Рост кристаллов

Что такое кристаллы, их строение, условия образования в природе при различных геологических процессах из растворов, расплавов, газовой или твердой фазы. Образование зародышей, рост кристаллов, нарушение правильности в расположении частиц, дефекты.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 05.04.2012
Размер файла 29,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СПГУАП

Контрольная работа

по дисциплине «Концепции современного естествознания»

РОСТ КРИСТАЛЛОВ

студента 1 курса

Дашко Марии Дмитриевны

Шифр 2010/3058,

группа № Zoм52к

Содержание:

кристалл природа геологический

  • Введение
  • 1 Что такое кристаллы
  • 2. Образование кристаллов в природе
  • 3. Причины и условия образования кристаллов
  • 4. Рост кристаллов
  • 5. Дефекты кристаллов
  • Выводы
  • Список используемой литературы

Введение

Кристаллы одни из самых красивых и загадочных творений природы

В давние времена считалось, что кристаллы представляют собой редкость.

Действительно, нахождение в природе крупных однородных кристаллов - явление нечастое. Однако мелкокристаллические вещества встречаются весьма часто. Так, например, почти все горные породы: гранит, песчаники известняк - кристалличны.

По мере совершенствования методов исследования кристаллическими оказались вещества, до этого считавшиеся аморфными. Сейчас мы знаем, что даже некоторые части организма кристалличны, например, роговица глаза.

В настоящее время кристаллы имеют большое распространение в науке и техники, так как обладают особыми свойствами. Такие области использования кристаллов, как полупроводники, сверхпроводники, пьезо- и сегнетоэлектрики, квантовая электроника и многие другие требуют глубокого понимания зависимости физических свойств кристаллов от их химического состава и строения.

В настоящее время известны способы искусственного выращивания кристаллов. Кристалл можно вырастить в обыкновенном стакане, для этого требуется лишь определенный раствор и аккуратность, с которой необходимо ухаживать за растущим кристаллом.

1. Что такое кристаллы

Кристаллами обычно называют твердые тела, образующиеся в природных или лабораторных условиях и имеющие вид многогранников, которые напоминают строгие геометрические построения. Поверхность таких фигур ограничена более или менее совершенными плоскостями - гранями, пересекающимися по прямым линиям - ребрам. Точки пересечения ребер образуют вершины.

Это приведенное определение требует существенных поправок. Вспомним, например, всем известную горную породу, состоящую из зерен полевого шпата, слюды и кварца. Все эти зерна являются кристаллами, однако, их извилистые зерна не сохранили прежней прямолинейности и плоскогранности, а, следовательно, не подходят к вышеуказанному описанию. Одновременный рост всех составляющих граней кристаллов, мешавших друг другу развиваться, и привел к тому, что отдельные кристаллы не смогли получить свойственную им правильную многогранную форму.

Итак, для образования правильно ограненных кристаллов необходимо, чтобы ничто не мешало им свободно развиваться, не теснило бы их и не препятствовало их росту.

Кристаллов в природе существует великое множество и так же много существует различных форм кристаллов. В реальности, практически невозможно привести определение, которое подходило бы ко всем кристаллам. Здесь на помощь можно привлечь результаты рентгеновского анализа кристаллов. Рентгеновские лучи дают возможность как бы нащупать атомы внутри кристаллического тела и определить их пространственное расположение. В результате было установлено, что решительно все кристаллы построены из элементарных частиц, которые расположены в строгом порядке внутри кристаллического тела, то есть множество одинаковых атомов располагаются наподобие узлов пространственной решетки. Упорядоченность расположения частиц и отличает кристаллическое состояние от некристаллического, где степень упорядоченности частиц ничтожна.

Чтобы представить такую решетку, мысленно заполним пространство множеством равных параллелепипедов, параллельно ориентированных и соприкасающихся по целым граням. Простейший пример такой постройки представляет собой кладка из одинаковых кирпичиков. Если внутри кирпичиков выделить соответственные точки, например, их центры или вершины, то мы и получим модель пространственной решетки. Для всех без исключения кристаллических тел характерно решетчатое строение.

