Начала современного естествознания. Концепции и принципы
Определение науки и естествознания как отрасли науки. Генезис основных концептуальных понятий современного естествознания античными и средневековыми цивилизациями. Фундаментальные принципы и обобщенные положения современного физического естествознания.
Рубрика | Биология и естествознание |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 16.04.2012 |
Размер файла | 1,9 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Тропический циклон (от греч. kyklon -- кружащийся), он же тайфун (китайское название), он же ураган (классификация по шкале Бофорта) -- это сложнейшая вихревая структура, обеспечивающая скачкообразное усиление рассеяния энергии, накопленной в нагретой воде некоторого участка океана. Нагреваемая Солнцем вода океана длительное время спокойно отдает свое тепло и влагу атмосфере, там возникают конвекционные потоки, появляются облака, выпадают дожди, часть тепла в виде длинноволнового излучения уходит в космос. В открытое пространство. Но вдруг, по достижении потоком тепла, отдаваемого океаном, определенной интенсивности на участке поверхности достаточно большой площади, характер теплоотдачи резко меняется -- возникает тропический циклон. Огромная скорость ветра и волнение моря приводят к увеличению теплоотдачи с его поверхности в десятки раз. Основное количество тепла отнимается у воды путем испарения. Когда влага конденсируется в облаках, она отдает скрытую теплоту парообразования атмосфере -- это очень эффективный механизм теплопередачи. Часть тепла преобразуется в энергию ветра, который усиливает теплоотдачу. Раз начавшись, благодаря такой положительной обратной связи, циклон очень быстро набирает максимальную интенсивность -- происходит скачок системы в новое состояние с определенным образом упорядоченной вихревой структурой. А по существу, это такая же перестройка, усложнение структуры, способствующее усилению диссипации, как возникновение правильных конвективных ячеек в подогреваемой снизу жидкости (бинаровская конвекция).
Циклон (тайфун, ураган) -- структура устойчивая: раз возникнув, он сохраняется и при довольно значительном изменении условий, перемещаясь по поверхности океана на большие расстояния туда, где он никогда бы не мог возникнуть, и даже выходит на сушу. Здесь работает принцип максимального промедления.
Явление Эль-Ниньо -- перегрев больших масс воды в восточной экваториальной зоне Тихого океана, ослабление пассатов, оттеснение к югу холодного Перуанского течения -- это опять перестройка структуры атмосферной циркуляции, только еще большего масштаба, чем восточ-ноазиатский тихоокеанский тайфун.
Наконец, еще более крупные перестройки -- глобальные оледенения, ледниковые периоды. Это тоже скачки из одного устойчивого состояния в другое. Оледенение, раз возникнув, способно поддерживать само себя: лед и снег обладают большой отражательной способностью и сильно уменьшают поглощение поверхностью Земли солнечного тепла. Охлаждающее действие постоянных ледников продлевает продолжительность снежного покрова там, где он не постоянный. Лес заменяется тундрой, которая также поглощает тепла меньше, а отражает больше. Таким образом, раз начавшись после преодоления какой-то критической грани, процесс оледенения способен поддерживать сам себя длительное время -- опять мы имеем дело с положительной обратной связью и принципом максимального промедления. Но переход от межледниковья к ледниковью и обратно происходит очень резко, катастрофически.
Возникновение и жизнь вулканов -- это процесс, в известном смысле, аналогичный процессу возникновения и жизни ураганов. Здесь также возникают устойчивые диссипативные конвективные структуры, резко интенсифицирующие рассеяние внутрипланетной тепловой энергии. Вулканы (вулканические центры), так же как и ураганы, зарождаются в определенных тектонически активных районах при определенных условиях и также через какое-то время прекращают свою активность. Значительно большее время жизни вулканического центра, по сравнению с временем жизни урагана, связано с значительно большими характерными временами процессов тепло- и массопереноса в недрах Земли по сравнению с атмосферой.
Аналогичную картину можно увидеть и в экономике. Два листа поверхности равновесия (сборки) могут описывать, например, состояния, соответствующие низкому уровню производства в сочетании с низким уровнем потребления и высокому уровню производства с высоким уровнем потребления. Эти состояния отчетливо видны: мир разделен на две хорошо различающиеся системы или группы -- на группу промышленно развитых и группу отсталых (довольно лицемерно называемых «развивающимися») стран. Пропасть между этими группами стран продолжает углубляться, а промежуточные устойчивые состояния отсутствуют. Перейти из бедной в богатую группу можно только скачком. Здесь также присутствует положительная обратная связь: снижение потребления сужает рынок, заставляет снижать производство, порождая безработицу и тем самым дальше снижая потребление. Бедность приводит к снижению уровня образования, квалификации и технологии, что еще больше усиливает эту бедность. Расщепляющим параметром здесь может служить степень диверсификации и монополизации производства: при натуральном хозяйстве кризисы исключены (как скачки вниз, так и скачки вверх), они возможны только, когда есть общественное разделение труда и глубина их тем больше, чем сильнее такое разделение и чем монополизированнее отдельные отрасли. С нормальным параметром здесь сложнее -- экономическая наука, во всех ее существующих ипостасях, пока не в состоянии учесть, при формализации задачи, факторы индивидуальной и массовой психологии, идеологии и политики. Простой сборкой здесь не обойтись, но на некоторую (вот только непонятно на какую конктретно) комбинацию сборок в соответствии с общей теорией катастроф, очевидно, можно разложить и экономику, и социологию и многие другие гуманитарные науки.
12.6 Фракталы, сети и сетевые структуры природы и общества
На оснований всех этих примеров и глядя вокруг себя мы убеждаемся, что эволюция происходит не гладко. Эта негладкость связана с образованием и преобразованием структур. Причем характерно, что малый толчок, не очень значительное изменение лишь одного или немногих параметров часто приводит к фундаментальнейшей перестройке структуры, иногда к очень сильному ее усложнению. Думается, что именно с неучетом этой особенности поведения динамических систем связаны отмечаемые многими учеными противоречия классической дарвиновской теории эволюции живого мира.
