Симметрия и асимметрия в природе

Определение симметрии и асимметрии в природе. Элементы и типы симметрии, которая определяется как совокупность свойств: порядка, однородности, соразмерности, пропорциональности, гармоничности. Понятие метамерии - одной из форм поступательной симметрии.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 10.02.2012
Размер файла 279,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Определение симметрии и асимметрии в природе

2. Элементы и типы симметрии

3. Форма симметрии и образ жизни. Эволюция симметрии

Заключение

Список использованной литературы

Введение

Существует множество определений симметрии. В наиболее простой трактовке немецкого математика Германа Вейля современное определение симметрии выглядит так: симметричным называется такой объект, который можно как-то изменять, получая в результате то же, с чего начали. Современное представление о симметрии предполагает неизменность объекта по отношению к каким-то преобразованиям, выполняемым над ним. Таким образом, геометрический объект или физическое явление считаются симметричными, если с ними можно сделать что-то такое, после чего они останутся неизменными. Существует понятие не только геометрической симметрии, но и физической - однородность и изотропность (равнозначность всех направлений) пространства.

Среди главных элементов симметрии выделяют центр (точка, вокруг которой вращается какое-либо тело), ось (ось вращения) и плоскость симметрии (плоскость, проходящая через ось симметрии и рассекающая тело на две зеркальные половины). Известны два основных типа симметрии - вращательная и поступательная. Кроме того, встречается модификация из совмещения этих двух основных типов симметрии - вращательно-поступательная симметрия.

Интересным представляется связь различных форм симметрии живых организмов с образом жизни, который они ведут. Более развитые и сложные организмы имеют билатеральную форму симметрии, которая соответствует их активному и подвижному образу жизни.

В природе встречаются и дисимметрические объекты, которые отличаются от других объектов своеобразным отношениям к своему зеркальному отражению. Дисимметрических объекты могут существовать в двух разновидностях: в виде оригинала и зеркального отражения. При этом одна из форм называется правой - П, а другая левой - Л. Обнаружение в живой природе П- и Л-форм поставило перед биологией ряд новых и очень важных вопросов, многие из которых сейчас решаются сложными математическими и физико-химическими методами.

На протяжении тысячелетий в ходе общественной практики и познания законов объективной действительности человечество накопило многочисленные данные, свидетельствующие о наличии в окружающем мире двух тенденций: с одной стороны, к строгой упорядоченности, гармонии, а с другой - к их нарушению. Люди давно обратили внимание на правильность формы кристаллов, цветов, пчелиных сот и других естественных объектов и воспроизводили эту пропорциональность в произведениях искусства, в создаваемых ими предметах, через понятие симметрии.

В настоящее время в естествознании преобладают определения категорий симметрии и асимметрии на основании перечисления определенных признаков. Например, симметрия определяется как совокупность свойств: порядка, однородности, соразмерности, гармоничности. Все признаки симметрии во многих ее определениях рассматриваются равноправными, одинаково существенными, и в отдельных конкретных случаях, при установлении симметрии какого-то явления, можно пользоваться любым из них. Так, в одних случаях симметрия - это однородность, в других - соразмерность и т. д. То же самое можно сказать и о существующих в частных науках определениях асимметрии.

1. Определение симметрии и асимметрии в природе

Симметрия является фундаментальным свойством природы, представление о котором, как отмечал академик В. И. Вернадский, слагалось в течение тысяч поколений. Другой наш соотечественник, посвятивший изучению симметрии всю свою жизнь, академик А. В. Шубников на основе изучения археологических памятников сделал вывод, что человечество на заре своей культуры уже имело представление о симметрии и осуществляло ее в рисунке и в предметах быта. При чем применение симметрии в первобытном производстве определялось не только эстетическими мотивами, но в известной мере и уверенностью человека в большей пригодности для практики правильных форм Шубников, А.В. Основы кристаллографии / А.В. Шубников, Е.Е. Флинт и Г.Б. Бокий ; под ред. проф. А.В. Шубникова. М. ; Юнити-Дана, 2008г.- 187с..

Первоначально понятие "симметрия" употреблялось в двух значениях. В одном смысле симметричное означало нечто пропорциональное; симметрия показывает тот способ согласования многих частей, с помощью которого они объединяются в целое. Второй смысл этого слова - равновесие. Греческое слово означает однородность, соразмерность, пропорциональность, гармонию.