Вот теперь можно дать общее определение для кристаллов. Итак, кристаллами называются «все твердые тела, в которых слагающие их частицы (атомы, ионы, молекулы) расположены строго закономерно наподобие узлов пространственных решеток». Это определения является максимально приближенным к истине, оно подходит к любым однородным кристаллическим телам.

2. Образование кристаллов в природе

В природе кристаллы образуются при различных геологических процессах из растворов, расплавов, газовой или твердой фазы.

Значительная часть минеральных кристаллов произошла путем кристаллизации из водных растворов. Примеры выпадения кристаллов из раствора - выпадение кристаллов солей в замкнутых водоемах; рост кристаллов на стенках трещин и полостей при гидротермальных процессах, на больших глубинах в условиях высоких давлений и температур; образование отдельных кристаллов вторичных минералов в зонах окисления рудных месторождений.

Образование кристаллов из расплавов. Если магматический очаг располагается на большой глубине и его остывание идет медленно, то магма успевает хорошо раскристаллизоваться и кристаллы вырастают достаточно крупными и хорошо ограненными. Если магма застывает внезапно, могут образоваться некристаллические минералы и горные породы. Внезапное застывание магмы происходит при извержении вулканов. Потоки застывшей лавы дает начало не кристаллическим, а стекловидным породам.

Образование кристаллов в результате конденсации газов или из паров. Кристаллизоваться могут не только водяные пары, но и пары других веществ.

Образование кристаллов при перекристаллизации твердых веществ. При переходе из твердого состояния в твердое выделяют 2 случая:

1. Кристаллическое вещество образуется из аморфного - например, с течением времени закристаллизовываются содержащие стекла кристаллические породы.

2. Перекристаллизация - это процесс, при котором структура одних веществ разрушается, и образуются новые кристаллы с другой структурой. Например, известняк под действием высоких температур и давления становится мрамором. Перекристаллизация связана с таким явлением как метосамотоз - преобразование горной породы или минерала в другую горную породу или минерал под воздействием привноса или выноса вещества.

3. Причины и условия образования кристаллов

Кристаллизация - это процесс перехода вещества из жидкого состояния в твердое с образованием кристаллической структуры. В природе все самопроизвольно протекающие превращения, кристаллизация и плавление обусловлены тем, что новое состояние в новых условиях является энергетически более устойчивым, обладает меньшим запасом энергии.

Переход вещества из жидкого или парообразного состояния в твердое с образованием кристаллической структуры называется первичной кристаллизацией. Образование новых кристаллов в твердом кристаллическом веществе называется вторичной кристаллизацией. Процесс кристаллизации состоит из двух одновременно идущих процессов зарождения и роста кристаллов. Кристаллы могут зарождаться самопроизвольно - самопроизвольная кристаллизация или расти на имеющихся готовых центрах кристаллизации - несамопроизвольная кристаллизация.

При охлаждении переход из жидкого состояния в твердое сопровождается образованием кристаллической решетки, т. е. кристаллизацией. Для того чтобы вызвать кристаллизацию, жидкое вещество переохладить до температуры ниже температуры плавления. При затвердевании и при аллотропическом превращении в вещесте вначале образуются центры кристаллизации, вокруг которых группируются атомы, образуя соответствующую кристаллическую решетку. Процесс кристаллизации складывается из двух этапов: образования центров кристаллизации и роста кристаллов. У каждого из возникающих кристаллов кристаллографические плоскости ориентированы случайно, кроме того, при первичной кристаллизации кристаллы могут поворачиваться, так как они окружены жидкостью. Смежные кристаллы растут навстречу друг другу, и точки их столкновения определяют границы кристаллитов (зерен).

Для начала роста кристаллов из жидкого вещества необходимо, чтобы свободная энергия образующего твердого вещества уменьшилась. Если же в результате образования зародыша свободная энергия увеличивается, то зародыш растворяется. Минимальный размер способного к росту зародыша называется критическим размером зародыша, а такой зародыш - устойчивым.

Чем больше степень переохлаждения, понижающая свободную энергию образующего кристалла, тем меньше критический размер зародыша.

