Структура мышц и теория механизма мышечного сокращения

Классификация, ультраструктура и биохимический состав мышц. Механизмы регуляции мышечного сокращения. Процесс распространения возбуждения вглубь мышечного волокна. Влияние частоты и силы раздражения на амплитуду сокращения. Показатели силы и работы мышц.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 16.02.2012
Размер файла 920,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Реферат

Структура мышц и теория механизма мышечного сокращения

План

мышца сокращение амплитуда движение

Предисловие

1. Классификация мышц

2. Ультраструктура и биохимический состав мышц

3. Ультраструктура скелетного мышечного волокна

4. Механизмы мышечного сокращения

5. Физика и биология, на первый взгляд, довольно далекие друг от друга науки

6. Молекулярный механизм сокращения

7. Регуляция мышечного сокращения

8. Электромеханическое сопряжение

9. Распространение возбуждения вглубь волокна

10. Влияние частоты и силы раздражения на амплитуду сокращения

11. Утомление мышц

12. Двигательные единицы

13. Физиология гладких мышц

14. Показатели силы и работы мышц в процессе роста

Предисловие

Передвижение животного, перемещение частей его тела относительно друг друга, работа внутренних органов, акты дыхания, кровообращения, пищеварения, выделения осуществляются благодаря деятельности различных групп мышц.

У высших животных имеются три типа мышц: поперечнополосатые скелетные (произвольные), поперечнополосатые сердечные (непроизвольные), гладкие мышцы внутренних органов, сосудов и кожи (непроизвольные).

Отдельно рассматриваются специализированные сократительные образования - миоэпителиальные клетки, мышцы зрачка и цилиарного тела глаза.

Помимо свойств возбудимости и проводимости, мышцы обладают сократимостью, т. е. способностью укорачиваться или изменять степень напряжения при возбуждении. Функция сокращения возможна благодаря наличию в мышечной ткани специальных сократимых структур.

1. Классификация мышц

Мышца является активным элементом аппарата движения.

Различают поперечнополосатые и гладкие мышцы. Поперечнополосатые (скелетные мышцы), прикрепляясь к костям, приводят их в движение, участвуют в образовании стенок полостей тела: ротовой, грудной, брюшной, таза, входят в состав стенок некоторых внутренних органов (глотка, верхняя часть пищевода, гортань), находятся в числе вспомогательных органов глаза (глазодвигательные мышцы), оказывают действие на слуховые косточки в барабанной полости. С помощью скелетных мышц тело человека удерживается в равновесии, перемещается в пространстве, осуществляются дыхательные и глотательные движения, формируется мимика. Общая масса скелетной мускулатуры значительна. У взрослого человека она составляет до 40% от массы тела (у новорожденных 20--22 %). У пожилых и старых людей масса мышечной ткани несколько уменьшается (до 25--30 %).

В теле человека около 400 мышц, состоящих из поперечно-полосатой скелетной мышечной ткани, сокращающейся соответственно нашей воле. Под воздействием импульсов, поступающих по нервам из центральной нервной системы, скелетные мышцы действуют на костные рычаги, активно изменяют положение тела человека.

Поперечнополосатые (скелетные) мышцы развиваются главным образом из миотомов и частично из мезенхимы, а гладкие мышцы формируются исключительно из мезенхимы.

Скелетная мышца образована поперечнополосатыми мышечными волокнами. Их поперечная исчерченность обусловлена наличием чередующихся двоякопреломляющих проходящий свет дисков - анизотропных, более темных, и однопреломляющих свет - изотропных, более светлых. Каждое мышечное волокно состоит из недифференцированной цитоплазмы, или саркоплазмы, с многочисленными ядрами, которая содержит множество дифференцированных поперечно-полосатых миофибрилл. Периферия мышечного волокна окружена прозрачной оболочкой, или сарколеммой, содержащей фибриллы коллагеновой природы. Небольшие группы мышечных волокон окружены соединительнотканной оболочкой - эндомизием, более крупные комплексы представлены пучками мышечных волокон, которые заключены в рыхлую соединительную ткань - внутренний перимизий, вся мышца в целом окружена наружным перимизием.

Все соединительнотканные структуры мышцы, от сарколеммы до наружного перимизия, являются продолжением друг друга и непрерывно связаны между собой. Всю мышцу одевает соединительнотканный футляр - фасция. У большинства мышц различают брюшко и два конца, из которых один является началом мышцы и, получает название головки, а, другой, противоположный конец, называется хвостом мышцы.

У концов мышцы соединительная ткань образует соединительнотканное сухожилие, которым мышца прикрепляется к кости. Сухожилия образованы пучками коллагеновых волокон, которые вытянуты по длиннику мышцы и располагаются параллельно друг другу.

Отдельные пучки различного порядка окружены соединительнотканной оболочкой - эндотендинием, переходящей непосредственно в наружную оболочку, окружающую все сухожилие в целом, - перитендиний. Плоское сухожилие получает название сухожильного растяжения, или апоневроза.

По направлению мышечных пучков и их отношению к сухожилиям различают три основных типа мышц:

а) параллельный тип - мышечные пучки располагаются параллельно длинной оси мышцы (например, портняжная мышца);

б) перистый тип - параллельно идущие мышечные пучки располагаются под углом к длиннику мышцы. Различают мышцы одноперистые, мышечные пучки которых прикреплены по одну сторону сухожилия (например, длинный сгибатель большого пальца кисти); двуперистые мышцы, где мышечные пучки прикрепляются по обеим сторонам сухожилия (например, длинный сгибатель большого пальца стопы); многоперистые мышцы, в которых мышечные пучки в виде многих перистых групп примыкают друг к другу (например, дельтовидная мышца);

в) треугольный тип мышц - мышечные пучки с различных направлений сходятся к одному общему концевому сухожилию (например, височная мышца).

Некоторые мышцы имеют на своем протяжении несколько сухожильных перемычек.

Наличие промежуточных сухожилий свидетельствует о том, что мышца сформировалась из нескольких соседних миотипов, а сухожилия (перемычки) между мышечными брюшками образовались из эмбриональных соединительнотканных прослоек между миотомами -- миосепт. Сухожилие значительно тоньше мышц, однако прочность его велика: оно способно выдержать большую нагрузку и практически нерастяжимо.

При сокращении мышцы один ее конец остается неподвижным. Это место рассматривают как фиксированную точку. Как правило, она совпадает с началом мышцы. Подвижная точка находится на другой кости, к которой мышца прикреплена и которая при сокращении мышцы изменяет свое положение. При некоторых положениях тела точка начала мышцы (фиксированная точка) и точка прикрепления (подвижная точка) меняются местами. Так, например, при выполнении движений на спортивных снарядах точки прикрепления мышц (кости кисти) становятся фиксированными, а точки начала на костях предплечья и плеча -- подвижными.