В настоящее время существует множество подходов к определению понятий симметрии и асимметрии. Одним из таких подходов является определение указанных категорий на основе перечисления их важнейших признаков. Например, симметрия определяется как совокупность свойств: порядка, однородности, соразмерности, пропорциональности, гармоничности и т. д. Асимметрия же обычно определяется как отсутствие признаков симметрии, как беспорядок, несоразмерность, неоднородность и т. д. Согласно подобным определениям в одних случаях симметрия - это однородность, а в других - соразмерность и т. д. Очевидно, что по мере развития нашего познания к определению симметрии можно прибавлять все новые и новые признаки. Поэтому определения симметрии такого рода всегда неполны.

То же можно сказать и о существующих определениях асимметрии. Очевидно, что в определениях понятий, сформулированных по принципу перечисления свойств объектов, ими отражаемых, отсутствует связь между перечисленными свойствами объектов. Такие свойства симметрии, как, например, однородность и соразмерность, друг из друга не следуют.

Нельзя, однако, говорить о бесполезности вышеуказанных определений симметрии и асимметрии. Наоборот, они весьма полезны и необходимы. Без них нельзя дать и более общее определение категорий симметрии и асимметрии. На основе подобных эмпирических определений симметрии и асимметрии развиваются определения более общего характера, сущность которых в соотнесении частных признаков симметрии и асимметрии к определенным всеобщим свойствам движущейся материи. "В симметрии, - пишет А. В. Шубников, - отражается та сторона явлений, которая соответствует покою, а в дисимметрии (по нашей терминологии в асимметрии) та их сторона, которая отвечает движению" Шубников, А.В. Основы кристаллографии / А.В. Шубников, Е.Е. Флинт и Г.Б. Бокий ; под ред. проф. А.В. Шубникова. М. ; Юнити-Дана, 2008г.- 193с..

Таким образом, все свойства симметрии рассматриваются как проявления состояний покоя, а все свойства асимметрии - как проявления состояний движения. Вряд ли можно с таких позиций правильно понять многие свойства симметрии и асимметрии. Почему, например, такую симметрию пространства, как его однородность, должны рассматривать как соответствующую покою? Почему мы должны искать симметрию только среди покоящихся явлений? Разве нет симметрии во взаимодействии и движении явлений мира? Мысль о связи между понятиями симметрии и асимметрии и соответственно между понятиями покоя и движения точнее можно выразить как единство покоя и движения. Понятие симметрии раскрывает момент покоя, равновесия в состояниях движения, а понятие асимметрии - момент движения, изменения в состояниях покоя, равновесия. Но и такая формулировка не охватывают основные признаки симметрии и асимметрии. Можно сделать вывод, что в идее А. В. Шубникова о соотнесении симметрии с покоем, а асимметрии - с движением заключается только момент истины.

Математически строгое представление о симметрии сформировалось сравнительно недавно - в ХIХ веке. В наиболее простой трактовке известного немецкого математика Германа Вейля (1855-1955) современное определение симметрии выглядит так: симметричным называется такой объект, который можно как-то изменять, получая в результате то же, с чего начали. Современное представление о симметрии предполагает неизменность объекта по отношению к каким-то преобразованиям, выполняемым над ним. Таким образом, в основе данного определения лежит идея инвариантности (т. е. неизменности) относительно некоторых преобразований как основа определения симметрии и асимметрии. Геометрический объект или физическое явление считаются симметричными, если с ними можно сделать что-то такое, после чего они останутся неизменными. Например, пятиконечная звезда, будучи повернута на 72° (360°: 5), займет первоначальное положение, а будильник одинаково зазвенит в любом углу комнаты. Первый пример дает понятие об одном из видов геометрической симметрии - поворотной, а второй иллюстрирует важную физическую симметрию - однородность и изотропность (равнозначность всех направлений) пространства.

Таким образом, не только симметричные формы окружают нас повсюду, но и сами многообразные физические и биологические законы гравитации, электричества и магнетизма, ядерных взаимодействий, наследственности пронизаны общим для всех них принципом симметрии.

Итак, в современном понимании симметрия - это общенаучная философская категория, характеризующая структуру организации систем. Важнейшим свойством симметрии является сохранение (инвариантность) тех или иных признаков (геометрических, физических, биологических и т. д.) по отношению к вполне определенным преобразованиям.