Программа строения и всей жизни существа записана в его геноме, при помощи последовательности четырех нуклеотидов -- аденина, гуанина, тимина и цитозина. Алфавит наследственности состоит всего из четырех букв и текст ее написан трехбуквенными словами, которые в молекуле ДНК образуют цепочку более чем двухметровой длины, сложным образом многократно свернутую спиралью. На отдельных участках этой огромной записи закодированы все белки, из которых строится организм, вся программа последовательного построения этих белков, их сочетания в более сложные структуры и совместного функционирования. Как такую грандиозную программу можно было создать путем случайных мутаций и отбора? И как поместить ее в таком ограниченном объеме?
Исчерпывающего ответа пока нет, но некоторые соображения имеются. Очевидно у природы есть некие заложенные в нее сущности, встроенные программы создания программ, общие алгоритмы, один из которых, очевидно, так называемые фрактальные структуры. При помощи фракталов очень сложную структуру можно «записать» в виде относительно короткой и простой программы. Вероятно, что-то подобное и имеет место при построении и эволюции биологических объектов.
Целостное, возникающее сейчас вновь, холистское, мировоззрение, холизм, в аспекте постнеклассической парадигмы, является прямым наследником мифологии (с ее антропоморфизмом) и античной натурфилософии (с ее космоцентризмом) и философии Средневековой алхимии. Существует почти прямая связь античной неисчерпаемости гомеомерий Анаксагора и идей Парменида и Зенона Элейского, с современной концепцией фрактальности и фрактальных множеств. Развиваемое с 1875 года понятие фрактальности в работах Фату, Жюлиа, Пуанкаре, Хаусдорфа, Безиковича, приобрело современный смысл в монографии 1977 года Бенуа Мандельброта «The Fractal Geometry of Nature». Как и философские точки зрения Анаксагора и Парменида -- Зенона претендовали на всеобщую целостность и единство мира, так и фрактальность претендует на всеобщность, единство и целостность любых возможных систем -- естественных и гуманитарных.
Сам Мандельброт так определил фрактал (от лат. fractus -- состоящий из фрагментов): «Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому» или еще его же другое определение: «Фрактал -- самоподобная структура, чье изображение не зависит от масштаба». Здесь отмечено одно важное свойство фракталов -- самоподобие, или скейлинг, но остаются не раскрытыми многие другие свойства. Какие? Во-первых, непрерывное увеличение разрешающей способности наблюдения (приближение к структуре) позволяет обнаруживать «деталь за деталью», а не одну какую-нибудь точку, во-вторых, структуры имеют крайне запутанное, нерегулярное строение, не поддающееся классическому описанию, в-третьих, вблизи каждой детали строения есть бесконечное число других, разделенных промежутками разной длины, так что фрактал дыряв на всех масштабах рассмотрения, поэтому-то, в-четвертых, фрактальная размерность дырявой субстанции обычно дробное число, в-пятых, математически фрактал характеризуется как вырожденно-непрерывное, всюду недифференцируемое множество. Все отмеченные свойства могут либо частично, либо полностью принадлежать одному фрактальному множеству, но целостность фрактала проявляется в том, что какая-либо одна и та же форма встречается в структуре среды в разных его местах и имеет разные размеры. Поэтому, в физике, например, отпадает необходимость в усреднении, т. е. в стирании мелких деталей, так как во фрактальном описании учитывается самоаффинная (инвариантно неизменная, самоподобная) структура среды. В заключение отметим, что фрактальность или ее отсутствие в мире структур, вовсе не научная или философская панацея от всех проблем, ибо, как сказал английский биолог Джон Холдейя-мл., «мир устроен не только причудливей, чем мы думаем, но и причудливей, чем мы можем предполагать».
12.7 Фундаментальные концепции постнеклассического естествознания
Сформулируем основные, фундаментальные понятия постнеклассической или эволюционно-диссипативной парадигмы, развивающейся парадигмы современного естествознания. Известно, что материальное единство мира находит свое отражение и в исследованиях взаимосвязи целого и его частей. Постнеклассицизм описывает процессы, в которых целое обладает такими свойствами, которых нет у его частей, проявляется так называемое свойство эмерджентности. Новая парадигма ставит задачу отыскать единую основу организации мира, как для простейших, так и для сложных его структур.
До настоящего времени в естествознании преобладающим был подход, согласно которому часть всегда рассматривалась как более простое, чем целое. В постнекласси-цизме делается попытка описать развитие мира в соответствии с его внутренними законами развития (дао, согласно воззрениям Лао-цзы) и при этом на основании результатов всего комплекса естественных наук. Одним из наиболее фундаментальных понятий постнеклассицизма является понятие нелинейности.
Основным вопросом, который постнеклассицизм обсуждает в своих задачах, является вопрос о том, как возникает порядок из беспорядка, как в однородной, в среднем неравновесной среде, появляются вполне определенные структуры.
Основой постнеклассики служит единство явлений, моделей и методов, с которыми приходится сталкиваться при исследовании процессов «возникновение порядка из беспорядка» в химии (реакция Белоусова-Жаботинского), космологии (спиральные галактики, крупномасштабная структура Метагалактики), экологии (организация сообществ) и т. д. Примером самоорганизации в гидродинамике служит образование в подогреваемой жидкости (начиная с некоторых градиентов температуры) шестиугольных «медовых» ячеек Бенара или возникновения тороидальных вихрей (вихрей Тейлора) между вращающимися цилиндрами.
Постнеклассическая парадигма наделена необычными идеями и представлениями.
Во-первых, становится очевидным, что сложноорганизованным системам нельзя навязывать пути их развития. Скорее необходимо понять, как способствовать их собственным тенденциям развития, как выводить системы на эти пути.
Во-вторых, она демонстрирует нам, каким образом и почему хаос может выступать в качестве созидающего начала, конструктивного механизма эволюции, как из хаоса собственными силами может развиться новая организация, возникать новая структура.
В-третьих, новая парадигма свидетельствует о том, что для сложных систем, как правило, существует несколько альтернативных путей развития. Несмотря на то, что путей эволюции много, но с выбором конкретного дальнейшего пути развития в точке ветвления (точке бифуркации), выбора возникающего при достижении определенных стадий эволюции, она проявляет себе как некая предопределенность, предзаданность, преддетерминирован-ность развертывания процесса. Настоящее состояние системы определяется не только ее прошлым, но и строится, формируется из будущего (!), в соответствии с грядущим порядком.
