные особенности генома эукариот
Главная количественная особенность генетического материала эукариот - наличие избыточной ДНК. Этот факт легко выявляется при анализе отношения числа генов к количеству ДНК в геноме бактерий и млекопитающих. Если средний размер гена бактерий 1500 пар нуклеотидов (п.н.), а длина кольцевой молекулы ДНК хромосомы Е. coli и В. subtilis составляет свыше 1 мм, то в такой хромосоме могут разместиться около 3 тысяч генов. Примерно такое число генов было экспериментально определено у бактерий по числу типов иРНК. Если это число умножить на средний размер гена, то получится, что около 95% генома бактерий состоит из кодирующих (генных) последовательностей. Остальные 5%, по-видимому, заняты регуляторными элементами. Иная картина наблюдается у эукариотических организмов. Например, у человека насчитывают приблизительно 50 тысяч генов (имеется в виду только суммарная длина кодирующих участков ДНК - экзонов). В то же время размер генома человека 3?109 (три миллиарда) п.н. Это означает, что кодирующая часть его генома составляет всего 15…20 % от тотальной ДНК. Существует значительное число видов, геном которых в десятки раз больше генома человека, например некоторые рыбы, хвостатые амфибии, лилейные. Избыточная ДНК характерна для всех эукариот. В этой связи необходимо подчеркнуть неоднозначность терминов генотип и геном. Под генотипом следует понимать совокупность генов, имеющих фенотипическое проявление, тогда как понятие генома обозначает количество ДНК, находящееся в гаплоидном наборе хромосом данного вида.
Нуклеотидные последовательности в геноме эукариот
В конце 60-х годов работами американских ученых Р. Бриттена, Э. Дэвидсона и других была открыта фундаментальная особенность молекулярной структуры генома эукариот - нуклеотидные последовательности разной степени повторяемости. Это открытие было сделано с помощью молекулярно-биологического метода изучения кинетики ренатурации денатурированной ДНК. Различают следующие фракции в геноме эукариот.
1. Уникальные, т.е. последовательности, представленные в одном экземпляре или немногими копиями. Как правило, это цистроны - структурные гены, кодирующие белки.
2. Низкочастотные повторы - последовательности, повторяющиеся десятки раз.
3. Промежуточные, или среднечастотные, повторы - последовательности, повторяющиеся сотни и тысячи раз. К ним относятся гены рРНК (у человека 200 на гаплоидный набор, у мыши - 100, у кошки - 1000, у рыб и цветковых растений - тысячи), тРНК, гены рибосомных белков и белков-гистонов.
4. Высокочастотные повторы, число которых достигает 10 миллионов (на геном). Это короткие (~ 10 пн) некодирующие последовательности, которые входят в состав прицентромерного гетерохроматина.
ДНК мышей на 70% состоит из уникальных последовательностей, на 20% - из низкочастотных и среднечастотных повторов, на 10% - из высокочастотных. Повторы образуют так называемые семейства, под которыми понимают совокупность последовательностей, полностью или по большей части гомологичных друг другу.
Нередко из-за существенных различий в нуклеотидном составе высокочастотных повторов и остальной ДНК первые образуют при центрифугировании в градиенте плотности хлористого цезия так называемые сателлитные пики, которые имеют большую или меньшую плавучую плотность, чем остальная ДНК. Эта фракция генома представлена небольшим (10…15) числом семейств коротких (5…12 п.н.) повторов, образующих протяженные блоки. Внутри блоков группы повторов отдельных семейств могут чередоваться друг с другом, так что сателлитная ДНК имеет как бы лоскутную структуру. Гибридизация фракций высокочастотных последовательностей с ДНК непосредственно на препаратах хромосом позволила установить, что эта фракция генома локализована в районах конститутивного гетерохроматина, чаще всего прицентромерного или теломерного. Еще в 30-х годах было показано, что в генетическом отношении эти районы инертны, т. е. не содержат генов. В действительности столь малые последовательности, составляющие сателлитную ДНК, не могут кодировать ничего, кроме олигопептидов. Более того, гетерохроматические районы не транскрибируются. Таким образом, в случае высокочастотных последовательностей ДНК обнаруживается тождество молекулярной организации и генетических свойств хромосомной ДНК эукариот. Следует отметить, что эта фракция у огромного большинства видов занимает не более 10% генома. Близкие виды, например мышь и крыса, имеют совершенно различные высокочастотные последовательности, у крысы их нуклеотидный состав не отличается от основной ДНК, тогда как геном мыши содержит четкий АТ-богатый сателлит. Это означает, что высокочастотная ДНК способна к быстрым изменениям в ходе видообразования.