Фундаментальность симметрии ограничивает число возможных вариантов природных структур, а также число возможных вариантов поведения различных систем (рис. 1) Хорошавина С. Г. Концепции современного естествознания: курс лекций / Изд. 4-е. - Ростов н/ Д: Феникс, 2011 г. - 130 с. .

Рис. 1. Взаимосвязь симметрии и асимметрии

Можно сказать, что симметрия и асимметрия - это две формы проявления одной и той же закономерности - закономерности двойственности. Любой объект природы является двойственным. И эта двойственность имеет две формы проявления. Одна форма внешняя -наблюдатель видит два взаимосвязанных объекта, характеризующихся взаимодополнительностью (внешняя двойственность, симметрия).

Другая форма двойственности для наблюдателя является "не проявленной" (внутренняя двойственность, асимметрия).

2. Элементы и типы симметрии

симметрия метамерия пропорциональность

При изучении строения тела животного в сравнительной морфологии используют три главных элемента симметрии Хорошавина С. Г. Концепции современного естествознания: курс лекций / Изд. 4-е. - Ростов н/ Д: Феникс, 2011 г. - 141 с. :

1. Центр симметрии, ось симметрии и плоскость симметрии. Эти три элемента симметрии необходимы для определения типа симметрии, характерного для того или иного организма или группы организмов.

Центр симметрии - это точка, вокруг которой вращается какое-либо тело. Во время вращения контуры тела непрерывно совпадают при повороте на любой угол в любом направлении. Идеальной фигурой с центром симметрии может служить шар. Из живых объектов примером может условно служить шаровидное яйцо с ядром, расположенным в центре. Близкую форму имеют некоторые представители радиолярий.

2. Ось симметрии - это ось вращения. В этом случае у животных, как правило, отсутствует центр симметрии. Тогда вращение может происходить только вокруг оси. При этом ось чаще всего имеет разнокачественные полюса. Например, у кишечнополостных, гидры или актинии, на одном полюсе расположен рот, на другом - подошва, которой эти неподвижные животные прикреплены к субстрату. Ось симметрии может совпадать морфологически с переднезадней осью тела.

3. Плоскость симметрии - это плоскость, проходящая через ось симметрии, совпадающая с ней и рассекающая тело на две зеркальные половины. Эти половины, расположенные друг против друга, называют антимерами (anti - против; mer - часть). Антимеры противоположных половин должны иметь равное число щупалец, расположенных вокруг рта гидры. У гидры можно провести несколько плоскостей симметрии, число которых будет кратно числу щупалец. У актиний с очень большим числом щупалец можно провести много плоскостей симметрии. У медузы с четырьмя щупальцами на колоколе число плоскостей симметрии будет ограничено числом, кратным четырём.

Кроме этих геометрических элементов симметрии, различают биологические: антимеры -- симметрично повторяющиеся вокруг главной оси монаксонно гетерополярных (см. ниже) форм участки тела; радиус -- плоскость симметрия антимера; интеррадиус -- плоскость, проходящая между соседними антимерами; метамеры -- повторяющиеся участки, расположенные вдоль продольной (обычно передне-задней) оси тела организма.

Типы симметрии можно выделять по разным основаниям. Исходя из трех вышеназванных элементов симметрии, существует Самыгин С.И. Концепции современного естествознания. Серия «Учебники и учебные пособия» - 4-е изд., перераб. и доп. - Ростов н/Д: «Феникс», 2011 г. - 448 с.:

1. Центральная симметрия - тело симметрично относительно точки;

2. Лучевая, или радиальная, - тело симметрично относительно оси симметрии. К формам с лучевой симметрией относятся гриб, ромашка, сосновое дерево и часто такой вид симметрии называется "ромашко-грибной" симметрией;

3. Зеркальная - тело симметрично относительно плоскости симметрии. "Зеркальной" симметрией обладает бабочка, листок или жук и часто такой вид симметрии называется "симметрией листка".

4. Вращательная симметрия. Любой организм обладает вращательной симметрией. Для вращательной симметрии существенным характерным элементом являются антимеры. Важно знать, при повороте на какой градус контуры тела совпадут с исходным положением. Минимальный градус совпадения контура имеет шар, вращающийся около центра симметрии. Максимальный градус поворота 360 , когда при повороте на эту величину контуры тела совпадут.