Вокруг образовавшихся центров начинают расти кристаллы. По мере роста кристаллов в веществе, оставшемся еще в жидком состоянии, продолжают возникать новые центры кристаллизации. Каждый из растущих новых кристаллов ориентирован в пространстве произвольно.

Кристаллы с неправильной формой называются зернами или кристаллами. Твердые тела, состоящие из большого количества зерен, называют поликристаллическими.

Д.В. Черновым установлено, что процесс кристаллизации состоит из двух элементарных процессов: зарождения центров кристаллизации и роста кристаллов из этих центров. Гораздо позже Тамман, изучая процесс кристаллизации, установил зависимость числа центров кристаллизации и скорости роста кристаллов от степени переохлаждения.

Пока образовавшиеся кристаллы растут свободно, они имеют более или менее правильную геометрическую форму. Однако при столкновении растущих кристаллов их правильная форма нарушается, так как в этих участках рост граней прекращается. Рост продолжается в тех направлениях, где есть свободный доступ «питающей» жидкости. В результате растущие кристаллы, имеющие сначала геометрически правильную форму, после затвердевания получают неправильную внешнюю форму и поэтому называются кристаллитами или зернами.

Рост зародышей происходит в результате перехода атомов из переохлажденной жидкости к кристаллам. Кристалл растет послойно, каждый слой имеет одноатомную толщину. Различают два элементарных процесса роста кристаллов.

Образование двумерного зародыша.

Рост двумерного зародыша путем поступления атомов из переохлажденной жидкости. После образования на плоской грани двумерного зародыша дальнейший рост нового слоя протекает сравнительно легко, так как появляются участки, удобные для закрепления атомов, переходящих из жидкости.

Размер зерен, образующихся в процессе кристаллизации, зависит не только от числа самопроизвольно зарождающихся центров кристаллизации, но и от числа частичек нерастворимых примесей, всегда имеющихся в жидком металле, которые играют роль готовых центров кристаллизации.

4. Рост кристаллов

Почти любое вещество может при известных условиях дать кристаллы. Кристаллы можно получить из раствора или из расплава данного вещества, а также из его паров.

Многим известно, что растворимость веществ зависит от температуры. Обычно с повышением температуры растворимость увеличивается, а с понижением - уменьшается. Мы знаем, что одни вещества растворяются хорошо, другие - плохо. При растворении веществ образуются насыщенные и ненасыщенные растворы. Насыщенный раствор - это раствор, который содержит максимальное количество растворяемого вещества при данной температуре. Ненасыщенный раствор - это раствор, который содержит меньше растворяемого вещества, чем насыщенный при данной температуре.

Итак, допустим мы приготовили насыщенный раствор, скажем, сахара при температуре 30°С и начинаем охлаждать его до 20°С. При 30°С мы смогли растворить в 100 г воды 223 г сахара, при 20°С растворяется 205 г. Тогда при охлаждении от 30 до 20°С 18 г окажутся "лишними" и, как говорят, выпадут из раствора. Итак, один из возможных способов получения кристаллов состоит в охлаждении насыщенного раствора.

Можно поступить иначе. Приготовим насыщенный раствор соли и оставим его в открытом стакане. Через некоторое время мы обнаружим появление кристалликов. Почему они образовались? Внимательное наблюдение покажет, что одновременно с образованием кристаллов произошло еще одно изменение - уменьшилось количество воды. Вода испарилась, и в растворе оказалось "лишнее" вещество. Итак, другой возможный способ образования кристаллов - это испарение раствора.

Как же происходит образование кристаллов из раствора?

Мы сказали, что кристаллы "выпадают" из раствора; надо ли это понимать так, что неделю кристалла не было, а в одно какое-то мгновение он вдруг возник? Нет, дело обстоит не так: кристаллы растут. Не удается, разумеется, обнаружить глазом самые начальные моменты роста. Сначала немногие из беспорядочно движущихся молекул или атомов растворенного вещества собираются в том примерно порядке, который нужен для образования кристаллической решетки. Такую группу атомов или молекул называют зародышем.