Остальные 90 % генома эукариот, его эухроматическая часть, построены по принципу чередования (интерсперсии) уникальных и повторяющихся последовательностей. Условно выделяют два основных типа интерсперсии, получивших названия по тем видам, у которых они впервые были описаны: интерсперсия типа «ксенопус» (обнаружена у шпорцевой лягушки Xenopus laevis) и типа «дрозофила» (впервые описана у плодовой мушки D. melanogaster). Примерно в 50 % генома Xenopus laevis уникальные последовательности из 800…1200 п.н. чередуются с повторяющимися, средний размер которых 300 п.н. В остальной части геномов типа «ксенопус» расстояния между соседними повторами значительно превышают 1…2 п.н. Структура генома типа «ксенопус» широко распространена, особенно среди животных. Млекопитающие и человек также относятся к этому типу организации генома. Особенность генома человека и других приматов составляют интерсперсные высокочастотные повторы длиной около 300 п.н. У человека эти повторы содержат сайт, разрезаемый ферментом рестрикции Alu I. Число Alu-подобных повторов в геноме человека достигает 5?105, а по некоторым данным, даже 106.Alu-подобные последовательности приматов представляют собой частичные дупликации (удвоения) последовательности В1 в геноме грызунов, впервые описанной Г. П. Георгиевым и его сотрудниками.У D. melanogaster параметры интерсперсии резко отличаются от видов с типом генома «ксенопус»: повторяющиеся последовательности длиной 5600 п.н. чередуются с уникальными, длина которых не менее 13000 п.н. Интересно отметить, что у домашней мухи геном устроен по типу «ксенопус». Этот факт прямо указывает на то, что в ходе эволюции возможны очень быстрые преобразования характера чередования последовательностей и в эухроматической части генома. Птицы по параметрам интерсперсии занимают промежуточное положение между типом «ксенопус» и типом «дрозофила». Как показывают результаты исследований последних лет, многие виды животных и растений по организации генома не могут быть строго отнесены ни к тому, ни к другому типу. Так, в геномах млекопитающих встречаются длинные повторы - в несколько тысяч пар нуклеотидов, в геномах лилейных до 90% ДНК может быть представлено повторяющимися последовательностями. Например, геном гороха не содержит уникальных последовательностей, превышающих по длине 300 п.н.Другая особенность повторяющихся последовательностей в геномах эукариот - инвертированные повторы, или палиндромы (см. ниже). В условиях ренатурации они практически мгновенно формируют дуплексные структуры. По существу, палиндромы представляют собой часть промежуточных повторов. Однако некоторые высокочастотные повторы в эухроматической части генома, например члены Alu-семейств, могут встречаться как в прямом, так и в инвертированном положении. Иногда между инвертированными повторами вклиниваются другие последовательности.
Гетерогенность ДНК эукариот по нуклеотидному составу
У эукариот описаны некоторые особенности структуры ДНК, обусловленные спецификой нуклеотидного состава отдельных последовательностей. Так, встречаются расположенные в одной цепи блоки нуклеотидов, состоящих из нескольких десятков пуринов. Тогда комплементарная часть в другой цепи ДНК будет представлена пиримидинами. Подобные последовательности названы полипуриновыми (полипиримидиновыми) блоками.Другой вид гетерогенности связан с неравномерностью содержания по длине ДНК пар аденин-тимин (АТ-пары) и гуанин-цитозин (ГЦ-пары). Так, в геноме дрозофилы периодически встречаются последовательности длиной примерно в 100 п. н., на 85 % состоящие из АТ-пар. Поскольку аденин связан с тимином двумя водородными связями, а гуанин с цитозином -- тремя, дестабилизирующие ДНК-воздействия будут легче инициировать расплетание дуплексов ДНК с образованием участков частичной денатурации в АТ-богатых областях. Поэтому последние рассматриваются в качестве сайтов инициации элементарных генетических процессов: репликации, транскрипции и рекомбинации.В заключение отметим, что перечисленные выше особенности молекулярной структуры ДНК эукариот не были предсказаны ни классической генетикой (за исключением, пожалуй, свойств гетерохроматина), ни моделью двойной спирали Уотсона и Крика. Они были раскрыты при исследовании структуры геномов различных эукариотических организмов физико-химическими методами. Функции большинства повторяющихся и уникальных последовательностей пока не определены. Однако вполне вероятно, что сама по себе молекулярная структура ДНК эукариот служит зеркалом генетической регуляции и эволюции высших животных и растений.