Если тело вращается вокруг центра симметрии, то через центр симметрии можно провести множество осей и плоскостей симметрии. Если тело вращается вокруг одной гетерополярной оси, то через эту ось можно провести столько плоскостей, сколько антимер имеет данное тело. В зависимости от этого условия говорят о вращательной симметрии определённого порядка. Например, у морских звезд будет вращательная симметрия пятого порядка, или пятилучевая. Интересен тот факт, что пятилучевой симметрией обладают только живые организмы. Единственным типом объектов неорганического мира, среди которых мы можем наблюдать нечто похожее на пятилучевую симметрию, являются квазикристаллы - тип искусственных образований, получаемых при быстром охлаждении некоторых металлов, в результате которого появляется нечто среднее между аморфным и кристаллическим состоянием вещества.

5. Поступательная симметрия. Для поступательной симметрии характерным элементом являются метамеры (meta - один за другим; mer - часть). В этом случае части тела расположены не зеркально друг против друга, а последовательно друг за другом вдоль главной оси тела.

Метамерия - одна из форм поступательной симметрии. Она особенно ярко выражена у кольчатых червей, длинное тело которых состоит из большого числа почти одинаковых сегментов. Этот случай сегментации называют гомономной. У членистоногих животных число сегментов может быть относительно небольшим, но каждый сегмент несколько отличается от соседних или формой, или придатками (грудные сегменты с ногами или крыльями, брюшные сегменты). Такую сегментацию называют гетерономной.

Вращательно-поступательная, или спиральная симметрия. Этот тип симметрии имеет ограниченное распространение в животном мире. Эта симметрия характерна тем, что при повороте на определённый угол часть тела немного проступает вперед и её размеры каждый следующий поворот логарифмически увеличивает на определённую величину. Таким образом, происходит совмещение актов вращения и поступательного движения. Примером могут служить спиральные камерные раковины некоторых головоногих.

Нульмерная симметрия присуща телам, бесконечно не вытянутым ни в одном особенном направлении. Одномерная симметрия присуща телам, во-первых, вытянутым в одном каком-либо особенном направлении, во-вторых, вытянутым в этом направлении благодаря монотонному повторению - "размножению" одной и той же части.

Двумерной симметрией обладают тела, во-первых, вытянутые в двух взаимно перпендикулярных направлениях, во-вторых, вытянутые в этих направлениях благодаря "размножению" одной и той же части.

Трехмерная симметрия присуща телам, во-первых, вытянутым в трех взаимно перпендикулярных направлениях, во-вторых, вытянутым в этих трех направлениях благодаря монотонному повторению одной и той же части.

Классификация типов симметрии цветков растений (табл. 1) http://ru.wikipedia.org/

Таблица 1

Тип симметрии

Плоскости симметрии

Синонимы

Примеры

Древняя асимметрия или гапломорфия

Нет

Актиноморфия, радиальная, регулярная

Магнолия (Magnoliaceae), Нимфея (Nymphaceae)

Актиноморфия или радиальная симметрия

Обычно больше двух (полисимметричные)

Регулярная, плеоморфия, стереоморфия

Примула (Primulaceae), Нарцисс (Amaryllidaceae),

Дисимметрия

Две (дисимметричные)

Билатеральная симметрия

Dicentra (Fumariaceae)

Зигоморфия

Одна (моносимметричные)

Билатеральная, нерегулярная

медиальная зигоморфия или билатеральная симметрия

Salvia (Lamiaceae), Орхидея (Orchidaceae), Scrophularia

трансверс (верх-низ) зигоморфия

Fumaria и Corydalis (Fumariaceae)

диагональная зигоморфия

облигатная зигоморфия

Aesculus (Hippocastanaceae) находят у Malpighiaceae, Sapindaceae

Приобретённая асимметрия

Нет

Нерегулярная, асимметрия

новая асимметрия

Нерегулярная, асимметрия

Centranthus (Valerianaceae), находят у Cannaceae, Fabaceae,

- энантиоморфия

- моно-энантиоморфия

- ди-энантиоморфия

Энантиостилия, неравнолатеральная

Cassia (Caeasalpinaceae), Cyanella (Tecophilaeceae), Monochoria (Pontederiaceae),

Единство симметрии и асимметрии характеризуют все процессы, протекающие в целостных иерархических системах и эти процессы носят ритмический, двойственный характер. Поэтому и законы сохранения непосредственно или опосредственно связаны с закономерностью двойственности и периодичностью.