Мышцы подразделяют по их положению в теле человека, по форме, направлению мышечных волокон, функции, по отношению к суставам.

Выделяют мышцы поверхностные и глубокие, медиальные и латеральные, наружные и внутренние.

По форме мышцы очень разнообразны. Наиболее часто встречаются веретенообразные мышцы, характерные для конечностей (прикрепляются к костям, выполняющим роль рычагов), и широкие мышцы, участвующие в образовании стенок туловища. Например, веретенообразной является двуглавая мышца плеча, а широкой-- прямая мышца живота, наружная, внутренняя косые и поперечная мышцы живота, широчайшая мышца спины.

Сложность строения мышц может заключаться в наличии у некоторых из них двух, трех или четырех головок, двух и нескольких сухожилий -- “хвостов”. Так, мышцы, имеющие две головки и больше, начинаются на различных рядом лежащих костях или от различных точек одной кости. Затем эти головки соединяются и образуют общее брюшко и общее сухожилие. Такие мышцы имеют соответствующее их строению название: двуглавая, трехглавая, четырехглавая. От одного общего брюшка может отходить несколько сухожилий, прикрепляющихся к различным костям: например, на кисти, на стопе к фалангам пальцев -- длинный сгибатель пальцев. У некоторых мышц образующие их пучки имеют циркулярное (круговое) направление (круговая мышца).

Такие мышцы обычно окружают естественные отверстия тела (ротовое и задне-проходное) и выполняют функцию сжимателей -- сфинктеров.

Названия мышц имеют разное происхождение. В названиях мышц получили отражение их форма: ромбовидная, трапециевидная, квадратная; величина: большая, малая, длинная, короткая; направление мышечных пучков или самой мышцы: косая, поперечная; строение: двуглавая, трехглавая, двубрюшная и т.д.; их начало и прикрепление: плечелучевая, грудино-ключично-сосцевидная мышцы; функция, которую они выполняют: сгибатель, разгибатель, вращатель (кнутри - пронатор, кнаружи-супинатор), подниматель. Называют мышцы по направлению выполняемого движения: отводящая от срединной линии, приводящая к срединной линии.

По отношению к суставам мышцы расположены неодинаково, что определяется их строением и функцией. Одни мышцы прикрепляются к смежным костям и действуют на один сустав -- односуставные, другие перекидываются через два и больше число суставов -- двусуставные и многосуставные. Последние обычно длиннее односуставных и располагаются более поверхностно. Имеются мышцы, которые начинаются и прикрепляются на костях, не соединяющихся при помощи суставов (шилоподъязычная мышца). К ним относятся мимические мышцы, мышца дна рта (челюстно-подъязычная мышца), мышцы промежности.

П.Ф. Лесгафт разделял скелетные мышцы на две группы: сильные (статические) и ловкие (динамические). Первые, прикрепляясь к большим поверхностям вдали от точек опоры, сокращаются с большим напряжением, вследствие чего не так быстро утомляются. Вторые, имея небольшие места прикрепления вблизи точек опоры, характеризуются быстротой действия и соответственно скорее утомляются. В отличие от статических, волокна динамических мышц имеют больше миофибрилл, но меньше саркоплазмы.

Все скелетные мышцы делят топографически на мышцы туловища, головы, верхних и нижних конечностей.

Мышцы, сокращаясь, выполняют свою функцию при участии и при помощи анатомических образований, которые следует рассматривать как вспомогательные аппараты мышц. К ним относятся фасции, влагалища сухожилий, синовиальные сумки и блоки мышц.

Фасция -- это соединительнотканный покров мышцы. Образуя футляры для мышц, фасции ограничивают их друг от друга, создают опору для мышечного брюшка при его сокращении, устраняют трение мышц друг о друга. Имея футлярообразное строение, фасции при патологии ограничивают распространение гноя, крови при кровоизлиянии, дают возможность проводить “футлярное” местное обезболивание. Мышцы связаны с фасциями рыхлой клетчаткой. В некоторых местах (на голени, предплечье) фасции служат местом начала мышц, и тогда отделить мышцу от фасции в этих местах трудно. Различают фасции собственные и фасции поверхностные. Каждая область имеет свою собственную фасцию.

Иногда мышцы лежат в несколько слоев. Тогда между соседними слоями располагается глубокая фасция. Между группами мышц обычно различного функционального назначения проходят межмышечные перегородки, соединяющие собственную фасцию с костью (надкостницей). В местах соединения фасций друг с другом или с надкостницей кости образуют утолщения, так называемые фасциальные узлы, которым отводится существенное место в укреплении фасций и оболочек сосудов и нервов. Фасции, межмышечные перегородки прочно срастаются с надкостницей, составляют мягкую основу для мышц и других органов, участвуя в образовании мягкого ствола, или мягкого скелета.

В некоторых местах наблюдаются образования, представляющие собой утолщения фасций. К ним относится сухожильная дуга, образующаяся как местное уплотнение фасций над подлежащим сосудисто-нервным пучком. В области некоторых суставов (голеностопный, лучезапястный), где мышцы и сухожилия соответственно строению конечности изменяют свое направление, фасция также утолщена и плотная. Прикрепляясь к костным выступам, она образует фиброзный мостик -- удерживатель мышц. Иногда эти образования неправильно называют связками. Они удерживают сухожилия в определенном положении, препятствуют их смещению в стороны, придают сухожилиям нужное направление при сокращении мышц.

Каналы, образующиеся между удерживателями мышц и прилежащими костями, в которых проходят длинные тонкие сухожилия мышц, называют каналами сухожилий (костнофиброзные или фиброзные каналы). Такой канал формирует влагалище сухожилия, которое может быть общим для нескольких сухожилий или разделенным фиброзными перемычками на несколько самостоятельных влагалищ для каждого сухожилия. Движение сухожилия в своем влагалище происходит при участии синовиального влагалища сухожилия, которое устраняет трение находящегося в движении сухожилия о неподвижные стенки канала. Синовиальное влагалище сухожилия образовано синовиальной оболочкой, или синовиальным слоем, который имеет две части -- пластинки (листки)-- внутреннюю и наружную. Внутренняя сухожильная, или висцеральная, часть (пластинка), окутывает сухожилие со всех сторон, срастается с ним, его соединительнотканной оболочкой -- перитендинием. Наружная париетальная часть (пластинка) сращена с расположенным снаружи фиброзным слоем, который представляет собой стенку канала (влагалища) сухожилия. Сухожильная и париетальная части синовиального слоя переходят друг в друга на концах синовиального влагалища сухожилия, а также на всем протяжении влагалища, образуя брыжейку сухожилия. Последний состоит из двух листков синовиального слоя, соединяющих сухожильную (висцеральную) и париетальную части синовиального влагалища сухожилия. Мезотендиний содержит кровеносные сосуды и нервы, снабжающие сухожилие. Во время сокращения мышцы вместе с сухожилием движется сухожильная (висцеральная) часть (пластинка) синовиального влагалища. Последняя благодаря содержащейся в щелевидной полости влагалища синовиальной жидкости свободно скользит вдоль париетальной пластинки, как поршень внутри цилиндра. Синовиальный слой может окружать одно сухожилие или несколько, если они лежат в одном влагалище сухожилия.