Хроматин и компактизация хромосом
Основой генетического аппарата эукариот являются линейные хромосомы. В основе хромосомы лежит линейная двуспиральная правозакрученная молекула ДНК, связанная со специфическими белками-гистонами. Известно 5 типов гистонов: Н1, Н2А, Н2В, НЗ, Н4. В ядрах эритроцитов птиц Н1 частично замещается на Н5. У дрожжей отсутствует Н1, а у некоторых видов хламидомонад гистоны вообще не обнаружены. Гистоны отсутствуют также у мезокариот (одноклеточных организмов - динофлагеллят, ночесветок), в сперматозоидах некоторых рыб. Отсутствие гистонов в перечисленных случаях рассматривается как вторичное явление. Гистоны Н2 - Н4 эволюционно устойчивы: из 102 аминокислот Н4 наблюдаются различия лишь по 1-2 аминокислотам у высших растений, рыб и млекопитающих. Гистон Н1 весьма вариабелен, и даже в тканях одного организма встречается 3 - 6 вариантов этого белка.Гистоны Н2 - Н4 образуют белковое ядро из 8 полипептидов (каждый гистон повторяется 2 раза). Вокруг этого ядра уложен участок ДНК длиной 140 пн, образующий 1,75 витка по периферии. Такая структура называется нуклеосома. Отдельные нуклеосомы - это дисковидные частицы диаметром около 10 нм. Закручивание ДНК вокруг нуклеосомы уменьшает ее длину в семь раз. Участки ДНК между нуклеосомами длиной 15…10 пн называются линкерами (связками). Структура линкеров стабилизируется с помощью гистона Н1. Последовательность нуклеосом образует или еще одну спираль диаметром 25…20 нм (соленоид), или последовательность нуклеосомных группировок - нуклеомеров. Эти высшие структуры образуют петли или домены. Конденсация ДНК в структуре соленоида дополнительно (к нуклеосомному уровню) уменьшает ее длину в шесть раз. В интерфазных хромосомах путем еще одного цикла конденсации соленоиды образуют полые трубочки диаметром 200 нм, что уменьшает длину ДНК еще в 18 раз.Описанная структура хромосом у эукариот обеспечивает их устойчивость и недоступность основной массы ДНК для химических мутагенов. При транскрипции, т.е. синтезе РНК, и репликации происходит деспирализация хромосом, что обеспечивает возможность контакта определенных участков ДНК с ДНК-полимеразой или РНК-полимеразой. Определенные участки хромосом в ядре тесно связаны с ядерной мембраной. Всегда связаны с мембраной концевые (теломерные) участки и некоторые другие (интерстициальные) участки. Такие связи обеспечивают определенную структуру ядра и защищают хромосомы от разрушения ферментами-нуклеазами. Ю. С. Ченцовым и его сотрудниками открыта специальная частица, обеспечивающая связь хроматина с ядерной мембраной, которую предложено называть анкоросомой (якорной частицей).В метафазе вследствие дальнейшей конденсации возникает большая образованная дезоксинуклеопротеидом спираль диаметром около 600 нм. В результате строго упорядоченной иерархии спиралей, в основе которой лежит нуклеосома, в митозе и мейозе хромосомы эукариот совершают цикл компактизации -- декомпактизации. Следствие этого цикла -- укорочение метафазных хромосом по сравнению с размерами заключенной в них молекулы ДНК в 103…104 раз. По-видимому, цикл компактизации--декомпактизации регулируется белками хроматина негистонового типа. Возможно, что некоторые из них выполняют и структурную роль, образуя элементы каркаса метафазных хромосом.