3. Форма симметрии и образ жизни. Эволюция симметрии

Еще в XIX веке исследования в этой области привели к заключению, что симметрия природных форм в значительной степени зависит от влияния сил земного тяготения, которое в каждой точке имеет симметрию конуса. В результате был найден следующий закон, которому подчиняются формы природных тел: "Все то, что растет или движется по вертикали, то есть вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой симметрии. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии".

Значение формы симметрии для животного легко понять, если поставить её в связь с образом жизни, экологическими условиями. Если окружающая животное среда со всех сторон более или менее однородна и животное равномерно соприкасается с нею всеми частями своей поверхности, то форма тела обычно шарообразна, а повторяющиеся части располагаются по радиальным направлениям. Лучевики - исключительно морские животные, ведущие планктонный образ жизни. Они "парят" в толще морской воды и идеально к этому приспособлены. Именно для этого "парения" служат иглы их скелета, увеличивающие площадь тела. Такой тип симметрии называют равноосным, так как он характеризуется наличием многих одинаковых осей симметрии. Равноосная симметрия должна превратиться в одноосную вместе с переходом к сидячему или мало подвижному донному образу жизни; если, например, шарообразное тело приобретает стебелёк для прикрепления к субстрату, то ось симметрии должна будет проходить через стебелёк и сделается, таким образом, единственной. Примерами такой симметрии могут служить сидячие солнечники, жгутиковые, сосущие инфузории, бокалообразные губки. Тот же результат может получиться и при отсутствии стебелька, если животное постоянно обращено одним полюсом к субстрату, а другим кверху. При активном плавании одной стороною тела вперёд эта сторона также может дифференцироваться в передний конец тела, и симметрия сложится одноосная (например, овальные или веретенообразные жгутиковые и инфузории).

Переход от лучевой или радиальной к двусторонней или билатеральной симметрии связан с переходом от сидячего образа жизни к активному передвижению в среде (от сидячести к ползанию по субстрату). Для сидячих форм отношения со средой равноценны во всех направлениях: радиальная симметрия точно соответствует такому образу жизни. У активно перемещающихся животных передний конец тела становится биологически не равноценным остальной части туловища, происходит формирование головы, становятся различимы правая и левая сторона тела. Благодаря этому теряется радиальная симметрия, и через тело животного можно провести лишь одну плоскость симметрии, делящую тело на правую и левую стороны. Двусторонняя симметрия означает, что одна сторона тела животного представляет собой зеркальное отражение другой стороны. Впервые двусторонняя симметрия появляется у плоских червей.

Упрощение условий жизни может привести к нарушению двусторонней симметрии, и животные из двусторонне-симметричных становятся радиально-симметричными. Это относится к иглокожим (морские звёзды, морские ежи). Все морские животные имеют радиальную симметрию, при которой части тела отходят по радиусам от центральной оси, подобно спицам колеса. Степень активности животных коррелирует с их типом симметрии. Радиально-симметричные иглокожие обычно мало подвижны, перемещаются медленно или же прикреплены к морскому дну Беклемишев В. Н. Основы сравнительной анатомии беспозвоночных: научное образование. М.: Юнити-Дана. 2008 г. - 132 с..

Отметим, наконец, билатеральную симметрию человеческого тела (речь идёт о внешнем облике и строении скелета). Эта симметрия всегда являлась и является основным источником нашего эстетического восхищения хорошо сложенным человеческим телом. Наша собственная зеркальная симметрия очень удобна для нас, она позволяет нам двигаться прямолинейно и с одинаковой лёгкостью поворачиваться вправо и влево. Столь же удобна зеркальная симметрия для птиц, рыб и других активно движущихся существ. Нарушение у них билатеральной симметрии неизбежно привело бы к торможению движения одной из сторон и превращению поступательного движения в круговое.

Асимметризация у животных по оси «верх-низ» происходила под действием поля гравитации. Это привело к появлению брюшной (нижней) и спинной (верхней) стороны у подавляющего большинства подвижных животных (как с радиальной, так и билатеральной симметрией). У некоторых радиальносимметричных сидячих животных нет спинной и брюшной стороны, нижней стороне тела обычно соответствует аборальный полюс, верхней -- оральный (ротовой).

Асимметризация по передне-задней оси происходила при взаимодействии с пространственным полем, когда понадобилось быстрое движение (спастись от хищника, догнать жертву). В результате в передней части тела оказались главные рецепторы и мозг.

