Основы биохимии спорта
Этапы метаболизма и биологического окисления. Строение и обмен белков, углеводов, жиров и нуклеиновых кислот. Энергетическое обеспечение мышечного сокращения. Биохимические сдвиги при мышечной работе. Описание механизмов утомления и восстановления.
Рубрика | Биология и естествознание |
Вид | курс лекций |
Язык | русский |
Дата добавления | 06.02.2012 |
Размер файла | 4,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ОСНОВЫ БИОХИМИИ СПОРТА
СОДЕРЖАНИЕ
Тема 1. Строение белков и ферментативный катализ
Тема 2. Этапы метаболизма и биологическое окисление
Тема 3. Строение и обмен углеводов
Тема 4. Строение и обмен жиров
Тема 5. Строение и обмен нуклеиновых кислот
Тема 6. Обмен белков
Тема 7. Обмен воды и солей. Витамины
Тема 8. Гормоны биохимия мочи и крови
Тема 9. Биохимия мышечного сокращения
Тема 10. Энергетическое обеспечение мышечного сокращения
Тема 11. Биохимические сдвиги при мышечной работе
Тема 12. Биохимические механизмы утомления
Тема 13. Восстановление с точки зрения биохимии
Тема 14. Общие биохимические закономерности адаптации к мышечной работе
Тема 15. Биохимические основы работоспособности
Тема 16. Биохимические способы повышения работоспособности
Приложение 1
Тема 1. Строение белков и ферментативный катализ
1.1 Введение. Чем занимается биохимия?
Биохимия изучает химические процессы, происходящие в живых системах. Иначе говоря, биохимия изучает химию жизни. Наука эта относительно молодая. Она родилась в 20 веке. Условно курс биохимии можно разделить на три части.
Общая биохимия занимается общими закономерностями химического состава и обмена веществ разных живых существ от мельчайших микроорганизмов и кончая человеком. Оказалось, что эти закономерности во многом повторяются.
Частная биохимия занимается особенностями химических процессов, протекающих у отдельных групп живых существ. Например, биохимические процессы у растений, животных, грибов и микроорганизмов имеют свои особенности, причем, в ряде случаев очень существенные.
Функциональная биохимия занимается особенностями биохимических процессов протекающих в отдельных организмах, связанных с особенностями их образа жизни. Направление функциональной биохимии, исследующее влияние физических упражнений на организм спортсмена называется биохимией спорта или спортивной биохимией.
Развитие физической культуры и спорта требует от спортсменов и тренеров хороших знаний в области биохимии. Это связано с тем, что без понимания того, как работает организм на химическом, молекулярном уровне трудно надеяться на успех в современном спорте. Многие методики тренировки и восстановления базируются в наше время именно на глубоком понимании того, как работает организм на субклеточном и молекулярном уровне. Без глубокого понимания биохимических процессов невозможно бороться и допингом - злом, которое может погубить спорт.
1.2 Биологическая роль белков
Роль белков в организме трудно переоценить. Именно поэтому наш курс начинается с описания роли и строения именно этого класса биоорганических соединений. Белки в организме выполняют следующие функции.
1. Структурная или пластическая функция. Белки являются универсальным строительным материалом, из которого состоят практически все структуры живых клеток. Например, в организме человека белки составляют около 1/6 от массы тела. Причем, у тренированных людей с хорошо развитыми мышцами эта цифра может быть и выше.
2. Каталитическая функция. Многие белки, называемые ферментами или энзимами, выполняют в живых системах функцию катализаторов, то есть изменяют скорости протекания химических реакций (о чем подробно будет сказано ниже)
3. Сократительная функция. Именно белковые молекулы лежат в основе всех форм движения живых систем. Мышечное сокращение = это, прежде всего работа белков.
4. Регуляторная функция. В основе этой функции лежит способность белковых молекул реагировать и с кислотами и основаниями, называемуют в химии амфотерностью. Белки участвуют в создании гомеостаза организма. Многие белки являются гормонами.
5. Рецепторная функция. В основе этой функции лежит способность белков реагировать на возникающие изменения условий внутренней среды организма. Различные рецепторы в организме, чувствительные к температуре, давлению, освещенности являются белками. Рецепторы гормонов - это тоже белки.
6. Транспортная функция. Белковые молекулы имеют большой размер, хорошо растворимы в воде, что позволяет им легко перемещаться по водным растворам и переносить различные вещества. Например, гемоглобин переносит газы, альбумины крови переносят жиры и жирные кислоты.