В-четвертых, постнеклассика открывает новые принципы суперпозиции, сборки сложного эволюционного целого из частей, построение сложных развивающихся структур из структур простых. Но объединение простых структур не сводится к их простому сложению: имеет место перекрытие областей локализации структур с дефектом энергии. Целое уже не равно сумме частей -- проявляется то, что принято называть эмерджентностью. Вообще говоря, оно не больше и не меньше суммы частей, оно качественное иное. Появляется и новый принцип временного согласования частей (сосуществование структур разного возраста в одном темпоритме (времени)).
В-пятых, она дает знание о том, как надлежащим образом оперировать со сложными системами и как эффективно управлять ими. Оказывается, главное -- не сила, а правильная топологическая конфигурация, архитектура воздействия на сложную систему (среду).
В-шестых, постнеклассика раскрывает закономерности и условия протекания быстрых, лавинообразных процессов и процессов нелинейного, самостимулирующего роста. Важно понять и знать, как можно инициировать такого рода процессы в открытых нелинейных средах, например, в среде экономической, социальной, в любой иной, и какие существуют требования, позволяющие избежать вероятностного распада сложных структур вблизи моментов максимального развития.
Модели постнеклассицизма -- это модели нелинейных неравновесных систем, подвергающихся действию флуктуации. В момент перехода упорядоченная и неупорядоченная фазы отличаются друг от друга столь мало, что именно флуктуации переводят одну фазу в другую. Если в системе возможно несколько устойчивых состояний, то флуктуации отбирают лишь одну из них. При анализе сложных систем, например в биологии или экологии, синергетика исследует простейшие основные модели, позволяющие понять и выделить наиболее существенные механизмы «организации порядка» (избирательную неустойчивость, вероятностный отбор, конкуренцию или синхронизацию подсистем и другие).
Большинство изучаемых природных и гуманитарных систем -- физических, биологических, химических, экологических и т. д. -- как ранее отмечалось, диссипативные, т. е. поглощающие и растрачивающие (рассеивающие) энергию. Общность нелинейных процессов в открытых диссипативных системах, которая и стала основой постнеклассицизма, приводит к тому, что появляется возможность описывать явление из самых разных областей с помощью близких математических моделей.
Подытоживая проведенный краткий анализ фундаментальных основ нового видения мира, мира синергетичес-кого, диссипативно-структурированного, можно привести те ключевые положения, раскрывающие их сущность, которые указал Герман Хакен, родоначальник этого научного направления, в интервью по случаю 30-летия синергетики (в 1999 году):
- Исследуемые системы состоят из нескольких или многих, одинаковых или разнородных частей, которые находятся во взаимодействии друг с другом.
- Эти системы являются нелинейными.
- При рассмотрении физических, химических и биологических систем речь идет об открытых системах, далеких от теплового равновесия.
- Эти системы подвержены внутренним и внешним колебаниям.
- Системы могут стать нестабильными.
- Происходят качественные изменения.
- В этих системах обнаруживаются эмерджентные (внезапно возникающие) новые качества.
- Возникают пространственные, временные, пространственно-временные или функциональные структуры.
- Структуры могут быть упорядоченными или хаотическими.
Во многих случаях возможна математизация.
С нашей точки зрения, среди основных положений синергетики должно быть место для пространственно-временной необратимости, признака как живой, так и неживой природы, необратимости, которой нет в классических науках.
Синерго-диссипативное познание имеет новый образ, новую парадигму, которую несет в себе современная наука, вступившая в принципиально новый «постнеклассический», «бифуркационный» (называют и так) этап своего развития. Пока сам термин «постнеклассическое познание» носит условный смысл, так как все еще происходит становление науки с не принятым еще конкретным названием. В синергетике Хакена, равно как в теории диссипативных структур Пригожина, в теории катастроф Тома-Арнольда, как новых междисциплинарных (и даже трансдисциплинарных) научных направлениях, сфокусированы главные, ключевые особенности парадигмы постнеклассической науки, обусловленные, прежде всего, присущей ей нелинейным стилем мышления, плюрализмом, неоднозначностью теоретических представлений и формулировок, наконец, -- новым пониманием роли хаоса в мироздании, как его необходимого конструктивного начала, необходимого созидательного момента общей картины становящейся, самоорганизующейся реальности. Необходимо усвоить не только нелинейное мышление, но главное -- в контексте поснеклассического познания понять, что «порядок и беспорядок представляются не как противоположности, а как-то, что неотделимо друг от друга» (И. Пригожин).
Мир синергетики, катастроф и диссипативных структур -- это мир, в котором жизнь и человек существуют не случайно, и в котором антропный принцип (см. главу 7) выступает в качестве фактически центрального интегрального принципа самоорганизации.
Жизнь и человек не случайны потому, что в этом мире есть место хаосу -- этому универсальному «клею» эволюции, хаосу -- особому чувствительному состоянию системы к самым слабым флуктуациям. Открытие хаоса в современном научном естествознании -- это открытие временного горизонта принципиальной непредсказуемости многих будущих событий.
Получает новое видение, новый смысл антропный принцип, суть которого американские физики Барроу и Типлер сформулировали примерно так: эволюционирующая, становящаяся Вселенная -- это самонаблюдающая, самоизмеряющая, самовычисляющая Вселенная, в которой существует внешний, находящийся вне времени и пространства наблюдатель -- законодатель для всех происходящих в нашем мире событий.
Однако наше осознание занять в постнеклассических исследованиях атемпоральную (вневременную) точку зрения только еще начинает возникать, нам сильно мешает не только ньютоново-картезианская и лапласо-водетерминистская классическая парадигмы, но и весь научный язык, и многое другое, связанное с особенностями развития западной культуры, западной цивилизации, порожденной древнегреческой натурфилософией и естествознанием. Проблемы науки оказывается в самом человеке, в сопряженности его внешнего и внутреннего опыта, в его месте и роли в сложно организованном природном мире (параграф о философии и моделях науки 1.5).
Это позволяет говорить о постнеклассике нескольких уровней. Постнеклассика первого уровня -- это наука наблюдаемых систем, постнеклассика второго уровня -- это наука наблюдающих систем, находящихся в отношении дополнительности (по Бору) друг к другу. Возникающий диалог между ними, через посредство ряда основополагающих принципов, ведет к концепции общего постнеклассического гиперпространства становящегося бытия и его познания. Осмысление (или точнее -- освоение) этого гиперпространства с необходимостью ведет к постнеклассике третьего уровня -- постнеклассике человека, со своим внутренним языковым пространством исследовательского поиска подлинно личностных и эволюционных оснований человеческого бытия.