Среди современных животных первично радиальной симметрией, по-видимому, обладают только губки и гребневики; хотя стрекающие и относятся к радиально-симметричным животным, симметрия у коралловых полипов обычно билатеральная. По современным молекулярным данным, симметрия у стрекающих, вероятно, исходно была билатеральной, а радиальная симметрия, свойственная медузозоям, вторична.

В. Н. Беклемишев в своем классическом труде дал подробный анализ элементов симметрии и подробную классификацию типов симметрии протистов. Среди форм тела, свойственной этим организмам, он различал следующие Беклемишев В. Н. Основы сравнительной анатомии беспозвоночных: научное образование. М.: Юнити-Дана. 2008 г. - 141 с.:

§ анаксонная -- например, у амеб (полная асимметрия)

§ сферическая (шаровая симметрия, имеется центр симметрии, в котором пересекается бесконечное число осей симметрии бесконечно большого прядка) -- например, у многих спор или цист

§ неопределенно полиаксонная (есть центр симметрии и конечное, но неопределённое число осей и плоскостей) -- многие солнечники

§ правильная полиаксонная (строго определенное число осей симметрии определённого порядка) -- многие радиолярии;

§ ставраксонная (монаксонная) гомополярная (есть одна ось симметрии с равноценными полюсами, то есть пересекаемая в центре плоскостью симметрии, в которой лежат не менее двух дополнительных осей симметрии) -- некоторые радиолярии;

§ монаксонная гетерополярная (есть одна ось симметрии с двумя неравноценными полюсами, центр симметрии исчезает) -- многие радиолярии и жгутиковые, раковинные корненожки, грегарины, примитивные инфузории;

§ билатеральная -- дипломонады, бодониды, фораминиферы.

Эти формы симметрии перечислены в том порядке, в котором Беклемишев выстроил их в морфологический ряд. Считая полностью асимметричную амёбу более примитивным существом, чем одноклеточные организмы с шаровой симметрией (радиолярии, вольвоксовые), он поместил её в начало ряда. Билатерально симметричные организмы конечным звеном этого морфологического ряда, который конечно. не является эволюционным (Беклемишев подчёркивает. что билатеральная симметрия может возникать независимо самыми разными путями) Беклемишев В. Н. Основы сравнительной анатомии беспозвоночных: научное образование. М.: Юнити-Дана. 2008 г. - 145 с..

Заключение

Симметрия является одним из важнейших свойств природы. Ее изучением занимались еще пифагорейцы в V в. до н.э., в рамках учения о гармонии. Более чем за два тысячелетия интерес к этой теме не угас - в 1961 году в учении о симметрии выделилось особое направление - биосимметрика.

Симметрия, или соразмерность частей целого организма, имеет непосредственное отношение к характеру приспособленности животных к условиям существования. Симметрия является жизненно важным признаком, который отражает особенности строения, образа жизни и поведения животного.

В природе существует множество форм и видов симметрии. В зависимости от геометрического элемента, относительно которого симметричен объект, выделяют центральную (относительно центра симметрии), осевую и радиальную (относительно оси симметрии) и билатеральную (относительно плоскости симметрии). Согласно другой классификации существует вращательная поступательная и вращательно-поступательная, или спиральная, симметрия. Третья классификация выделяет нульмерную, одномерную, двумерную и трехмерную симметрию.

Тот или иной тип симметрии непосредственно зависит от образа жизни, который ведет организм. Например, для млекопитающих характерна билатеральная симметрия, которая позволяет им с одинаковой легкостью двигаться и вправо, и влево. Нарушение симметрии в ряде случаев приводит к проблемам с двигательной активностью и координацией движений.

Асимметричные (или дисимметрические) объекты также привлекают интерес ученых из-за неоднозначности существования и свойств их П- и Л-форм. Впервые подобного рода явления начали изучаться в 50-70х ХХ века, и за это время был сделан ряд открытий, например, дисимметрия протоплазмы или дисимметрия жизни. Однако решены далеко не все загадки дисимметрических объектов, многое еще только предстоит открыть.

Разработка учения о симметрии биообъектов позволит углубить представления как об их свойствах и функциях, так и о происхождении и сущности жизни.

Список использованной литературы

1. Беклемишев В. Н. Основы сравнительной анатомии беспозвоночных: научное образование. М.: Юнити-Дана. 2008 г. - 432 с.

2. Вернадский В. И.. Труды по истории науки в России : научное образование. М.: Издательство Русского Христианского Гуманитарного Института, 2009 г.-511 с.