7. Защитная функция. Белки защищают организм, прежде всего, участвуя в создании иммунитета.
8. Энергетическая функция. Белки не являются главными участниками энергетического обмена, но все же до 10% суточной потребности организма в энергии обеспечивают именно они. В то же время, это слишком ценный продукт, чтобы использовать его, как источник энергии. Поэтому белки используются в качестве источника энергии только после углеводов и жиров.
1.3 Строение молекулы белка
Белки - этот высокомолекулярные азотсодержащие соединения, состоящие из аминокислот. В состав белков входят сотни остатков аминокислот. Однако все белки, независимо от происхождения образуются 20 видами аминокислот. Эти 20 аминокислот называют, поэтому протеиногенными.
Аминокислоты содержат карбоксильную группу COOH и аминогруппу NH2. Правда, некоторые белки все же содержат в очень малых количествах аминокислоты, не входящие в состав протеиногенных. Такие аминокислоты называют минорными. Они образуются из протеиногенных аминокислот после завершения синтеза белковых молекул.
Аминокислоты соединяются друг с другом пептидной связью, образуя длинные неразветвленные цепи - полипептиды. Пептидная связь возникает при взаимодействии карбоксильной группы одной аминокислоты и аминогруппы другой с выделением воды. Пептидные связи обладают высокой прочностью, их образуют все аминокислоты. Именно, эти связи образуют первый уровень организации белковой молекулы - первичную структуру белка. Первичная структура - это последовательность аминокислотных остатков в полипептидной цепи белка.
Вторичная структура белка представляет собой спиральную структуру, образованную, главным образом, за счет водородных связей.
Третичная структура белка представляет собой глобулу или клубочек, в которую сворачивается вторичная спираль в некоторых белках. В образовании глобулы участвуют различные межмолекулярные силы, прежде всего дисульфидные мостики. Поскольку дисульфидные связи образуются аминокислотами, которые содержат серу, то глобулярные белки обычно содержат много серы.
Некоторые белки образуют четвертичную структуру, состоящую из нескольких глобул, называемых тогда субъединицами. Например, молекула гемоглобина состоит из четырех субъединиц, выполняющих единую функцию.
Все структурные уровни молекулы белка зависят от первичной структуры. Изменения в первичной структуре ведут к изменениям на других уровнях организации белка.
1.4 Классификация белков
Классификация белков базируется на их химическом составе. Согласно этой классификации белки бывают простые и сложные. Простые белки состоят только из аминокислот, то есть из одного или нескольких полипептидов. К простым белкам, имеющимся в организме человека, относятся альбумины, глобулины, гистоны, белки опорных тканей.
В молекуле сложного белка, кроме аминокислот, ещё имеется неаминокислотная часть, называемая простетической группой. В зависимости от строения этой группы выделяют такие сложные белки, как фосфопротеиды(содержат фосфорную кислоту), нуклеопротеиды( содержат нуклеиновую кислоту), гликопротеиды(содержат углевод), липопротеиды(содержат липоид) и другие.
Согласно классификации, которая базируется на пространственной форме белков, белки разделяются на фибриллярные и глобулярные.
Фибриллярные белки состоят из спиралей, то есть преимущественно из вторичной структуры. Молекулы глобулярных белков имеют шаровидную и эллипсоидную форму.
Примером фибриллярных белков является коллаген - самый распространенный белок в теле человека. На долю этого белка приходится 25 - 30% от общего числа белков организма. Коллаген обладает высокой прочностью и эластичностью. Он входит в состав сосудов мышц, сухожилий, хрящей, костей, стенки сосудов.
Примером глобулярных белков являются альбумины и глобулины плазмы крови.
1.5 Физико-химические свойства белков
Одной из главных особенностей белков является их большая молекулярная масса, которая колеблется в диапазоне от 6000 до нескольких миллионов дальтон.
Другим важным физико-химическим свойством белков является их амфотерность, то есть наличие, как кислотных, так и основных свойств. Амфотерность связана с наличием в составе некоторых аминокислот свободных карбоксильных групп, то есть кислотных, и аминогрупп, то есть щелочных. Это приводит к тому, что в кислой среде белки проявляют щелочные свойства, а в щелочной среде - кислотные. Однако при определенных условиях белки проявляют нейтральные свойства. Значение рН, при котором белки проявляют нейтральные свойства, называется изоэлектрической точкой. Изоэлектрическая точка для каждого белка индивидуальна. Белки по этому показателю делят на два больших класса - кислые и щелочные, так как изоэлектрическая точка может быть сдвинута либо в одну, либо в другую сторону.