В местах, где сухожилие или мышца прилежит к костному выступу, имеются синовиальные сумки, которые выполняют такие же функции, что и влагалища сухожилий (синовиальные), -- устраняют трение.

2. Ультраструктура и биохимический состав мышц

Скелетные мышцы. На поперечном сечении продольно волокнистой мышцы видно, что она состоит из первичных пучков, содержащих 20 - 60 волокон. Каждый пучок отделен соединительно тканной оболочкой - перимизиумом, а каждое волокно - эндомизиумом. В мышце животных насчитывается от нескольких сот до нескольких сот тысяч волокон с диаметром от 20 до 100 мкм и длиной до 12 - 16 см.

Отдельное волокно покрыто истинной клеточной оболочкой - сарколеммой. Сразу под ней, примерно через каждые 5 мкм по длине, расположены ядра. Волокна имеют характерную поперечную исчерченность, котораяобусловлена чередованием оптически более и менее плотных участков.

Волокно образовано множеством (1000 - 2000 и более) плотно упакованных миофибрилл (диаметр 0,5 - 2 мкм), тянущихся из конца в конец. Между миофибриллами рядами расположены митохондрии, где происходят процессы окислительного фосфорилирования, необходимые для снабжения мышцы энергией. Под световым микроскопом миофибриллы представляют образования, состоящие из правильно чередующихся между собой темных и светлых дисков. Диски А называются анизотропными (обладают двойным лучепреломлением), диски И - изотропными (почти не обладают двойным лучепреломлением). Длина А-дисков постоянна, длина И-дисков зависит от стадии сокращения мышечного волокна. В середине каждого изотропного диска находится Х-полоска, в середине анизотропного диска - менее выраженная М-полоска.

За счет чередования изотронных и анизотропных сегментов каждая миофибрилла имеет поперечную исчерченность. Упорядоченное же расположение миофибрилл в волокне придает такую же исчерченность волокну в целом.

Электронная микроскопия показала, что каждая миофибрилла состоит из параллельно лежащих нитей, или протофибрилл (филаментов) разной толщины и разного химического состава. В одиночной миофибрилле насчитывае.тся 2000-2500 протофибрилл. Тонкие протофибриллы имеют поперечник 5-8 нм и длину 1-1,2 мкм, толстые - соответственно 10-15 нм и 1,5 мкм.

Толстые протофибриллы, содержащие молекулы белка миозина, образуют анизотропные диски. На уровне полоски М миозиновые нити связаны тончайшими поперечными соединениями. Тонкие протофибриллы, состоящие в основном из белка актина, образуют изотропные диски.

Нити актина прикреплены к полоске Х, пересекая ее в обоих направлениях; они занимают не только область И-диска, но и заходят в промежутки между нитями миозина в области А-диска. В этих участках нити актина и миозина связаны между собой поперечными мостиками, отходящими от миозина. Эти мостики наряду с другими веществами содержат фермент АТФ-азу. Область А-дисков, не содержащая нитей актина, обозначается как зона Н. На поперечном разрезе миофибриллы в области краев А-дисков видно, что каждое миозиновое волокно окружено шестью актиновыми нитями.

Структурно-функциональной сократительной единицей миофибриллы является саркомер - повторяющийся участок фибриллы, ограниченный двумя полосками Х. Он состоит из половины изотропного, целого анизотропного и половины другого изотропного дисков. Величина саркомера в мышцах теплокровных составляет около 2 мкм. На электронном микрофото саркомеры проявляются отчетливо.

Гладкая эндоплазматическая сеть мышечных волокон, или саркоплазма тический ретикулум, образует единую систему трубочек и цистерн. Отдельные трубочки идут в продольном направлении, образуя в зонах Н миофибрилл анастомозы, а затем переходят в полости (цистерны), опоясывающие миофибриллы по кругу. Пара соседних цистерн почти соприкасается с поперечными трубочками (Т-каналами), идущими от сарколеммы поперек всего мышечного волокна. Комплекс из поперечного Т-канала и двух цистерн, симметрично расположенных по его бокам, называется триадой. У амфибий триады располагаются на уровне Х-полосок, у млекопитающих - на границе А-дисков. Элементы саркоплазматического ретикулума участвуют в распространении возбуждения внутрь мышечных волокон, а также в процессах сокращения и расслабления мышц.

В 1 г поперечнополосатой мышечной ткани содержится около 100 мг сократительных белков, главным образом миозина и актина, образуюших актомиозиновый комплекс. Эти белки нерастворимы в воде, но могут быть экстрагированы растворами солей. К другим сократительным белкам относятся тропомиозин и комплекс тропонина (субъединицы Т, 1, С), содержашиеся в тонких нитях.

В мышце содержатся также миоглобин, гликолитические ферменты и другие растворимые белки, не выполняющие сократительной функции.

Белковый состав скелетной мышцы

Белок

Молекулярная масса, дальтон, тыс.

Содержание белка, %

Миозин

460

55 - 60

Актин-р

46

20 - 25

Тропомиозин

70

4 - 6

Комплекс тропонина (ТпТ, Тп1, Тпс)

76

4 - 6

Гладкие мышцы. Основными структурными элементами гладкой мышечной ткани являются миодиты - мышечные клетки веретенообразной и звездчатой формы длиной 60-200 мкм и диаметром 4-8 мкм. Наибольшая длина клеток (до 500 мкм) наблюдается в матке во время беременности.

Ядро находится в середине клеток. Форма его эллипсоидная, при сокращении клетки оно скручивается штопорообразно, Вокруг ядра сконцентрированы митохондрии и другие трофические компоненты.

Миофибриллы в саркоплазме гладкомышечных клеток, по-видимому, отсутствуют. Имеются лишь продольно ориентированные, нерегулярно распределенные миозиновые и актиновые протофибриллы длиной 1-2 мкм.

Поэтому поперечной исчерченности волокон не наблюдается. В протоплазме клеток находятся в большом количестве пузырьки, содержащие Са++, которые, вероятно, соответствуют саркоплазматическому ретикулуму поперечнополосатых мыщц.