Особенности репликации эукариотических хромосом
Как и у прокариот, репликация ДНК в клетках эукариотических организмов осуществляется полуконсервативно, о чем свидетельствует распределение Н-тимидиновой метки по сестринским хроматидам во втором и последующих митозах после инкубации клеток с радиоактивными предшественниками. Выяснено, что репликация у эукариот носит двунаправленный характер.
Принцип регуляции репликации ДНК эукариот в онтогенезе был открыт английским цитогенетиком Г. Кэлланом в 1972 г. С помощью радиоавтографии меченных 3Н-тимидином волокон ДНК, полученных из клеток животных непосредственно на предметном стекле, Кэллан определил скорость репликации и расстояние между соседними центрами инициации в S-фазе соматических и эмбриональных клеток.
По первому показателю между этими типами клеток больших различий не наблюдалось. Число сайтов инициации репликации было максимальным в раннем эмбриогенезе, минимальным в предмейотической S-фазе и промежуточным в соматических клетках. Эти данные в принципе были подтверждены позднее прямым электронно-микроскопическим анализом реплицирующейся ДНК из дробящихся яиц дрозофилы. Таким образом, суть регуляции процесса репликации у эукариот заключается в изменении числа сайтов инициации репликации. Этот механизм позволяет увеличить продолжительность фазы S (а, следовательно, всего митотического цикла) с 3,5 мин (на ранних стадиях дробления яиц дрозофилы) до десятков часов в предмейотической S-фазе. Упаковка ДНК и гистонов в нуклеосомы происходит в фазе S, поскольку гистоны синтезируются синхронно с репликацией ДНК.
Переключение генов у эукариот
У эукариот опероны отсутствуют, и система управления активностью генов более сложная. Во-первых, у эукариот включаются не три гена (или чуть больше), а целые батареи генов. Во-вторых, регуляция активности генов происходит не за счет связывания оператора с белком-репрессором, а за счет спирализации и деспирализации хромосом. В-третьих, у эукариот регуляция работы генов происходит не по принципу «да-нет», а по принципу «больше-меньше».
У прокариот регуляторные участки составляют примерно 5 % от всей ДНК, а у эукариот длина регуляторных участков соизмерима с общей длиной структурных генов. Регуляторные белки у эукариот влияют не только на работу генов в одной хромосоме, но и на активность функционально сходных генов в разных хромосомах. Например, ?- и ?-цепи гемоглобина кодируются генами, расположенными в разных хромосомах. Однако количество ?-цепей равно количеству ?-цепей. Промоторы и операторы у эукариот могут быть удалены от структурных генов на значительное расстояние.
У многоклеточных эукариот в ходе онтогенеза из исходной клетки развивается целостный организм. На разных этапах онтогенеза в разных тканях с разной интенсивностью экспрессируются разные гены. Активность генов у эукариот регулируется разнообразными эндо- и экзогенными факторами, в том числе, и гормонами. Способность исходной клетки реализовывать генетическую информацию в ходе клеточных делений и дифференцировки клеток называется тотипотентностью. У растений тотипотентны и оплодотворенные яйцеклетки, и почти все соматические клетки. У животных тотипотентна только зигота (а также некоторые клетки низших беспозвоночных). Поэтому методы клонирования животных основаны на пересадке ядер из соматических клеток в энуклеированные яйцеклетки (то есть яйцеклетки с убитым ядром).
Выключение генов может быть обратимым и необратимым. У животных существует два типа дробления зиготы: недетерминированное (дифференцировка клеток на поздних стадиях онтогенеза) и детерминированное (дифференцировка клеток на самых ранних этапах дробления зиготы). В первом случае можно пересадить ядро из клеток кишечного эпителия головастика в яйцеклетку с убитым с помощью ультрафиолетового облучения ядром. Из такой синтезированной клетки разовьется нормальная лягушка. Во втором случае клетки передней части бластодермы дрозофилы способны формировать только структуры передней части тела имаго, а клетки задней части бластодермы - только структуры задней части тела.
вирус клетка лихорадка инфицирование
4. Молекулярные вакцины
Молекулярные вакцины. Анатоксины. Получение, очистка, титрование. Применение
Молекулярные вакцины - в них антиген находится в молекулярной форме или даже в виде фрагментов его молекул, определяющих специфичность т. е. в виде эпитопов, детерминант.