Опыт показывает, что зародыши чаще образуются при наличии в растворе каких-либо центров кристаллизации. Центрами кристаллизации могут служить загрязнения на стенках посуды с раствором, пылинки, мелкие кристаллики растворенного вещества. Всего быстрее и легче кристаллизация начинается тогда, когда в насыщенный раствор помещается маленький кристалл - затравка. При этом выделении из раствора твердого вещества будет заключаться не в образовании новых кристалликов, а в росте затравки.

Рост зародыша не отличается, конечно, от роста затравки. Смысл использования затравки состоит в том, что он "оттягивает" на себя выделяющееся вещество и препятствует, таким образом, одновременному образованию большого числа зародышей. Если же зародышей образуется много, то они будут мешать друг другу при росте и не позволят нам получить крупные кристаллы.

В целом ряде случаев кристаллы образуются из расплавленной массы - из расплава. В природе это совершается в огромных масштабах: из огненной магмы возникли базальты, граниты и многие другие горные породы.

Для примера расплавим лед, для этого начнем его нагревать, поместив предварительно в сосуд с веществом измеритель температуры. Сначала температура льда увеличивалась до 0°С, потом вещество начинает плавиться, и подъем температуры приостановился. Пока все вещество не превратилось в жидкость, температура не изменилась; дальнейший подъем температуры - это уже нагревание жидкости. Все кристаллические вещества имеют определенную температуру плавления. Лед плавится при 0°С, железо - при 1527°С, ртуть - при 39°С и т.д.

Как мы знаем, в каждом кристаллике атомы или молекулы вещества образуют упорядоченную упаковку и совершают малые колебания около своих средних положений. По мере нагревания тела скорость колеблющихся частиц возрастает вместе с размахом колебаний. Это увеличение скорости движения частиц с возрастанием температуры составляет один из основных законов природы, который относится к веществу в любом состоянии - твердом, жидком или газообразном.

Когда достигнута определенная, достаточно высокая температура кристалла, колебания его частиц становятся столь энергичными, что аккуратное расположение частиц становится невозможным - кристалл плавится. С началом плавления подводимое тепло идет уже не на увеличение скорости частиц, а на разрушение кристаллической решетки. Поэтому подъем температуры приостанавливается. Последующее нагревание - это увеличение скорости частиц жидкости.

В интересующем нас случае кристаллизации из расплава вышеописанные явления наблюдаются в обратном порядке: по мере охлаждения жидкости ее частицы замедляют свое хаотическое движение; при достижении определенной, достаточно низкой температуры скорость частиц уже столь мала, что некоторые из них под действием сил притяжения начинают пристраиваться одна к другой, образуя кристаллические зародыши. Пока все вещество не за кристаллизируется, температура остается постоянной. Эта температура, как правило, та же, что и температура плавления.

Если не принимать специальных мер, то кристаллизация из расплава начнется сразу во многих местах. Кристаллики будут расти в виде правильных, свойственных им многогранников совершенно так же, как мы описывали выше. Однако свободный рост продолжается недолго: увеличиваясь, кристаллики наталкиваются друг на друга, в местах соприкосновения рост прекращается, и затвердевшее тело получает зернистое строение. Каждое зерно - это определенный кристаллик, которому не удалось принять своей правильной формы.

В зависимости от многих условий, и прежде всего от быстроты охлаждения, твердое тело может обладать более или менее крупными зернами: чем медленнее охлаждение, тем крупнее зерна. Размеры зерен кристаллических тел колеблются от миллионной доли сантиметра до нескольких миллиметров. В большинстве случаев зернистое кристаллическое строение можно наблюдать в микроскоп. Твердые тела обычно имеют именно такое мелкокристаллическое строение.

Таким образом, для того чтобы вырастить крупный одиночный кристалл требуется принять меры к тому, чтобы кристалл рос из одного места. А если уж начало расти несколько кристалликов, то, во всяком случае, надо сделать так, чтобы условия роста были благоприятны лишь для одного из них.