Подытожим общее знание о космосе, жизни и природе: все существующие научные данные и обобщения говорят нам, что наш мир -- это мир направленно эволюционирующий. Направление эволюции задано процессом рассеяния первоначально чрезвычайно сконцентрированной энергии. В процессе этого рассеяния в результате гравитационных и гидродинамических неустойчивостей возникают разнообразные структуры возрастающей сложности. Эти структуры представляют собой диссипативные динамические системы, устойчивость которых поддерживается тем же потоком рассеяния энергии. Теоретические прогнозы говорят, что такой процесс усложнения должен будет смениться упрощением, когда поток рассеяния станет недостаточным для поддержания всей сложной иерархии диссипативных структур. Однако сейчас локальное усложнение структур в отдельных частях Вселенной -- это основной, определяющий эволюцию процесс. И таким он останется еще многие миллиарды, а возможно, и десятки миллиардов лет.
Можно отметить такую закономерность: возникающие по мере эволюции Вселенной более сложные структуры все более локальны, занимают меньший объем и связаны со все меньшими потоками энергии. Системы звезд, галактик и их скоплений включают в себя все вещество Вселенной и связаны с потоком рассеяния энергии Большого взрыва; звезды и планетные системы связаны с потоком энергии, рассеиваемой звездой; сложная структура планет «земной группы» возникает лишь в планетах, составляющих по массе намного меньше одного процента от массы всех звезд и планет и связана с потоком энергии, рассеиваемой планетой; наконец, жизнь покрывает тонкой пленкой лишь поверхность некоторых, а, может быть, всего одной планеты земной группы и обеспечивается энергией медленных химических реакций, преобразующих часть попадающей на планету энергии излучения центральной звезды -- Солнца.
Существующие структуры образуют иерархию по масштабам и сложности и обладают устойчивостью в определенном диапазоне условий существования, которые непрерывно меняются. При достаточно сильном изменении условий эта устойчивость нарушается и возникают новые типы структур. Механизм возникновения новых структур можно назвать диссипативным, а можно и бифуркационным. В этот процесс включается элемент случайности. В точке бифуркации потерявшая устойчивость структура может перейти в одно из нескольких одинаково вероятных состояний, где снова возникает устойчивость и этап детерминированной эволюции. Выбор системой дальнейшего пути в точке бифуркации определяется случаем.
Такой бифуркационной перестройкой стало на Земле возникновение жизни и образование биосферы. Надо подчеркнуть, что биосфера должна была возникнуть сразу как целое, как сбалансированная система, обеспечивающая свою устойчивость благодаря замкнутым циклам преобразования вещества, и можно предполагать, что для Природы реализовавшийся у нас вариант в то далекое время был не единственным возможным. Усложнение структур -- процесс закономерный, но то что возникла именно жизнь, такая какой мы ее видим, определил случай.
Биологическая система -- биосфера -- в процессе своей эволюции попадала на точки бифуркации меньшего ранга не раз. Наиболее фундаментальных этапов перестройки биосферы можно выделить два. Первый имел место примерно два миллиарда лет назад, когда появилась кисдородная атмосфера и аэробная жизнь. При этом изменились не только потенциальные возможности жизни и темп ее эволюции, но и вся географическая оболочка и геологическая среда верхней части земной коры.
Второй такой же по значимости (а может быть, и более значимый, равнозначный появлению жизни) этап неустойчивости мы переживаем сейчас. Он связан с появлением человека, обладающего разумом. Человек принципиально изменил характер эволюции биосферы -- он начал превращать ее в ноосферу. Этот термин придумали французы Леруа и Тейяр де Шарден в начале XX века, но современный смысл ему придал великий русский ученый В.И. Вернадский. В ноосфере фактором, определяющим развитие структуры, становится разум. Он меняет коренным образом структуру географической оболочки и темпы эволюции. Сейчас мы стоим на точке бифуркации -- состояние биосферы неустойчиво, человек ломает, преобразовывает сбалансированные структуры и каково будет новое устойчивое состояние -- возникнет ли стабильная ноосфера, как она будет выглядеть будет ли это искусственная техносфера, или что-то другое, или разум уничтожит сам себя и развитие биосферы пойдет совсем иным путем -- пока можно строить только предположения. Ясно одно: никакая простая экстраполяция тенденций предшествовавшего развития не поможет нам сделать прогноз и разработать стратегию выживания. Ноосферу будет создавать разум, и только изучение самых общих законов мироздания и познание самого себя может ему в этом помочь.
В заключение параграфа укажем ключевые слова текущего постнеклассического (эволюционно-диссипативного или бифуркационного) этапа науки: диссипативные структуры, синергетика, жизнь, автопоэз, космогенез, глобальный эволюционизм, антропный принцип.
12.8 К проблеме постнеклассического межкультурного диалога естественных и гуманитарных наук
Почти пятьдесят последних лет (начиная со знаменитой лекции «Две культуры и научная революция» английского писателя Чарлза Сноу в Кембридже в 1959 г.) длится диалог между гуманитариями и естественниками под знаком, если не возможного объединения, то хотя бы проблесков понимания между естественнонаучной и гуманитарной культурами. Сноу боялся тогда, что гуманитарные науки погубят естествознание, хотя в его время опасаться этого не приходилось. (Несколько позднее советский академик, физик Е. Фейнберг дал совершенно симметричный Ч. Сноу ответ, опубликовав книгу «Две культуры. Интуиция и логика в искусстве и науке»). По большей части «физики», а не «лирики» прилагали усилия и до этого года и после него, по сближению разнесенных на полюса человеческой природой двух почти несовместимых, но сосуществующих культур.
Какие задачи и проблемы интересовали «физиков», можно понять, прочитав отрывок из авторского предисловия к книге «Законы природы» Р. Пайерлса, концептуально не утративший нисколько актуальности и сегодня, в начале XXI в.: «...В наши дни преобладания специального образования можно услышать о типе ученого или инженера, духовные интересы которого ограничены узкой областью, и в чьем образовании полностью пренебре-галось общечеловеческими ценностями, включая искусство и гуманитарные науки... Однако я уверен, что существует также другая крайность, именно человек, чье воспитание ограничивалось искусством и гуманитарными науками и чьи интересы далеки от естественных наук.