В стенках большинства полых органов клетки гладких мышц соединены особыми межклеточными контактами (десмосомами) и образуют плотные пучки, сцементированные гликопротеиновым межклеточным веществом, коллагеновыми и эластичными волокнами.

Такие образования, в которых клетки тесно соприкасаются, но цитоплазматическая и мембранная непрерывность между ними отсутствует (пространство между мембранами в области контактов составляет 20-30 нм), называют “функциональным синцитием”.

Клетки, образующие синцитий, называют унитарными; возбуждение может беспрепятственно распространяться с одной такой клетки на другую, хотя нервные двигательные окончания вегетативной нервной системы раслоложены лишь на отдельных из них. В мышечных слоях некоторых крупных сосудов, в мышцах, поднимающих волосы, в ресничной мышце глаза находятся мультиунитарные клетки, снабженные отдельными нервными волокнами и функционирующие независимо одна от другой.

3. Ультраструктура скелетного мышечного волокна

Двигательные единицы. Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица. Она включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт - нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона вызывают сокращения определенной группы мышечных волокон.

Скелетные мышцы состоят из мышечных пучков, образованных большим количеством мышечных волокон. Каждое волокно - это клетка цилиндрической формы диаметром 10-100 мкм и длиной от 5 до 400 мкм. Оно имеет клеточную мембрану - сарколемму. В саркоплазме находится несколько ядер, митохондрий образования саркоплазматического ретикулума (СР) и сократительные элементы - миофибрилы. Саркоплазматический ретикулум имеет своеобразное строение. Он состоит из системы поперечных, продольных трубочек и цистерн. Поперечные трубочки это впячивания саркоплазмы внутрь клетки. К ним примыкают продольные трубочки с цистернами. Благодаря этому, потенциал действия может распространяться от сарколеммы на систему саркоплазматического ретикулума. В мышечном волокне содержится более 1000 миофибрилл, расположенных вдоль него. Каждая миофибрилла состоит из 2500 протофибрилл или миофиламентов. Это нити сократительных белков актина и миозина. Миозиновые протофибрнллы толстые, актиновые тонкие. На миозиновых нитях расположены отходящие под углом поперечные отростки с головками. У скелетного мышечного волокна при световой микроскопии видна поперечная исчерченность, т.е. чередование светлых и темных полос. Темные полосы называют А-дисками или анизотропией светлые [-дисками (изотропными). В А-дисках сосредоточены нити миозина, обладающие анизотропией и поэтому имеющие темный цвет. 1-диски образованы нитями актина. В центре 1-дисков видна тонкая Z-пластинка. К ней прикрепляются актиновые протофибриллы. Участок миофибрилы между двумя 2-пластинками называется саркомером. Это структурный элемент миофибрилл. В покое толстые миозиновые нити лишь на небольшое расстояние входят в промежутки между актиновыми. Поэтому в средней части А-диска имеется более светлая Н-зона, где нет актиновых нитей. При электронной микроскопии в ее центре видна очень тонкая М-лнния. Она образована цепями опорных белков, к которым крепятся миозиновые протофибриллы (рис).

4. Механизмы мышечного сокращения

При световой микроскопии было замечено, что в момент сокращения ширина А-диска не уменьшается, а 1-диски и Н-зоны саркомеров суживаются. При электронной, микроскопии было установлено, что длина нитей актина и миозина в момент сокращения не изменяется. Поэтому Хаксли и Хэнсон разработали теорию скольжения нитей. Согласно этой теории мышца укорачивается в результате движения тонких актиновых нитей в промежутки между миозиновыми. Это приводит к укорочению каждого саркомера, образующего миофирриллы. Скольжение же нитей обусловлено тем, что при переходе в активное состояние головки отростков миозина связываются с центрами актиновых нитей и вызывают их движение относительно себя (гребковые движения). Но это последний этап всего сократительного механизма. Сокращение начинается с того, что в области концевой пластинки двигательного нерва возникает ПД. Он с большой скоростью распространяется по сарколемме и переходит с неё по, системе поперечных трубочек СР., на продольные трубочки и цистерны. Возникает деполяризация мембранных цистерн и из них в саркоплазму высвобождаются ионы Са. На нитях актина расположены молекулы еще двух белков - тропонина и тропомиознна. При низкой (менее 10 в 8 степени) концентрации кальция, т.г. в состоянии покоя, тропомиозин блокирует присоединение мостиков миозина к нитям актина. Когда ноны кальция начинают выходить из СР, молекула тропонина изменяет свою форму таким образом, что освобождает активные центры актина от тропомиозина. К этим центрам присоединяются головки миозина и начинается скольжение за счет ритмического прикрепления и разъединения поперечных мостиков с нитями актина. При этом головки ритмически продвигаются; по нитям актина к 2-мембранам. Для полного сокращения мышцы необходимо 50' таких циклов. Передача сигнала от возбужденной мембраны к миофибриллам называется электромеханическим сопряжением. Когда генерация ПД прекращается, и мембранный потенциал возвращается к исходному уровню, начинает работать Са-насос (фермент Са-АТФ-Фаза). Ионы кальция вновь закачиваются в цистерны саркоплазматического ретикулума и та концентрация подает ниже 10"'М. Молекулы тропонина приобретают исходную форму и тропомиозин вновь начинает блокировать активные центры актина. Головки миозина отсоединяются от них и мышца за счет эластичности приходит в исходное расслабленное состояние. Энергетика мышечного сокращения Источником энергии для сокращения и расслабления служит АТФ. На головках миозина есть каталитические центры. расщепляющие АТФ до АДФ и неорганического фосфата. Т.е. миозин является одновременно ферментом АТФ-азой ПД Активность миозина как АТФ-фазы значительно возрастает при его взаимодействии с актином. При каждом цикле взаимодействия актина с головкой миозином расщепляется 1 молекула АТФ. Следовательно, чем больше мостиков переходят в активное состояние, тем больше расщепляется АТФ, тем сильнее сокращение. Для стимуляции АТФ-азной активности миозина требуются ионы кальция, выделяющиеся из СР. которые способствуют освобождению активных центров актина от тропомиозина. Однако запасы АТФ в клетке ограничены. Поэтому для восполнения запасов АТФ происходит его восстановление - ресинтез. Он осуществляется анаэробным и аэробным путем. Процесс анаэробного ресинтеза осуществляется фосфагенной и гликолитической системами. Первая использует для восстановления АТФ запасы креатинфосфата. Он расщепляется на креатин и фосфат, который с помощью ферментов переносится на АДФ (АДФ-Ф=АТФ). Фосфагенная система ресинтеза обеспечивает наибольшую мощность сокращения, но в связи с малым количеством креатинфосфата в клетке, она функционирует лишь 5-6 секунд сокращения. Гликолитическая система использует для ресинтеза АТФ анаэробное расщепление глюкозы (гликогена) до молочной кислоты. Каждая молекула глюкозы обеспечивает восстановление трех молекул АТФ. Энергетические возможности этой системы выше, чем фосфагенной, но и она может служить источником энергии сокращения лишь 0.5-2 мин. При этом работа гликолитической системы сопровождается накоплением в мышцах молочной кислоты; 1 снижением содержания кислорода. При продолжительной работе, с усилением кровообращения ресинтез АТФ начинает осуществляться с помощью окислительного фосфолирирования, т.е. аэробным путем. Энергетические возможности окислительной системы значительно больше остальных. Процесс происходит за счет окисления углеводов и жиров. При интенсивной работе в основном окисляются углеводы, при умеренной жиры. Для расслабления также нужна энергия АТФ. После смерти содержание АТФ в клетках быстро снижается и когда становится ниже критического, поперечные мостики миозина не могут отсоединиться от актиновых нитей до ферментативного аутолиза этих белков). Возникает трупное окоченение, АТФ необходима для расслабления потом, что обеспечивает работу Са-насоса.