В процессе культивирования природных патогенных микробов можно получить протективный антиген, синтезируемый этими бактериями токсин затем превращается в анатоксин, сохраняющий специфическую антигенность и иммуногенность. Анатоксины являются одним из видов молекулярных вакцин. Анатоксины - препараты, полученные из бактериальных экзотоксинов, полностью лишенные своих токсических свойств, но сохранившие антигенные и иммуногенные свойства. Получение: токсигенные бактерии выращивают на жидких средах, фильтруют с помощью бактериальных фильтров для удаления микробных тел, к фильтрату добавляют 0,4% формалина и выдерживают в термостате при 30-40t на 4 недели до полного исчезновения токсических свойств, проверяют на стерильность, токсигенность и иммуногенность. Эти препараты называются нативными анатоксинам, в настоящее время почти не используются, т. к. содержат большое количество балластных веществ, неблагоприятно влияющих на организм. Анатоксины подвергают физической и химической очистке, адсорбируют на адъювантах. Такие препараты называются адсорбированными высокоочищенными концентрированными анатоксинами.
Титрование анатоксинов в реакции фолликуляции производят по стандартной фолликулирующей антитоксической сыворотке, в которой известно количество антитоксических единиц. 1 антигенная единица анатоксина обозначается Lf, это то количество анатоксина, которое вступает в реакцию фолликуляции с 1 единицей дифтерийного анатоксина.
Анатоксины применяются для профилактики и реже, для лечения токсинемических инфекций (дифтерия, газовая гангрена, ботулизм, столбняк). Так же анатоксины применяются для получения антитоксических сывороток путем гипериммунизации животных.
Примеры препаратов: АКДС, АДС, адсорбированный стафилококковый анатоксин, ботулинистический анатоксин, анатоксины из экзотоксинов возбудителей газовых инфекций.
Цель применения анатоксинов -- индукция иммунных реакций, направленных на нейтрализацию токсинов; в результате иммунизации синтезируются нейтрализующие AT (антитоксины). Обычный источник токсинов -- промышленно культивируемые естественные штаммы-продуценты (например, возбудители дифтерии, ботулизма, столбняка). Полученные токсины инактивируют термической обработкой либо формалином, в результате чего образуются анатоксины (токсоиды), лишённые токсических свойств, но сохранившие иммуногенность.
Анатоксины очищают, концентрируют и для усиления иммуно-генных свойств адсорбируют на адъюванте (обычно, гидрооксид алюминия). Адсорбция анатоксинов значительно повышает их иммуногенную активность. С одной стороны, образуется депо препарата в месте его введения с постепенным поступлением в кровоток, с другой -- действие адъюванта стимулирует развитие иммунного ответа, в том числе и в регионарных лимфатических узлах. Анатоксины выпускают в форме моно- (дифтерийный, столбнячный, стафилококковый) и ассоциированных (дифтерийно-столбнячный, ботулинический трианатоксин) препаратов.
5. ИНФЕКЦИОННАЯ КАТАРАЛЬНАЯ ЛИХОРАДКА ОВЕЦ FEBRIS INFECTIOSA CATARRHALIS OVIUM
(Эпизоотический катар, болезнь морды, гангренозный ринит, псевдоящур. Bluetongue, malarial catarrhal fever of sheep; fievre catarrhale du mouton; Lengua azul)
Инфекционная катаральная лихорадка овец - вирусная трансмиссивная болезнь жвачных, передающаяся кровососущими насекомыми из рода Culicoides. Характеризуется лихорадочным состоянием, воспалительно-некротическими поражениями ротовой полости, особенно языка, пищеварительного тракта, эпителия венчика и основы кожи копыт, а также дегенеративными изменениями скелетной мускулатуры. Поражает овец, реже крупный рогатый скот и коз. Впервые зарегистрирована в Южной Африке в 1876 г. комиссией по болезням крупного рогатого скота и овец.
Этиология. Возбудитель болезни -- РНК-содержащнй вирус рода Orbivirus сем. Reoviridae. Диаметр частиц 65--70 нм. РНК вируса двуспиральна. Установлено 20 серотинов вируса. Он обнаруживается в крови (в наивысшей концентрации в период лихорадки) и органах больных животных (особенно в селезёнке и лимфатич. узлах). Вирус устойчив к гниению, высушиванию, растворителям липидов, дезоксихолату натрия, антибиотикам, но чувствителен к трипсину, к кислому (рН 6,0) и медленному замораживанию до t 10--20°C; 3%-ный раствор формальдегида инактивирует его в течение 48--72 ч, 3%-ный раствор едкого натра и 70%-ный этиловый спирт, а также нагревание при t 60°C -- за 5 мин.