Вот, например, при выращивании кристаллов легкоплавких металлов металл расплавляют в стеклянной пробирке с оттянутым концом. Пробирку, подвешенную за нить внутри вертикальной цилиндрической печи, медленно опускают вниз. Оттянутый конец постепенно выходит и охлаждается. Начинается кристаллизация. Сначала образуется несколько кристалликов, но те, которые растут вбок, упираются в стенку пробирки и рост их замедляется. В благоприятных условиях окажется лишь тот кристаллик, который растет вдоль оси пробирки, т.е. вглубь расплава. По мере опускания пробирки новые порции расплава, попадающие в область низких температур, будут "питать" этот единственный кристалл. Поэтому из всех кристалликов выживает он один; по мере опускания пробирки он продолжает расти вдоль ее оси. В конце концов, весь расплавленный металл застывает в виде одиночного кристалла.

Та же идея лежит в основе выращивания тугоплавких кристаллов рубина. Мелкий порошок вещества сыплют струей через пламя. Порошинки при этом плавятся; крошечные капли падают на тугоплавкую подставку очень малой площади, образуя множество кристалликов. При дальнейшем падении капель на подставку все кристаллики растут, но опять-таки вырастает лишь тот из них, который находится в наиболее выгодном положении для "приема" падающих капель.

Как было уже сказано в начале, кристаллы могут образовываться также непосредственно из пара или газа. При охлаждении газа электрические силы притяжения объединяют атомы или молекулы в кристаллическое твердое вещество. Так образуются снежинки; воздух, содержащий влагу, охлаждается, и прямо из него вырастают снежинки той или иной формы.

5. Дефекты кристаллов

Нарушение правильности в расположении частиц, слагающие структуры реальных кристаллов, т.е. отклонения от их идеальной структуры, порождают дефекты. Для исследователя дефект - это источник информации о событиях, произошедших с кристаллом.

В реальных кристаллах всегда присутствуют структурные дефекты, которые оказывают существенное влияние на многие свойства твердых тел. К этим свойствам относятся те, которые связаны с движением атомов или электронов. Это механические свойства (прочность и пластичность), ионная и полупроводниковая электропроводность, люминесценция, фотопроводимость, теплопроводность, скорость диффузии и фазовых превращений, и ряд других.

Дефекты - любые отклонения от периодической структуры кристалла - классифицируют по их размерам и протяженности областей решетки, на которое распространяется их действие. Выделяют следующие типы дефектов кристаллической решетки:

1) Точечные или нульмерные дефекты - нарушения в периодичности в изолированных друг от друга точках решетки; во всех трех измерениях они не превышают одного или нескольких междуатомных расстояний (параметров решетки). Точечные дефекты - это вакансии, междоузельные атомы, атомы примеси, внедренные или в позиции замещения.

2) Линейные дефекты - одномерные, т. е. протяженные в одном измерении: нарушения периодичности в одном измерении простираются на расстояния, сравнимые с размером кристалла, а в двух других не превышают нескольких параметров решетки. Специфические линейные дефекты - это дислокации. Неустойчивые линейные дефекты могут возникать из цепочек точечных дефектов.

3) Поверхностные или двумерные дефекты. Простираются в двух измерениях на расстояния, сравнимые с размером кристалла, а в третьем составляют несколько параметров решетки. Это плоскости двойникования у двойников, границы зерен и блоков, дефекты упаковки, стенки доменов, и сама поверхность кристалла.

4) Объемные или трехмерные. Это пустоты, поры, частицы другой фазы, включения.

Выводы

Материальные частицы (атомы, молекулы, ионы), слагающие газообразные или жидкие (расплавленные) вещества, обладая высокой кинетической энергией, находятся в непрерывном движении. Время от времени они сталкиваются, образуя зародыши - микроскопические фрагменты будущей структуры. Чаще всего такие зародыши распадаются, что связано либо с собственными колебаниями, либо с бомбардировкой их свободными частицами. Однако для начала кристаллизации необходимо, чтобы зародыш достиг критической величины, т.е. содержал такое количество частиц, при котором присоединение следующей частицы сделало бы разрастание зародыша энергетически более выгодным, чем его распад. Такая возможность для большинства веществ проявляется либо с понижением температуры, в результате чего уменьшаются температурные колебания, либо с повышением концентрации вещества в растворе или газе, что приводит к увеличению вероятности встречи частиц друг с другом, то есть к возникновению зародышей.