5. Физика и биология, на первый взгляд, довольно далекие друг от друга науки

Но это только на первый взгляд. В действительности же в этих науках есть много общих точек. Например, в анатомии, зрение. Здесь присутствует элемент оптики: лучи света преломляются в хрусталике глаза, и элемент механики: хрусталик деформируется мышцами. Хотя, говоря о мышцах, нельзя не упомянуть о том, что их работа напрямую связана с физикой. Ведь по сути дела, механизм их действия, сокращение в связи с сокращением белковых нитей, физический процесс. А обмен веществ? Ведь питательные вещества переходят из крови в межклеточное вещество, из межклеточного вещества в клетку и из клетки в межклеточное вещество в основном из-за перепада в давлении. А нагревание внешних тканей тела кровью вследствие теплопередачи?

И физика стыкуется с биологией не только в анатомии. У птиц есть аэродинамическое оперение, у рыб гидродинамическая чешуя и боковая линия, для улавливания колебаний воды. Опять же слух…

Интерес биофизики к процессам происходящим в сокращающихся мышцах основан не только на выяснении механизмов мышечных болезней, но и что может быть даже более важным - это раскрытие механизма превращения электрической энергии в механическую, минуя сложные механизмы тяг и передач.

Для того, чтобы понять механизм и биофизические процессы происходящие в сокращающихся мышцах, необходимо заглянуть в строение мышечного волокна.

Структурной единицей мышечного волокна являются Миофибриллы - особым образом организованные пучки белков, располагающиеся вдоль клетки.

Миофибриллы в свою очередь построены из белковых нитей (филаментов) двух типов - толстых и тонких. Основным белком толстых нитей является миозин, а тонких - актин. Миозиновые и актиновые нити - главный компонент всех сократительных систем в организме. Электронно-микроскопическое изучение показало строго упорядоченное расположение миозиновых и актиновых нитей в миофибрилле. Функциональной единицей миофибриллы является саркомер - участок миофибриллы между двумя Z-пластинками. Саркомер включает в себя пучок миозиновых нитей, серединой сцепленных по так называемой М-пластине, и проходящих между ними волокон актиновых нитей, которые в свою очередь прикреплены к Z-пластинам.

6. Молекулярный механизм сокращения

Один грамм ткани скелетной мышцы содержит примерно 100 мг «сократительных белков» - актина и миозина. Механизм их взаимодействия во время элементарного акта мышечного сокращения объясняет теория скользящих нитей, разработанная Хаксли и Хансон.

Рис. 1. Схема участка волокна скелетной мышцы человека (по Garamvolgyi)

Рис. 2. А. Поперечнополосатая структура миофибрилл: слева расслабление, справа сокращение. Б. Организация миозиновых и актиновых нитей в расслабленном и сократившемся саркомере. Аддитивный характер укорочения последовательно соединенных саркомеров.

Теория скользящих нитей

Сократительные белки актин и миозин образуют в миофибриллах тонкие и толстые миофиламенты. Они располагаются параллельно друг другу внутри мышечной клетки. Миофибриллы представляют собой сократимые пучки «нитей» (филаментов) диаметром около 1 мкм. Перегородки, называемые Z-пластинками, разделяют их на несколько компартментов-саркомеров длиной примерно по 2,5 мкм.

Согласно теории Хаксли и Хансон поперечная полосатость миофибрилл обусловлена особым взаиморасположением актиновых и миозиновых филаментов. Середину каждого саркомера занимают несколько тысяч«толстых» нитей миозина диаметром примерно по 10 нм. На обоих концах саркомера находятся около 2000 «тонких» (толщиной по 5 нм) нитей актина, прикрепленных к Z-пластинкам наподобие щетинок в щетке. Пучок лежащих в определенном порядке миозиновых нитей длиной 1,6 мкм в середине саркомера выглядит в световом микроскопе темной полосой шириной 1,6 мкм; из-за свойства двойного лучепреломления в поляризованном свете (т. е. анизотропии) она называется А-диском. По обе стороны от А-диска находятся изотропные участки, содержащие только тонкие нити и поэтому выглядящие светлыми; эти так называемые I-диски тянутся до Z-пластинок. Именно в результате такого периодического чередования светлых и темных полос в саркомерах миофибриллы сердечной и скелетной мускулатуры выглядят поперечно-полосатыми.

В покоящейся мышце концы толстых и тонких филаментов обычно лишь слабо перекрываются на границе между А- и I-дисками. Эта зона перекрывания в А-диске выглядит в световом микроскопе гораздо темнее центральной Н-зоны, в которой нет актиновых нитей. На электронных микрофотографиях Н-зоны видна очень тонкая темная М-линия в середине саркомера - сеть опорных белков, по-видимому, удерживающих толстые нити в составе единого пучка.

Рис. 3. Функция поперечных мостиков. А. Модель механизма сокращения: миозиновая нить с поперечными мостиками, прикрепленными к соседним актиновым нитям; вверху-до, внизу-после «гребка» мостиков (на самом деле они функционируют асинхронно). Б. Модель механизма генерирования силы поперечными мостиками; слева- до, справа- после «гребка».

Поперечные мостики химически соответствуют субфрагменту миозина-«тяжелому меромиозину», который состоит из субфрагментов I (головка) и II (шейка).

Укорочение саркомеров. Мышца сокращается в результате укорочения множества последовательно соединенных саркомеров в миофибриллах. Сравнивая структуры саркомера в двух различных функциональных состояниях, можно видеть изменения поперечной исчерченности и взаиморасположения нитей во время сокращения: тонкие актиновые филаменты скользят вдоль толстых миозиновых, двигаясь между ними к середине их пучка и саркомера.