Эпизоотология. К И. к. л. о. наиболее восприимчивы овцы, особенно ягнята, в меньшей степени кр. рог. скот и козы. Болеют и дикие жвачные. Источник возбудителя инфекции -- больные животные. Резервуары вируса в природе не установлены. КЛО проявляется в виде спораднч. случаев и в виде эпизоотий с охватом значительного поголовья восприимчивых животных. Передача возбудителя осуществляется мокрецамн-куликоидами, что обусловливает сезонный и стационарный характер болезни. Она появляется в начале лета, достигает пика заболеваемости в жаркие дождливые месяцы и исчезает с наступлением морозов. Болезнь регистрируют в болотистых, низменных местностях, в районах с обильным кол-вом годовых осадков. На течение болезни отрицательно влияют неполноценное кормление, большая скученность животных, хронич. инфекции, гельминтозы, солнечное облучение.
Иммунитет. Переболевшие животные приобретают пожизненный иммунитет к тому типу вируса, к-рый вызвал заболевание. Возможна реинфекция др. типом вируса в течение того же сезона или на следующий год. Ягнята, родившиеся от иммунных овцематок, приобретают пассивный колостральный иммунитет продолжительностью до 3 месяцев. Для иммунизации предложены поливалентные живые и инактивированные вакцины.
Течение и симптомы. Инкубационный период 6--9 сут. Течение болезни острое, подострое, хронич. и абортивное. При остром течении осн. симптом -- внезапное или постепенное повышение темп-ры до 41--42°C, сопровождающееся угнетением. Продолжительность температурной реакции от 2--3 до 11 сут. Через 1--2 сут появляются гиперемия слизистых оболочек ротовой и носовой полостей, слюнотечение, серозные или гнойные истечения из носа; развиваются отёки в области головы (ушей, губ, языка), межчелюстного пространства, распространяющиеся на шею и грудь, появляются кровоизлияния, кровоточащие эрозии, язвы на слизистой оболочке ротовой полости и вследствие некроза ткани ихорозный запах изо рта.
Опухший и воспалённый язык приобретает багровый или грязно-синий цвет и свисает из ротовой полости (этот симптом наблюдается очень редко) (рис. 1). Развиваются пододерматиты, хромота, нередко появляются искривление шеи (рис. 2) и в тяжёлых случаях -- понос с примесью крови, резкое истощение и слабость. Через 2--3 сут после появления первых симптомов может наступить смерть. При подостром и хронич. течении все симптомы развиваются медленно и выражены слабее.
Характерно истощение животных, сухость и выпадение шерсти, поражение конечностей, хромота. Иногда отмечают спадение рогового башмака и бронхопневмонии, вызванные вторичной инфекцией, аборты у суягных овцематок. Абортивное течение характеризуется незначительным повышением темп-ры тела, быстро проходящей гиперемией слизистых оболочек ротовой полости, незначительным угнетением.
Патологоанатомические изменения. Обнаруживают истощение трупа, обширные студневидные отёки подкожной клетчатки в области головы, шеи, подгрудка, конечностей, многочисл, кровоизлияния в скелетной мускулатуре, эпикарде, эндокарде, миокарде, у основания лёгочной артерии, реже в трахее, плевре, мочевом пузыре. Слизистая оболочка ротовой полости, рубца, сетки, сычуга, тонких кишок отёчна , гиперемирована, с кровоизлияниями. На языке, а также на внутренней поверхности шеи видны изъязвления и некрозы. В скелетной мускулатуре наблюдают дистрофич. изменения и очаговые некрозы отдельных групп мышц с инфильтрацией межмышечной соединит. ткани красноватой жидкостью, придающей им желатинозный, влажный вид. Нередко поражённые мышцы приобретают серый цвет. Характерным признаком считают также очаги некроза в сосочковых мышцах миокарда. Диагноз основывается на эпизоотол., клинич. и патологоанатомич. данных и результатах лабораторных исследований [РСК, выделение вируса, его идентификация (в реакции нейтрализации) и постановка биопробы (3-кратное пассирование на овцах)]. КЛО дифференцируют от ящура, контагиозного пустулёзного дерматита (эктимы), оспы, везикулярного стоматита, болезни Найроби и лихорадки долины Рифт, некробактериоза.