Таким образом, рост кристаллов можно рассматривать как процесс, посредством которого мельчайшие кристаллические частицы - зародыши - достигают макроскопических размеров. Причем кристаллизация протекает не во всем объеме, а лишь там, где возникнут зародыши. Факторами, влияющими на появление зародышей, являются не только переохлаждение и повышение концентрации раствора или вязкости расплава, но и присутствие посторонних обломков кристаллов или пылинок, на поверхности которых собираются частицы, упрощая этим начало кристаллизации.

Процесс кристаллизации является энергетически выгодным. Растущий кристалл не принимает равновесную форму вследствие того, что на него влияют различные изменяющиеся условия кристаллизации: температура, давление, сила тяжести, химический состав и динамика среды и т.д.

Список используемой литературы:

1. Галиулин Р.В. Как устроены кристаллы. - М.,1983г.

2. Физический энциклопедический словарь / Под ред. А.М. Прохоров.- М.: Сов. Энциклопедия ,1983.- 928с.

3. Булах А.Г. Минералогия с основами кристаллографии. М.: Альфа-М, 1989. - 156 с.

4. М.П. Шаскольская Кристаллы. - М.: Наука, 1978

Размещено на www.allbest.ru


Подобные документы

  • Образование снежных узоров и ледяных кристаллов, этапы и принципы их роста. Структура узоров и снежинок, их основные разновидности и формы. Методы и главные этапы проведения исследовательской работы, анализ и интерпретация полученных результатов.

    контрольная работа [617,6 K], добавлен 22.02.2016

  • Характеристика пеларгонии - рода многолетних травянистых растений и полукустарников, относящегося к семейству гераниевых. Правила ухода за геранью. Условия освещенности в различных помещениях. Проведение опыта по влиянию света на рост и развитие растений.

    контрольная работа [16,1 K], добавлен 03.12.2013

  • Определение наследственности как передачи родительских признаков детям. Исследование генетики роста, расы и экологические условия. Характеристика процесса развития головного мозга: рост мозга и развитие интеллекта. Влияние экологии и принципы эволюции.

    контрольная работа [21,4 K], добавлен 12.02.2011

  • Гиббереллины — обширный класс фитогормонов, регулирующих рост и развитие: история открытия, химическая структура, классификация, содержание в растениях. Биохимия, регуляторные функции и биологическая активность гиббереллинов, их строение, свойства.

    презентация [6,4 M], добавлен 20.10.2014

  • Нарушение наиболее фундаментальных законов поведения клеток в многоклеточном организме. Программированная клеточная гибель. Мутация, которая порождает отход от альтруистического поведения клеток. Опухолевый рост. Внешние формы поверхностных опухолей.

    презентация [3,6 M], добавлен 21.02.2014

  • Рост и развитие корня растения, особенности и этапы данного процесса в ходе прорастания семени, классификация и типы. Факторы, влияющие на рост корневой системы, способствующие вещества и их эффективность. Понятие и строение, развитие воздушных корней.

    контрольная работа [31,7 K], добавлен 08.01.2015

  • Клеточные основы роста растений. Рост тканей в зависимости от её специфичности. Процесс превращения эмбриональной клетки в специализированную (дифференциация). Основные части побега. Особенность роста листа однодольных растений. Морфогенез корня.

    курсовая работа [90,0 K], добавлен 23.04.2015

  • Роль микроорганизмов в круговороте углерода в природе. Углеродное и азотное питание прокариот с различными типами жизни. Значение микроорганизмов в геологических процессах. Типы микрофлоры почвы: зимогенная, автохтонная, олиготрофная и автотрофная.

    презентация [1,3 M], добавлен 18.12.2013

  • Характеристика и классификация тканей у растений. Свойства меристемы и ее цитологические особенности. Исследование структуры апексов побегов и зародышей. Основные положения теории гистогенов. Увеличение объема апикальной меристемы и рост усиления.

    презентация [1,3 M], добавлен 06.04.2016

  • Лесные, хищные и водоплавающие птицы. Строение крыла и развитие мускулатуры. Условия обитания в открытых пространствах. Сезонные перелёты у птиц. Окраска и форма яиц. Осеннее образование запасных источников энергии. Роль птиц в природе и жизни человека.

    реферат [33,7 K], добавлен 19.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.