Длина нитей не меняется и при растяжении мышцы. Тонкие филаменты попросту вытягиваются из промежутков между толстыми нитями, так что степень перекрывания их пучков уменьшается.

Работа поперечных мостиков. Миозиновые нити несут поперечные, отходящие биполярно, как показано на рис. 3, А, выступы длиной около 20 нм с головками примерно из 150 молекул миозина. Во время сокращения каждая головка (поперечный мостик) может связывать миозиновую нить с соседними актиновыми (рис. 3, А). Движение головок создает объединенное усилие, как бы «гребок», продвигающий актиновые нити к середине саркомера. Сама биполярная организация молекул миозина обеспечивает противоположную направленность (стрелки на рис. 3) скольжения актиновых нитей в левой и правой половинах саркомера.

В результате однократного движения поперечных мостиков вдоль актиновой нити саркомер укорачивается только на 2 х 10 нм, т.е. примерно на 1% своей длины. Однако при изотоническом сокращении мышцы лягушки саркомеры за десятую долю секунды укорачиваются на 0,4 мкм, т. е. на 20% длины. Для этого поперечные мостики должны совершить свои гребковые движения за указанный промежуток времени не один, а 20 раз.

Генерирование мышечной силы. Благодаря упругости поперечных мостиков саркомер может развивать силу даже без скольжения нитей относительно друг друга, т.е. в строго изометрических экспериментальных условиях. Рис.3, Б иллюстрирует такой процесс генерирования изометрической силы. Сначала головка миозиновой молекулы (поперечный мостик) прикрепляется к актиновой нити под прямым углом. Затем она наклоняется под углом примерно 45°, возможно, благодаря притяжению между соседними точками прикрепления на ней и на актиновой нити. При этом головка действует как миниатюрный рычаг, приводя внутреннюю упругую структуру поперечного мостика (видимо, «шейки» между головкой и миозиновой нитью) в напряженное состояние. Возникающее в результате упругое растяжение достигает лишь около 10 нм. Упругое натяжение, создаваемое индивидуальным поперечным мостиком, так слабо, что для развития мышечной силы, равной 1 мН, нужно объединить усилия по крайней мере миллиарда таких соединенных параллельно мостиков.

Даже при изометрическом сокращении поперечные мостики не находятся в непрерывно напряженном состоянии. На самом деле каждая миозиновая головка уже через сотые или десятые доли секунды отделяется от актиновой нити; однако через такое же короткое время следует новое прикрепление к ней. Несмотря на ритмичное чередование прикреплений и отделений с частотой порядка 5-50 Гц, сила, развиваемая мышцей в физиологических условиях, остается неизменной (исключение-летательные мышцы насекомых), так как статистически в каждый момент времени в прикрепленном, обусловливающем напряжение, состоянии находится одно и тоже количество мостиков.

Изометрическое теплообразование. Мышца, поддерживающая определенное сократительное напряжение в изометрических условиях, отличается от сокращающейся изотонически тем, что не выполняет внешней работы (произведение силы на расстояние равно нулю). Однако в каждом цикле прикрепления-отделения поперечных мостиков совершается внутренняя работа по растяжению их упругих структур, которая преобразуется в тепло в момент отсоединения миозиновых головок. Теплота изометрического сокращения («изометрическая работа») за единицу времени возрастает с увеличением количества функционирующих поперечных мостиков и частоты «гребков», требующих расхода АТФ.

7. Регуляция мышечного сокращения

Обычно мышца возбуждается при поступлении потенциалов действия от иннервирующих мотонейронов; в результате передачи возбуждения через нервно-мышечные синапсы генерируются мышечные потенциалы действия (непрямая стимуляция). Возможна и прямая стимуляция мышечных волокон, но только в экспериментальных условиях. Например, при раздражении изолированной мышцы лягушки одиночным электрическим импульсом длительностью около 1 мс по мышечному волокну от места раздражения примерно через 1-2 мс со скоростью примерно 2 м/с будет распространяться потенциал действия, а еще через несколько миллисекунд оно сократится. Таким образом, сокращение вызывается потенциалом действия, т. е. возбуждением мембраны волокна.

8. Электромеханическое сопряжение

Передача команды к сокращению от возбужденной клеточной мембраны к миофибриллам в глубине клетки (электромеханическое сопряжение) включает в себя несколько последовательных процессов, ключевую роль в которых играют ионы Са2+.

Локализация и механизм действия Са2+. Инъекция Са2+ в мышечные волокна вызывает их сокращение. Интактные живые волокна гораздо меньше подходят для демонстрации прямого воздействия Са2+ на миофибриллы, чем те же волокна после удаления или разрушения поверхностной клеточной мембраны. Для этого их либо «обдирают» («скинируют») механически, либо обрабатывают детергентами, либо используют упоминавшееся выше экстрагирование глицеролом. Такие лишенные сарколеммы («скинированные») мышечные волокна сокращаются только при погружении в раствор, содержащий АТФ и по крайней мере 10-6Мионизированного кальция для активации АТФазы. В этих условиях поперечные мостики миозиновых нитей могут за счет постоянного расщепления АТФ циклически взаимодействовать с актиновыми нитями. Если активирующий фактор Са2+ удалить из среды (например, добавив связывающие его вещества), миофибриллы расслабляются, поскольку взаимодействие между поперечными мостиками и актином предотвращается, а значит, подавляется активность АТФазы. Такой эффект полностью обратим и в опытах с лишенными сарколеммы волокнами. На ступенчатое повышение концентрации Са2+ от 10-7 до 10-5 М они реагируют постепенным увеличением силы сокращения и активности АТФазы, причем оба этих параметра достигают максимума при концентрации Са2+ 10-6-10-5 М.

Механизм активации ионами кальция мышечного волокна легче понять, рассмотрев структуру актиновых нитей (рис. 4). Каждый такой филамент длиной около 1 мкм и толщиной 5-7 нм состоит из двух закрученных одна вокруг другой цепочек мономеров актина толщиной 5 нм. Похожая структура получится, если взять две нити бус и скрутить их в виде спирали по 14 бусин в каждом витке.

Рис. Действие Cal+ во время активации миофибриллы. А. Актиновая и миозиновая нити на продольном сечении волокна. Б. Они же на его поперечном сечении. Когда Са2+ связывается с тропонином, тропомиозин попадает в желобок между двумя мономерами актина, обнажая участки прикрепления поперечных мостиков.

Через регулярные промежутки примерно по 40 нм актиновые цепочки несут сферические молекулы тропонина, а в желобках между двумя цепочками лежат нити тропомиозина. Исследования с помощью рентгеноструктурного анализа (малоугловое рентгеновское рассеяние) показали, что в отсутствие Са2+, т.е. при расслабленном состоянии миофибрилл, длинные молекулы тропомиозина располагаются так, что блокируют прикрепление поперечных миозиновых мостиков к актиновым нитям. И напротив, под влиянием Са2+ молекулы тропомиозина глубже опускаются в желобки между цепочками мономеров актина, открывая участки прикрепления для поперечных мостиков. В результате те прикрепляются к актиновым нитям (рис. 4, Б), расщепляется АТФ и развивается мышечная сила.