3. Горбачев В. В. Концепции современного естествознания: - М.: ООО «Издательский дом «ОНИКС 21 век»: ООО «Издательство «Мир и Образование», 2010 г. - 592 с.

4. Садохин А.П. Концепции современного естествознания: учебник для студентов вузов, обучающихся по гуманитарным специальностям и специальностям экономики и управления. - 2-е изд., перераб. и доп. - М.: ЮНИТИ-ДАНА, 2010 г. - 447 с.

5. Самыгин С.И. Концепции современного естествознания. Серия «Учебники и учебные пособия» - 4-е изд., перераб. и доп. - Ростов н/Д: «Феникс», 2011 г. - 448 с.

6. Хоменков А. С. Гармония живой природы и проблема происхождения мира. Доступ через <http://www.portal-slovo.ru>.

7. Хорошавина С. Г. Концепции современного естествознания: курс лекций / Изд. 4-е. - Ростов н/ Д: Феникс, 2011 г. - 480 с.

8. Шубников, А.В. Основы кристаллографии / А.В. Шубников, Е.Е. Флинт и Г.Б. Бокий; под ред. проф. А.В. Шубникова. М.; Юнити-Дана, 2008г.- 487с.

9. Симметрия (в биологии) // БСЭ. [Обращение к документу: 10 декабря 2010]. Доступ через <http://bse.sci-lib.com>.

10. Симметрия в живой природе. Доступ через <http://sbiryukova.narod.ru>.

Размещено на Allbest.ru


Подобные документы

  • Понятие симметрии - неизменности структуры, свойств, формы материального объекта относительно его преобразований. Симметрии, выражающие свойства пространства и времени, физических взаимодействий. Примеры симметрии в неживой природе, ее обратимость.

    презентация [312,0 K], добавлен 18.10.2015

  • Определение, сущность и сравнение симметрии и асимметрии. История возникновения категорий симметрии как одного из фундаментальных свойств природы, а также анализ ее места в познании и архитектуре. Общая характеристика асимметрии человеческого мозга.

    контрольная работа [30,6 K], добавлен 22.12.2010

  • Понятие и типы симметрии, ее элементы и основные принципы. Формы и симметрия кристаллических и геологических образований. Граница между живой и неживой природой. Симметрия и ассиметрия в живой природе. Золотое сечение. Симметрия пространства и времени.

    реферат [257,8 K], добавлен 13.01.2012

  • Использование принципов симметрии в математике и физике, химии и биологии, технике и архитектуре, живописи и скульптуре, и даже в поэзии и музыке. Значение симметрии в познании природы. Симметрия на уроках геометрии. Внутренняя симметрия Вселенной.

    презентация [1,8 M], добавлен 07.01.2011

  • Понятие симметрии как неизменности (инвариантности) свойств и характеристик объекта по отношению к каким-либо преобразованиям (операциям) над ним. Значение законов сохранения (импульса, энергии, заряда) для науки. Изотропность пространства-времени.

    курсовая работа [19,5 K], добавлен 04.11.2011

  • Симметрия пространства – времени и законы сохранения, калибровочные симметрии. Связь с инвариантностью относительно масштабных преобразований. Открытие киральной чистоты молекул биогенного происхождения. Связь грани между законами и условиями их действия.

    реферат [15,6 K], добавлен 31.01.2009

  • Законы симметрии микромира и макромира. Связи законов сохранения и законов симметрии. Классический детерминизм и вероятностно-статистический детерминизм. Отличие живых систем от неживых. Экологические проблемы современности.

    шпаргалка [29,3 K], добавлен 10.09.2007

  • Естественнонаучная и гуманитарная культуры и история естествознания. Корпускулярная и континуальная концепции описания природы. Порядок и беспорядок в природе, хаос. Пространство и время, принципы относительности, симметрии, универсального эволюционизма.

    курс лекций [545,5 K], добавлен 05.10.2009

  • Научный метод познания. Принципы симметрии и законы сохранения. Специальная и общая теория относительности. Структурные уровни и системная организация материи. Порядок и беспорядок в природе. Панорама современного естествознания. Биосфера и человек.

    тест [32,4 K], добавлен 17.10.2010

  • Асимметрия как совокупность признаков неравенства функций рук, ног, половин туловища и лица в формировании общего двигательного поведения и его выразительности. Моторная и психическая асимметрия. Несходство правшей и левшей во всем двигательном поведении.

    дипломная работа [110,0 K], добавлен 27.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.