Еще одно важное свойство белковых молекул - это растворимость. Несмотря на большой размер молекул белки довольно хорошо растворимы в воде. Причем растворы белков в воде весьма устойчивы. Первой причиной растворимости белков является наличие на поверхности молекул белков заряда, благодаря чему белковые молекулы практически не образуют нерастворимые в воде агрегаты. Второй причиной устойчивости белковых растворов является наличие у белковой молекулы гидратной (водной) оболочки. Гидратная оболочка отделяет белки друг от друга.
Третье важное физико-химическое свойство белков - это высаливание, то есть способность выпадать в осадок под действием водоотнимающих средств. Высаливание - процесс обратимый. Эта способность то переходить в раствор, то выходить из него очень важна для проявления многих жизненных свойств.
Наконец, важнейшим свойством белков является его способность к денатурации. Денатурация - это потеря белком нативности. Когда мы делаем яичницу на сковороде, мы получаем необратимую денатурацию белка. Денатурация заключается в постоянном или временном нарушении вторичной и третичной структуры белка., но при этом первичная структура сохраняется. Помимо температуры(выше 50 градусов) денатурацию могут вызвать другие физические факторы: излучении, ультразвук, вибрация, сильные кислоты и щелочи. Денатурация может быть обратимой и необратимой. При небольших воздействиях разрушение вторичной и третичной структур белка происходит незначительное. Поэтому белок при отсутствии денатурирующего может восстановить свою нативную структуру. Процесс обратный денатурации называется ренатурация. Однако при продолжительном и сильном воздействии ренатурация становится невозможной, а денатурация, таким образом, необратимой.
1.6 Строение ферментов
Ферменты или энзимы - это белки, выполняющие в организме каталитические функции. Катализ предусматривает, как ускорение, так и замедление химических реакций.
Ферменты практически всегда ускоряют химические реакции в организме, причем, ускоряют в десятки и сотни раз. У иных реакций, проходящих под контролем ферментов, скорость в их отсутствие падает практически до нуля.
Участок фермента, который непосредственно участвует в катализе, называется активным центом. Он может быть по разному организован у ферментов, имеющих только третичную и четвертичную структуру. У сложных белков в образовании активного цента участвуют, как правило, все субъединицы, а также их простетические группы.
В активном центре выделяют два участка - адсорбционный и каталитический.
Адсорбционный участок - это центр связывания. Он по своему строению соответствует структуре реагирующих веществ, называемых в биохимии субстратами. Говорят, что субстраты и адсорбционный центр фермента совпадает как ключ и замок. У большинства ферментов один активный центр, но бывают ферменты, имеющие несколько активных центров. Надо сказать, что в ферментативной реакции принимает участи не только активный центр фермента, но и другие его части. Общая конформация фермента играет важную роль в его активности. Поэтому, изменение даже одной аминокислоты в части молекулы, которая не имеет отношения непосредственно к активному центру, может сильно повлиять на активность фермента и даже свести её к нулю. Благодаря изменению конформации фермента происходит "приспособление" его активного центра к структуре субстратов, участвующих в ускоряемой ферментом реакции.
1.7 Механизм действия ферментов. Специфичность
Надо помнить, что при осуществлении каталитической функции, сам катализатор не меняет своей химической природы. Это утверждение справедливо и для ферментов.
В любой каталитической реакции, осуществляемой ферментами, различают три стадии.
1. Образование фермент-субстратного комплекса. На этой стадии активный центр фермента, связывается с субстратами за счет слабых связей, обычно водородных. Особенностью этого этапа является полная обратимость, так как фермент-субстратный комплекс легко может распадаться на фермент и субстраты. На этой стадии возникает благоприятная ориентация молекул субстратов, что способствует ускорению их взаимодействия.
2. Эта стадия проходит с участием каталитического участка активного центра. Сущность этого этапа состоит в снижении энергии активации и ускорении реакции между субстратами. Результатом этого этапа является образование нового продукта.
3. На этой стадии происходит отделение готового продукта от активного центра с освобождением фермента, который вновь готов для осуществления своей функции.