Такой механизм активации обусловлен действием Са2+ на тропонин, который работает как «кальциевый переключатель»: при связывании с Са2+ его молекула деформируется таким образом, что как бы заталкивает тропомиозин в желобок между двумя цепочками актиновых мономеров, т. е. в «активированное положение».

Хранение и высвобождение ионов кальция. Расслабленная мышца содержит более 1 мкмоль Са2+ на 1 г сырой массы. Если бы соли кальция не были изолированы в особых внутриклеточных хранилищах, обогащенные его ионами мышечные волокна находились бы в состоянии непрерывного сокращения.

Структура внутриклеточных систем хранения кальция в разных мышцах не вполне одинакова (скелетная мышца человека (рис. 1.; мышца лягушки-рис. 5). Во многих участках поверхностная мембрана мышечной клетки образует углубления в виде трубочек (диаметром 50 нм), перпендикулярных продольной оси волокна; эта система поперечных трубочек соединяется с внеклеточной средой и обычно окружает каждую миофибриллу на уровне Z-пластинок (у лягушки) или в области I-дисков (у высших позвоночных).

Перпендикулярно поперечным трубочкам, т. е. параллельно миофибриллам, расположена система продольных трубочек (истинный саркоплазматический ретикулум). Пузырьки на их концах (терминальные цистерны)прилегают к мембранам системы поперечных трубочек, образуя так называемые триады. В этих пузырьках и хранится внутриклеточный кальций. В отличие от поперечной системы продольная не сообщается с внеклеточной средой. Мембраны саркоплазматического ретикулума содержат работающий на энергии АТФ кальциевый насос, который осуществляет активный транспорт из миоплазмы в продольные трубочки, снижая таким образом примерно до 10-7М миоплазматическую концентрацию этих ионов в покоящейся (расслабленной) мышце.

Электромеханическое сопряжение происходит посредством распространения потенциала действия по мембранам поперечной системы внутрь клетки. При этом возбуждение быстро проникает в глубь волокна, переходит на продольную систему и в конечном счете вызывает высвобождение Са2+ из терминальных цистерн во внутриклеточную жидкость, окружающую миофибриллы, что и ведет к сокращению.

При одиночном импульсе сокращение кратковременно расслабление мышцы вызывается обратным переносом активирующих ионов Са2+ посредством кальциевого насоса в каналы саркоплазматического ретикулума. Удаление ионов Ca2+ из миоплазмы идет до тех пор, пока их концентрация в ней не упадет до примерно 10-7 М. При этом подавляются активность АТФазы миозина и взаимодействие между актином и поперечными мостиками, которые отделяются от актиновых нитей.

Рис. 5. Схема электромеханического сопряжения. А. Расслабленное мышечное волокно с поляризованной клеточной мембраной. Концентрация Ca2+ в нем ниже 10-7М. Б. Потенциал действия меняет полярность мембраны клетки и поперечных трубочек на противоположную; Ca2+ начинает выходить из терминальных цистерн. В. К моменту исчезновения потенциала действия внутриклеточная концентрация Ca2+ достигала примерно 10-5М, и саркомеры миофибрилл укоротились. Справа вверху: временная последовательность событий при электромеханическом сопряжении от «латентного» периода до начала сокращения (портняжная мышца лягушки при 0°С).

9. Распространение возбуждения вглубь волокна

Этот процесс составляет первый этап электромеханического сопряжения (рис. 6). Воздействуя через микроэлектрод слабыми импульсами тока на мышечное волокно лягушки, эти авторы вызывали локальную деполяризацию такого маленького участка плазматической мембраны, что стимулировалась только одна поперечная трубочка (на уровне Z-пластинки). Возникающее в результате местное сокращение (контрактура) ограничивалось саркомерами поверхностных миофибрилл, непосредственно прилегающих к этой трубочке. По мере усиления стимула активировались все глубже расположенные миофибриллы. Очевидно, мембраны поперечных трубочек легко возбуждаются электрическим током, способны проводить возбуждение и составляют важное звено в процессе передачи сигнала от клеточной мембраны к хранилищам кальция.

Только за счет такой электрической передачи по поперечной системе возможна быстрая мобилизация запасов кальция в глубине волокна, и только этим можно объяснить очень короткий латентный период между стимулом и сокращением. Диффузия Ca2+ от поверхностной мембраны к миофибриллам, находящимся в центре мышечного волокна толщиной 100 мкм, продолжалась бы гораздо дольше, так что для волокон скелетных мышц подобный механизм можно исключить уже по временным соображениям.

Высвобождение кальция при одиночном сокращении. Блинке с коллегами выделили из светящихся медуз белок экворин, который при взаимодействии с Ca2+ излучает свет. После инъекции этого белка изолированное мышечное волокно закрепляли изометрически и раздражали электрическим током с интервалами 100 или 200 мс. С помощью высокочувствительного фотометра (фотоумножителя) регистрировалась люминесценция (излучение света) экворина, сопровождавшая внутриклеточное высвобождение Ca2+. При стимуляции с частотой 5 Гц она была кратковременной, поскольку ионный насос вскоре перекачивал высвобожденный в миоплазму Ca2+ обратно в саркоплазматический ретикулум; при таком режиме мышца совершает одиночные сокращения. Однако при ритмичном раздражении с частотой 10 Гц (второй стимул поступает уже через 100 мс после первого) волокно расслабляется не полностью. Второе сокращение накладывается на остаточное сокращение после первого стимула, третье - на предыдущие и т. д.

Суммация одиночных сокращений ведет к росту как максимального напряжения в сократительном цикле, так и остаточной величины одиночных сокращений, хотя внутриклеточный уровень Ca2+ после каждого из них (судя по люминесценции) почти возвращается к уровню покоя.

10. Влияние частоты и силы раздражения на амплитуду сокращения

Если постепенно увеличивать частоту раздражения, то амплитуда титанического сокращения растет. При определенной частоте она станет максимальной. Эта частота называется оптимальной; Дальнейшее увеличение частоты раздражения сопровождается снижением силы титанического сокращения. Частота, при которой начинается снижение амплитуды сокращения, называется пессимальной. При очень высокой частоте раздражения мышца не сокращается (рис.). Понятие оптимальной и пессимальной частот предложил Н.Е. Введенский. Он установил, что каждое раздражение пороговой или сверхпороговой силы, вызывая сокращение, одновременно изменяет возбудимость мышцы. Поэтому при постепенном увеличении частоты раздражения, действие импульсов все больше сдвигаются к началу периода расслабления, т.е. фазе экзальтации. При оптимальной частоте все импульсы действуют на мышцу в фазе экзальтации, т.е. повышенной возбудимости. Поэтому амплитуда тетануса максимальна. При дальнейшем увеличении частоты раздражения, все большее количество импульсов воздействуют на мышцу, находящуюся в фазе рефрактерности. Амплитуда тетануса уменьшается.