Действительно, найдется достаточно много педагогов, считающих, что естественные науки не имеют большого воспитательного значения. В своих намерениях увеличить объем знаний, сообщаемых студентам на гуманитарных факультетах, они ограничиваются стремлением включить такие предметы, как историю науки, философию науки, считая их изучение делом более респектабельным, чем изучение самих естественных наук... Я не верю, чтобы изучение их было полезным, если студенты не понимают основ самих естественных наук. Это напоминает попытки преподавать историю искусства человеку, который никогда не видел ни одной картины, или теорию музыки глухому».
Ключевым понятием в диалоге культур практически на всех этапах было и остается пока понятие эволюция. Термин эволюция происходит от лат. evolvere, что означает развертываться, раскрываться (если, конечно, есть чему-то готовому, наличествующему, как мы понимаем, а не возникающему вдруг, развертываться, раскрываться!). В попытках найти взаимоприемлемые универсальные подходы для диалога культур философы, биологи, физики, математики, социологи и др. ученые прошли несколько этапов -- эволюционно-прогрессивный (Дарвин, Спенсер), эволюционно-энтропийно-катастрофический (Кювье, Клаузиус), эволюционно-космологический (Эйнштейн, Фридман, Лемэтр, Гамов), эволюционно-синергетический (Хакен), диссипативно-самоорганизующийся (Пригожин, автопоэз Матураны-Варелы), в последнюю четверть века -- фрактально-скейлинговый (самоподобный) (Мандельброт),
Так вот, уже в XIX столетии, Герберт Спенсер, сразу вслед за Дарвиным, развивая механистическое учение о всеобщей эволюции, во-первых, указал на связь эволюционных процессов, протекающих в живой природе, и процессов, протекающих в обществе. Его тезис состоял в утверждении, что анализ эволюционного процесса должен дать полное описание и объяснение природы человека, его поведения и общественного сознания. Он ратовал, и это во-первых, за новые принципы эволюционирующей природы -- «неустойчивость однородного», «дифференцирующая сила -- творец организации» и т. д. Практически в те же годы, во-вторых, возникает и укрепляется эволюционно-катастрофическая парадигма в термодинамике Клаузиуса: мир, как единое целое, неуклонно деградирует с ростом энтропии от максимальной организации к абсолютному хаосу (ужасающая всех тепловая смерть), и в биологии видов Кювье: образование новых живых форм принципиально исключено, и их разнообразие исторически сокращалось из-за космических, планетарных и геологических катаклизмов. Создалась ситуация, которую Илья Пригожин охарактеризовал такими словами: «Должны ли мы заключить,.. что Клаузиус и Дарвин не могут быть оба правы» или нам необходимо вместе с Гербертом Спенсером ввести новый принцип природы, например «неустойчивость однородного». (Сам же Пригожин, разрубив этот «гордиев узел», пришел к идее созидательного катастрофизма, через образование новых структур на основе принципа производства минимума энтропии, к теории диссипативных структурах, но это произошло много позже, уже фактически в наше время, а точнее, во второй половине XX века.)
Новый виток эволюционной парадигмы породили, в-третьих, космология, в начале прошлого века, с ее предсказанием расширения Вселенной в результате «большого взрыва», и внедренной на этой основе идеи историзма в естественные науки на всех эволюционных стадиях процессов мира. В-четвертых, этому способствовали синергетика и теория диссипативных структур, появившиеся на рубеже последней четверти ушедшего века, поскольку выявили механизмы самоорганизации, посредством которых открытые (наиболее общий универсальный вариант систем) природные системы способны спонтанно удаляться от равновесия и стабильно сохранять возникшее неравновесие с внешней средой. Немедленно модели самоорганизации оказались в центре внимания едва ли не всех наук и «овладели массами».
Вскоре обнаружилось, что социальная (включая духовную), биологическая, геологическая и космическая etc истории представляют собой стадии единого эволюционного вселенского процесса и знаменуют собой даже не неклассическое (полевое и квантовое) естествознание, а вновь народившееся постнеклассическое естествознание. Его характерный признак -- движение по эволюционному пути от состояний более вероятных (с энтропийных позиций) к состояниям менее вероятным, или иначе сказать -- «удаление от естества». Такой вывод -- не более чем «эмпирическое обобщение» (которое, по Владимиру Вернадскому, «опирается на факты, индуктивным путем собранные, не выходя за их пределы и не заботясь о согласии или несогласии полученного вывода с другими существующими представлениями о природе...»), требующее теоретического объяснения столь удивительной направленности эволюционных процессов (и следует при этом помнить слова античного мудреца Агафона (ок. 448 -- ок. 405): «Весьма вероятно наступление невероятного»).
И такое теоретическое объяснение, и это, в-пятых, последовало (см. п. 11.9). Но для более глубокого понимания новой гипотезы об эволюционных стадиях Вселенной, необходимо вспомнить понятие фронтальности и рассмотреть связанное с ним понятие сетевых структур природы и общества.
Как мы уже отмечали в п. 12.6, открытие фрактальности подготавливалось в течение почти 150 лет и свершилось в виде так называемой фрактальной геометрии в 1977 году благодаря бельгийскому математику Бенуа Мандельброту. Эта фрактальная геометрия оказалась геометрией негладких, шероховатых, шершавых, зазубренных, изъеденных «кротовыми» ходами и отверстиями пространственных объектов (описываемых, с математической точки зрения, недифференцируемыми функциями, тогда как классическая и неклассическая физика -- дифференцируемыми функциями, отчего законы указанной физики сами гладкие, непрерывные, что вообще является общим, достаточно грубым приближением). Эта новая геометрия, оперирующая понятием фрактала, который, согласно Мандельброту, «называется структура (курсив наш. -- Авт.), состоящая из частей, которые в каком-то смысле подобны целому», с большей точностью (чем Евклидова, Лобачевского или Римана геометрии) описывает природные и не только природные, образования мира: облака, горы, турбулентные течения, береговые линии, дельты рек, их притоки, корни, ветки деревьев, легкие животных, кровеносную и нервную системы, поверхность коры головного мозга, его нейронную структуру, ДНК и РНК молекулы и т. д. и т. п.
Понятно, что фрактальность, и как идея, и как мыслимая и познаваемая на опыте сущность, является прямым следствием идей античных философских воззрений Анаксагора, Парменида и Зенона о единстве бытия и его целостности, поскольку каждая из них претендует на всеобщность и единство любых возможных структурных систем -- естественных (природных) и гуманитарных. Поиски целостности «во всем» -- задача как философская, так и естественнонаучная. Здесь мы хотим показать, что понятие фрактальности позволяют перейти на уровень количественного описания и на этой основе дать новое как качественное, так и количественное осмысление явлений и событий природы и общества.