Лечение не разработано. Профилактика и меры борьбы. В благополучных по заболеванию странах профилактич. мероприятия ограничиваются запрещением ввоза восприимчивых животных из стран, неблагополучных по КЛО, карантинированием домашних и диких жвачных в местах ввоза с обязательным исследованием сывороток в РСК. В угрожаемых зонах и стационарных очагах болезни проводят систематич. борьбу с переносчиками, запрещают пастьбу вечером; в период массового лёта насекомых перегоняют животных с заболоченных пастбищ на более сухие, высокорасположенные; ежегодно вакцинируют овец.
Список литературы
1. Жданов В. М., Гайдамович С. Я., Вирусология, М., 1966;
2. Руководство по ветеринарной вирусологии, под ред. В. Н. Сюрина, М., 1966;
3. Лабораторная диагностика вирусных болезней животных, М., 1972;
4. Сюрин В. Н., Фомина Н. П., Частная ветеринарная вирусология, М., 1979.
Размещено на Allbest.ru
Подобные документы
Облигатные внутриклеточные паразиты. Морфология, строение вирусов. Сложно устроенные вирусы. Продуктивный тип взаимодействия вируса с клеткой. Представители однонитевых ДНК-вирусов. Культивирование, индикация вирусов. Внутриклеточная репродукция вирусов.
презентация [2,4 M], добавлен 23.02.2014Особенности вирусов - возбудителей опасных заболеваний человека, которые передаются при физическом контакте, воздушно-капельным, половым путем. Характеристика вирусологии - науки, изучающей природу вирусов, их строение, размножение, биохимию, генетику.
реферат [21,1 K], добавлен 23.01.2010Генетическая терминология, организация генома вирусов, понятие о лизогенном и литическом цикле. Особенности генома и жизненного цикла ретровирусов, геном бактерий. Современные представления о геноме человека: теоретические и практические аспекты.
презентация [125,3 K], добавлен 04.04.2011Понятие, история открытия, происхождение, культивация, формы существования и свойства вирусов. Общая характеристика и сравнение вирусов животных, растений и бактерий. Механизмы инфицирующего и летального воздействия ВИЧ на клетки организма человека.
реферат [25,5 K], добавлен 23.01.2010Специфические факторы противовирусного иммунитета и синтез антител к определенному антигену. Клетки памяти и выдача иммунного ответа в форме биосинтеза антител. Распространение инфекционного бронхита птиц и ящера. Культивирование вирусов в клетках.
контрольная работа [568,3 K], добавлен 17.11.2010Эволюционное происхождение. Свойства вирусов. Природа вирусов. Строение и классификация вирусов. Взаимодействие вируса с клеткой. Значение вирусов. Вирусные заболевания. Особенности эволюции вирусо на соременном этапе.
реферат [299,2 K], добавлен 22.11.2005Таксономия вируса и морфология вириона. Антигенная структура и вариабельность. Гемагглютинирующие и гемадсорбирующие свойства вирусов, их культивирование в различных живых системах. Диагностика чумы плотоядных. Способы введения вакцин и схема вакцинации.
реферат [33,6 K], добавлен 25.04.2015Понятие мутации вирусов и мутагенов. Частота мутаций вирусов и механизмы их возникновения. Модификации, вызываемые хозяином. Изменчивость вирусов при пассажах. Изменчивость вирусов, возникающая в процессе пассажей при пониженных и повышенных температурах.
реферат [32,0 K], добавлен 10.11.2010Характеристика вирусов как очень маленьких живых организмов, вызывающих болезни у растений и животных. Особенности строения вирусных ДНК, РНК, их внешний вид, размеры компонентов, вызываемые заболевания. Размножение и основные стадии репродукции вирусов.
презентация [1,6 M], добавлен 20.01.2012Сущность и сравнительная характеристика прокариотов и эукариотов. Понятие и структура вирусов, механизм их жизнедеятельности и оценка влияния на организм. Строение бактерий и их разновидности. Отличительные свойства животных и растительных клеток.
презентация [2,1 M], добавлен 12.02.2017