Одиночное мышечное волокно, как и любая возбудимая клетка, реагирует на раздражение по закону "все или ничего". Мышца подчиняется закону силы. При увеличении силы раздражения, амплитуда сокращения ее растет. При определенной (оптимальной) силе амплитуда становится максимальной. Если и дальше повышать силу раздражения, амплитуда сокращения не увеличивается и даже уменьшается за счет католической депрессии. Такая сила будет пессимальной. Подобная реакция мышцы объясняется тем, что она состоит из волокон разной возбудимости, поэтому увеличение силы раздражения сопровождается возбуждением все большего их числа. При оптимальной силе её волокна вовлекаются в сокращение. Католическая депрессия - это снижение возбудимости под действием деполяризующего тока - катода, большой силы или длительности.

11. Утомление мышц

Утомление - это временное снижение работоспособности мыши в результате работы. Утомление изолированной мышцы можно вызвать ее ритмическим раздражением. В результате этого сила сокращений прогрессирующе уменьшается (рис). Чем выше частота, сила раздражения, величина нагрузки тем быстрее развивается утомление. При утомлении значительно изменяется кривая одиночного сокращения. Увеличивается продолжительность латентного периода, периода укорочения и особенно периода расслабления, но снижается амплитуда (рис.) Чем сильнее утомление мышцы, тем больше продолжительность этих периодов. В некоторых случаях, полного расслабления не наступает, развивается контрактура. Это состояние непроизвольного длительного сокращения мышцы. Работа утомление мышц исследуются с помощью эргографии. В прошлом веке, на основании опытов с изолированными мышцами, было предложено 3 теории мышечного утомления.

1) Теория Шиффа: утомление является следствием истощения энергетических запасов, а мышце.

2) Теория Пфлюгера: утомление обусловлено накоплением в мышце продуктов обмена.

3) Теория Ферворна: утомление объясняется недостатком кислорода в мышце. Действительно эти факторы способствуют утомлению в экспериментах на изолированных мышцах. В них нарушается ресинтез ЛТФ. накапливается молочная и пировиноградная кислоты, недостаточно содержание кислорода. Однако в организме интенсивно работающие мышцы, получают необходимый кислород, питательные вещества, освобождаются от метаболитов за счет усиления общего и регионального кровообращения. Поэтому были предложены другие теории утомления. В частности, определенную роль в утомлении принадлежит нервно-мышечным синапсам. Утомление в синапсе развивается из-за истощения запасов нейромедиатора. Однако главная роль, в утомлении двигательного аппарата принадлежит моторным центрам ЦНС. В прошлом веке И.М. Сеченов установил, что если наступает утомление мышц одной руки, то их работоспособность восстанавливается быстрее при работе другой рукой или ногами. Он считал, что это связано с переключением процессов возбуждения с одних двигательных центров на другие. Отдых с включением других мышечных групп он назвал активным. В настоящее время установлено, что двигательное утомление связано с торможением соответствующих нервных центров, в результате метаболических процессов в нейронах, ухудшением синтеза нейромедиаторов. и угнетением синаптической передачи.


Подобные документы

  • Основные физиологические свойства мышц: возбудимость, проводимость и сократимость. Потенциал покоя и потенциал действия скелетного мышечного волокна. Механизм сокращения мышц, их работа, сила и утомление. Возбудимость и сокращение гладкой мышцы.

    курсовая работа [1,1 M], добавлен 24.06.2011

  • Виды мышечных волокон: скелетные, сердечные и гладкие. Функции скелетных и гладких мышц, изометрический и изотонический режимы их сокращения. Одиночное и суммированное сокращения, строение мышечного волокна. Функциональные особенности гладких мышц.

    контрольная работа [1,4 M], добавлен 12.09.2009

  • Строение и типы мышц. Изменение макро- и микроструктуры, массы и силы мышц в разные возрастные периоды. Основные группы мышц, их функции. Механизм мышечного сокращения. Формирование двигательных навыков. Совершенствование координации движений с возрастом.

    реферат [15,6 K], добавлен 15.07.2011

  • Преобразование химической энергии в механическую работу или силу как основная функции мышц, их механические свойства. Применение закона Гука в отношении малых напряжений и деформаций. Механизм мышечного сокращения. Ферментативные свойства актомиозина.

    презентация [3,0 M], добавлен 23.02.2013

  • Принцип саморегуляции организма. Понятие о гомеостазе и гомеокинезе. Энергетика и биомеханика мышечного сокращения. Ультраструктура скелетного мышечного волокна. Особенности строения периферических синапсов. Классификация, строение и функции нейронов.

    курс лекций [342,3 K], добавлен 14.06.2011

  • Механизм преобразования химической энергии АТФ непосредственно в механическую энергию сокращения и движения. Типы мыщц, их химическое строение. Роль миоцита, цитоплазмы, миофибриллов, рибосомов, лизосомов. Гликоген как основной углевод мышечной ткани.

    реферат [255,1 K], добавлен 06.09.2009

  • Строение поперечно-полосатой мышечной ткани. Исследование особенностей развития мышц. Энергообеспечение мышечного сокращения. Подготовка к сдаче анализов крови. Специфические изменения в метаболизме спортсменов в ответ на стандартную физическую нагрузку.

    презентация [7,5 M], добавлен 27.03.2016

  • Структурные особенности мышечных тканей. Изучение механизма мышечного сокращения и аппарата передачи возбуждения. Гистогенез и регенерация мышечной ткани. Принципы работы сократительных, проводящих и секреторных кардиомиоцитов сердечной мышечной ткани.

    шпаргалка [22,3 K], добавлен 14.11.2010

  • Проблемы объяснения механизмов йоги с точки зрения физиологии. Процессы сокращения и расслабления мышечного волокна. Энергетическая валюта организма - аденозинтрифосфорная кислота (АТФ). Взаимосвязь скелетной мускулатуры с центральной нервной системой.

    реферат [15,4 K], добавлен 14.11.2010

  • Исследование структуры и функционального значения мышц. Анализ современных представлений о мышечном сокращении и расслаблении. Виды мышечной ткани. Скорость проведения возбуждения в скелетных мышцах. Физиологические свойства мышц. Мышечное утомление.

    презентация [1,3 M], добавлен 27.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.