Прежде надо убедиться, что гуманитарные системы и структуры могут быть охарактеризованы одинаковым набором характеристик. Для природных структур характерным является, как мы видели, разветвленность, сеть бифуркаций (буквально, ветвлений). Это же характерно для генеалогического древа, например, вашей семьи, которое обязательно окажется многомерным, с непредсказуемым числом точек пересечений, вряд ли поддающимся изображению даже в данном нам трехмерном пространстве. А если таким же образом начать связывать события, происшедшие в прошлом и происходящие в настоящем, разнесенные в пространстве -- какой или какими характеристиками описывать эти многообразия? Число подобных примеров и событий нашей естественной и гуманитарной жизни можно множить и множить, если не принять сразу, что она такова по самой своей сути.
Что дает или может дать понятие фрактальности в познании, например, биологических структур? Ясно, что любая биологическая структура -- прежде всего живое вещество, к которому неприложимы обычные физические законы, хотя физики, начиная с Эрвина Шредингера, основателя квантовой парадигмы микромира, наряду с Максом Планком, пытаются смотреть на проблему жизни именно с физических позиций. Подобное заблуждение не дало и не даст, по понятным причинам, позитивного результата. Это происходило и происходит потому, что живая, жизненная структура, фрактальная по своей сущности, не подчинена непрерывным, гладким физическим процессам и процедурам, происходящим в ней. Прежде всего, она управляется иначе, чем простые безжизненные структуры -- она управляется особенными ценностными информационными потоками в соответствии с процедурами самоорганизации, являя собой целостный комплекс (паттерн, как его называет Ф. Капра в книге «Паутина жизни»), борющийся за свое выживание посредством негэнтропийного выброса переработанной и потому обесцененной (низкокачественной) энергии (см. главу 11).
Не будет большого откровения заявить, что на это способны только фрактально организованные, самоуправляющиеся структуры, какими являются все биологические организмы. Особую роль при этом играют процессы взаимоотношения фрактальных частей, взаимодействия между структурными элементами целостного комплекса, совершаемыми по некоторым новым, пока еще не открытым законам. Но определенный успех уже есть, если в качестве комплекса взять всю историю Вселенной, обратившись к обобщенной картине эволюционных процессов в ней, от «большого взрыва» (Big Bang) до современности, в версии так называемой Мега-истории (см. п. 11.9). Проведенный профессиональными историками анализ давал лишь качественную картину прошлого и будущего развертывания процессов вселенского, галактического, сидерического и планетарного масштабов (которые, кстати, предвидел русский философ и драматург Александр Сухово-Кобылин еще в конце XIX столетия в своей «философии Всемира»), тогда как физику А.Д. Панову удалось установить количественные закономерности в последовательности качественных скачков (революций, бифуркаций, цивилизационных переходов) эволюции природы и общества на протяжении многих миллиардов лет!
Поскольку сегодня известны многочисленные специфические исследования эволюции конкретных сущностей, то мы располагаем некоторыми базовыми представлениями об эволюции как о фундаментальном и универсальном процессе. Их наличие создает условия для ведения интересующего нас междисциплинарного дискурса.
Таких фундаментальных свойств (универсалий) можно выделить несколько, некоторые из них уже были упомянуты, о других скажем сейчас.
Исторически первой универсалией является знаменитая «геккель-дарвинская триада»: изменчивость -- стохастичность (непредсказуемая случайность) и неопределенность, органически присущие природе; наследственность -- зависимость настоящего и будущего от прошлого; отбор -- система правил или законов, отбирающая из множества виртуальных состояний реальные состояния.
Среди новых универсалий прежде всего следует указать, что природные, как правило, большие системы, по изначальной своей сущности обладают в своем развитии принципиальной пространственно-временной необратимостью или, если угодно, «пространственно-временной стрелой», но не просто «стрелой времени» Эддингтона. Тогда второе из выделяемых нами фундаментальных свойств всех открытых больших систем -- их пространственно-временная необратимость. Данное заключение основывается на общепризнанной сущности эйнштейновой относительности: все природные явления совершаются в едином 4-мерном пространстве-времени или в мире Минковского. В отношении гуманитарных систем следует говорить об их свойстве историчности, что представляет собой своеобразный гуманитарный аналог пространственно-временной необратимости природных систем. Таким образом, принципиальное следствие обоих аналогов этого свойства состоит в том, что как природные, так и гуманитарные открытые системы обладают прошлым, и, находясь в настоящем в каждый текущий момент времени, затем будут обладать будущим. Данная пространственно-временная (историческая) последовательность событий в силу природной абсолютности необратима, т. е. не может быть изменена какими-либо научными ухищрениями, как писал об этом М.К. Мамардашвили.
Предположение о следующем свойстве систем делается на основе надежно установленных в синергетике, как, впрочем, и в стохастической динамике, фактов, а именно, основывается на том, что динамика развития систем зависит от их состояния. Более того, будущие состояния систем находятся вне возможностей контроля и предсказания, они открыты и неоднозначны. Все это в полной мере характеризует системы как нелинейные, так что третье фундаментальное свойство систем -- нелинейность, которое, кстати, обладает тоже пространственно-временными атрибутами. В физике это подтверждают нелинейные теория электромагнитного поля Максвелла, теория тяготения Эйнштейна, теория сверхпроводимости, спинорная теория элементарных частиц Гейзенберга-Иваненко, явление Бенара; в химии -- автокаталитическая реакция Белоусова-Жаботин-ского и многое другое в биологии, медицине, экологии.
Еще одно фундаментальное свойство систем порождается тем, что называется синергией. Синергия в прямом значении этого греческого слова понимается как кооперативное, совместное действие. Но более полно и точно синергия в современном осмыслении обозначает целостное, неразделимое, функциональное единение когерентных (родственных) по сущности составляющих систему элементов. Таким образом, четвертое фундаментальное свойство эволюционирующих самоорганизующихся систем -- когерентность.
Следующее, пятое, свойство систем -- свойство диссипативности или открытости, обуславливает самопроизвольное (спонтанное) образование некоторых упорядоченных пространственных или временных структур в ходе неравновесного обменного процесса веществом и энергией с окружающей внешней средой. Шредингер, исследуя проблему возникновения жизни, красочно охарактеризовал эту ситуацию как «добывание упорядоченности из окружающей среды». Это свойство диссипативности, неразрывно связанное с неравновесностью состояния, следует распространить и на открытые гуманитарные системы, упорядоченность в которых может возрастать как в результате взаимодействия когерентных элементов внутри самой системы, так и в результате взаимодействия с другими гуманитарными системами.
Самоорганизация в системе связана с формированием структуры более сложной, чем первоначальная. Такой переход ведет к понижению симметрии. «Порядок есть нарушение симметрии» -- вот образное выражение этой ситуации. Действительно, пустое пространство, например, в высшей степени симметрично -- все его точки и направления эквивалентны (пространство однородно и изотропно). Порождение структуры, например, в виде гексагональных «медовых» ячеек Бенара, понижает симметрию и изменяет состояние системы. Более того, возникновение новых симметрий состояний системы или диссипативных структур (название, как уже упоминалось, дано Приго-жиным) носит пороговый характер и связывается с неустойчивостью к флуктуациям. Уместно при этом воспользоваться понятием спонтанного нарушения симметрии в системе, впервые введенного в физике элементарных частиц. С математической точки зрения, неустойчивость и пороговый характер самоорганизации связаны с нелинейностью. Потеря системой устойчивости, ведущей к новой симметрии и, следовательно, к новой структуре самоорганизации, называется катастрофой. Более точно, катастрофа -- это скачкообразное изменение, возникающее в виде внезапного ответа системы на плавное изменение внешних условий. В математике этот круг вопросов изучается теорией катастроф Тома-Арнольда. Таким образом, предрасположенность системы к спонтанному нарушению симметрии можно объяснить новым, шестым, свойством систем -- катастрофичностью.
При отмеченных выше нарушениях симметрии в системе остаются неявные следы этого нарушения, своеобразная «память* о прошлом, распространяющаяся в виде волн. Наиболее тривиальный пример -- упругие волны в твердом теле, которые можно трактовать как «память» о нарушении трансляционной инвариантности (симметрии) последнего. Так, если в кристалле его первый атом занял какое-то место, то остальные атомы должны располагаться эквидистантно (на одинаковых друг от друга расстояниях) в узлах решетки. Если внешняя по отношению к кристаллу сила нарушает установившийся порядок, по кристаллу начинают распространяться упругие волны. В итоге после распространения волны (возмущения) в системе возникает новая структура. Так мы приходим к понятию информации в материальной системе. Действительно, поскольку существование материи мыслится только в пространстве и времени, самосущность материи в пространстве есть ее структура, а самосущность ее во времени есть движение материи (и это основной предмет исследования в физике и химии), то изменяющаяся структура, или структура в движении, и есть информация. Здесь очевидно, что функцию носителя информации взяла на себя структура, без которой информация бессмысленна, ибо она не существует вне материи (как и материя вне информации). Это свойство, уже седьмое, рассматриваемых систем можно назвать свойством организующей информационности (или, может быть, свойством организованной информации).
Итак, суть новой обсуждаемой постнеклассической (иногда говорят, посткризисной) эволюционной парадигмы состоит в том, что в современной науке (без разделения на естественные и гуманитарные) акцент в исследованиях переносится на изучение состояний необратимости, неустойчивости, нелинейности, открытости, неравновесности, упорядоченности, симметрии, механизмов рождения и перестройки структур, самоорганизации, роли случайности и конструктивной роли хаоса, природы катастрофических революционных изменений в системах, механизмов альтернативного -- исторического их развития.
То, что было указано и рассмотрено выше, далеко не все, чем располагает арсенал современного естествознания и его концептуально-понятийный аппарат, прошедший естественноисторическую тренировку. Естественнонаучные реалии начавшегося тысячелетия наиболее полно состоят в том, что совсем недавно возникли и начинают господствовать новые научно-исследовательские программы (Лакатос) и научные парадигмы (Кун). К ним, помимо уже упомянутых таких программ и парадигм, как синергизм и принцип подчинения (Хакен), диссипативные структуры (Пригожин), самоупорядоченность и самоорганизация (Бенар, Тейлор, Богданов, Белоусов, Жаботинский, Пригожин), автопоэз (Матурана и Варела), следует добавить новые: информация (Винер, Эшби, Шеннон) и информационная ценность (Бонгарт, Харкевич, Стратонович), распознавание образов (Бонгарт, Кронрод, Кунин, Гельфанд), симбиоз (Маргулис) и глобальный эволюционизм (Моисеев), матричные модели порождения жизни (Кольцов, Бернал, Медников, Костецкий, Голубев, Раменская, Нисбет, Дайсон, Галимов), РНК-мир (Чех, Джойс), фракталы (Жулиа, Кох, Кантор, Серпинский, Ричардсон, Мандельброт) и фрактальная размерность (Хаусдорф, Безикович, Колмогоров), временная и пространственно-временная геологическая необратимость (стрелы времени Эддингтона, Вернадского, Пригожина), обычные и странные аттракторы (Пуанкаре, Эдуард Лоренц), черные дыры (Лаплас, Снайдер, Оппенгеймер, Хокинг, Пенроуз,) (все последние структуры -- аттракторы и черные дыры, как особые центры притяжения), бифуркации (центры ветвления), древесные структуры и мозаики (Пуанкаре, Кейли, Пенроуз), катастрофа (она же сборка по Тому и Арнольду), а также такие понятия и категории, как сингулярность, динамический или детерминированный хаос, суперструны (в физике высоких энергий), темная масса и темная энергия (невидимые и пока ненаблюдаемые субстанции космоса) т. д. и т. п. Донести и усвоить все это -- задача «архисложная», как часто говорил наш «октябрьский» вождь, как для тех, кто стоит за университетской кафедрой, так и для тех, кто сидит перед ней.
Многие ученые, рассматривая сложившуюся ситуацию с позиций меж- и трансдисциплинарности, убеждены, что мы, во-первых находимся на пороге новой целостности (холизма) расчлененного западноевропейской наукой мира, на пороге новой научно-исследовательской холистской программы. Исключительно важно с позиций заявленной проблемы, во-вторых, то, что многие из упомянутых концептуальных понятий, категорий, парадигм были до недавнего времени исключительно в обиходе, в основном, гуманитарного образа мышления, в настоящий момент приобретают иное, универсальное звучание. Например, гуманитарии всегда гордились своей непредсказуемостью и тем, что элементы случайности имеют очень важное значение в развитии их исследований. Благодаря познанию, хаоса теперь и естественники получили право на непредсказуемость, рассматривая влияние флуктуаций на поведение системы в точке бифуркации. Сейчас и историки и многие другие используют это понятие. Нельзя не видеть, что в современную эпоху создаются условия для возникновения некоего единого универсального метаязыка естественных и гуманитарных наук, языка их транскультурного диалога.
Резюме
Важным аспектом совершенствования методологии познания является всесторонний анализ проблемного поля современной науки. До сегодняшних дней господствующая научная картина мира по существу распадалась на три части (неорганическую, органическую и социальную), в которой процессы самодвижения, самоорганизации имели место, но с точки зрения глобального (магистрального) эволюционизма они не были объединены.
Многие понятия теории самоорганизации стали переосмысливаться в новой единой картине мира, в которой магистральная эволюция непротиворечивым образом объединяла и то, как материя движется, и то, как она мыслит.
Абстрактная формулировка идеи глобального эволюционизма (от Аристотеля до Пригожина и Моисеева) сменилась на научно оформленную, в результате ассимиляции этой идеи физикой (эволюционирующие космогонические модели Вселенной, развитие необратимых термодинамических процессов), химией (автокаталитические системы типа Белоусова-Жаботинского, элементарные каталитические системы А. Руденко), биологией (биогенез, синтетическая теория эволюции, несводимость макроэволюции к микроэволюционным изменениям), социологией (тектология А. Богданова) и др.
В рамках синергетического (Хакен) и диссипативно-структурного (Пригожин) подходов самоорганизация определяется как одна из форм организации материи. При этом определяются, с одной стороны, равновесные формы организации, отличающиеся от самоорганизации, а с другой -- под «крышей» синергетического подхода объединяются в особый класс -- динамический, физические, химические и биологические структуры, которые ранее принципиально не сводились вместе.
Самоорганизация -- это процесс, в ходе которого создается, воспроизводится или совершенствуется организация сложной динамической системы. Процессы самоорганизации встречаются в системах высокого уровня сложности, обладающих большим количеством элементов, связи между которыми имеют нежесткий характер. Эти процессы происходят путем перестройки существующих и организации новых связей между элементами системы, т. е. синергетически, корпоративно.
Синергетическое познание самоорганизации и эволюции имеет новый образ, новую парадигму, которую несет в себе современная наука, вступающая в принципиально новый «постнеклассический», «бифуркационный» этап своего развития. Пока сам термин «синергетическое познание» носит условный смысл, так как происходит становление науки с не принятым еще всеми названием. В синергетике, и равно как в «теории диссипативных структур» Пригожина как новых междисциплинарных направлениях, сфокусированы главные, ключевые особенности парадигмы постнеклассической науки, обусловленные, прежде всего, присущим ей нелинейным стилем мышления, плюрализмом, неоднозначностью теоретических представлений и формулировок, наконец -- новым пониманием роли хаоса в мироздании, как его необходимого конструктивного начала, необходимый созидательный момент общей картины становящейся, самоорганизующейся реальности. Необходимо усвоить не только нелинейное мышление, но главное -- в контексте синергетического познания понять, что «порядок и беспорядок представляются не как противоположности, а как то, что неотделимо друг от друга» (И. Пригожин). Эволюционные идеи в разных науках развивались изолированно друг от друга до появления объединяющей их всех концепции глобального эволюционизма.
Подобные документы
Цель и предмет курса "Концепции современного естествознания", основные термины и понятия. Специфические черты науки, виды культуры. История становления научных знаний. Естественнонаучная картина мира. Внутреннее строение Земли. Законы химии и биологии.
шпаргалка [136,9 K], добавлен 12.02.2011Рассмотрение стадий исторического развития естествознания. Отказ от созерцательности и наивной реалистичности установок классического естествознания. Усиление математизации современного естествознания, сращивание фундаментальных и прикладных исследований.
реферат [30,2 K], добавлен 11.02.2011Требования образовательных стандартов по дисциплине "Концепции современного естествознания". Изучение и понимание сущности фундаментальных законов природы, составляющих каркас современных физики, химии и биологии. Методология современного естествознания.
лекция [26,7 K], добавлен 24.11.2017Естественнонаучная и гуманитарная культуры. Предмет и метод естествознания. Динамика естествознания и тенденции его развития. История естествознания. Структурные уровни организации материи. Макромир. Открытые системы и неклассическая термодинамика.
книга [353,5 K], добавлен 21.03.2009Эволюция познавательной деятельности от античных времен до современности. Специфические черты науки; ее первоначальное деление на естественнонаучные и гуманитарные знания, их дальнейшее объединение в дисциплину "концепции современного естествознания".
курсовая работа [38,8 K], добавлен 08.05.2011Причины, от которых зависит развитие науки. Роль практики в развитии естествознания. Проявление относительной самостоятельности развития естествознания. Преемственность в развитии идей и принципов естествознания, теорий, методов и приемов исследования.
реферат [21,3 K], добавлен 29.11.2009Исаак Ньютон как основатель классической физики. Открытия в области естествознания, которые широко используются в разнообразных областях нашей жизни. Свойства кварков, короткодействующие типы взаимодействия, суть идеи корпускулярно-волнового дуализма.
контрольная работа [38,8 K], добавлен 04.01.2011Естественнонаучная и гуманитарная культуры и история естествознания. Корпускулярная и континуальная концепции описания природы. Порядок и беспорядок в природе, хаос. Пространство и время, принципы относительности, симметрии, универсального эволюционизма.
курс лекций [545,5 K], добавлен 05.10.2009Значение науки в современной культуре и структура научного знания. Основные этапы эволюции европейского естествознания. Типы физических взаимодействий. Механистическая, электромагнитная и квантово-релятивистская картина мира. Модели строения атома.
учебное пособие [49,9 K], добавлен 27.01.2010Цели и задачи курса "Концепции современного естествознания", место данной дисциплины в системе других наук. Классификация наук, предложенная Ф. Энгельсом. Взаимосвязь физических, химических и биологических знаний. Виды атмосферных процессов в природе.
контрольная работа [28,8 K], добавлен 13.06.2013