В клетке ферменты, катализирующие многостадийные процессы часто объединяются в комплексы, называемые мультиферментными системами. Чаще всего эти комплексы встроены в биомембраны или связаны с органоидами клеток. Такое объединение ферментов делает их работу более эффективной.
В некоторых случаях белки-ферменты содержат небелковый компоненты, участвующие в катализе. Такие небелковые элементы называются коферментами. Большинство коферментов в своем составе содержат витамины.
Важнейшим свойством ферментов является их высокая специфичность. В биохимии существует правило: одна реакция - один фермент. Различают два вида специфичности: специфичность действия и специфичность субстратная.
Специфичность действия - это способность фермента катализировать только один определенный тип химической реакции. Если субстрат может вступать в различные реакции, то для каждой реакции нужен свой фермент.
Субстратная специфичность - это способность фермента действовать только на определенные субстраты.
Субстратная специфичность бывает абсолютная и относительная.
При абсолютной специфичности фермент катализирует превращения только одного субстрата.
При относительной - может быть группа похожих субстратов.
1.8 От чего зависит скорость ферментативных реакций
В основе химических реакций лежит энергия активации. Если энергия активации высокая, то вещества не могут вступить в реакцию или скорость их взаимодействия будет низкой. Ферменты снижают порог энергии активации.
Скорость ферментативных реакция существенно зависит от многих факторов. К ним относятся концентрации веществ участников ферментативной реакции, а также условия среды, в которых протекает реакция.
Показано, что чем выше концентрация фермента, тем выше скорость реакции. Это объясняется тем, что концентрация фермента намного ниже концентрации субстрата.
При низких концентрациях субстрата скорость прохождения реакции прямо пропорциональна концентрации субстратов. Однако по мере возрастания концентрации субстрата она начинает замедляться и, наконец, достигнув максимальной скорости, перестает расти. Это связано с тем, что по мере увеличения концентрации субстрата количество свободных активных центов становится ограничивающим фактором.
Температура влияет на ферментативные реакции своеобразно. Дело в том, что ферменты - это белки, а это значит, что при высоких температурах (выше 80 градусов), они полностью теряют активность. Поэтому для ферментативных реакций существует понятие температурного оптимума. Таким оптимумом для большинства ферментов является температура тела 37 - 40 градусов. При низких температурах ферменты также неактивны.
Еще одним фактором, определяющим активность ферментов, является рН среды. Здесь для каждого фермента существует свой рН-оптимум. Например ферменты желудочного сока имеют рН-оптимум в кислой среде (рН - 1,0 до 2,0), а ферменты поджелудочной железы предпочитают щелочную среду (рН - 9,0 - 10,0).
Помимо указанных выше факторов на скорость ферментативных реакций оказывают различные вещества - ингибиторы и активаторы.
Ингибиторы - это, чаще всего, низкомолекулярные вещества, тормозящие скорость реакции. Ингибитор связывается с ферментом, мешая ему осуществлять свою функцию.
Активаторы - вещества, избирательно повышающие скорость ферментативных реакций.
Гормоны могут выступать и активаторами, и ингибиторами ферментов.
Скорость ферментативных реакций зависит и от ряда других факторов:
· изменения скорости синтеза ферментов;
· . модификации ферментов;
· изменение конформации фермента
1.9 Классификация и номенклатура ферментов
Современная классификация ферментов базируется на характеристике химической реакции, катализируемой ферментом. Различают шесть основных классов ферментов.
1. Оксидоредуктазы - ферменты, катализирующие окислительно-восстановительные реакции. Схематично это выглядит так:
A + В > С + D
2. Трансферазы - ферменты, катализирующие перенос химических группировок с одной молекулы на другую
AВ + С > А + ВС
3. Гидролазы - ферменты, расщепляющие химические связи путем присоединения воды, то есть гидролиза.
АВ + Н2О >А - Н + В - ОН
4. Лиазы - ферменты катализирующие расщепление химических связей без присоединения воды:
АВ > А + В
5. Изомеразы - ферменты, катализирующие изомерные превращения, то есть перенос отдельных химических групп в пределах одной молекулы:
А > В
6. Синтетазы - ферменты катализирующие реакции синтеза, происходящие за счет энергии АТФ:
Каждый класс в свою очередь делится на подклассы, а те на подподклассы.
Название фермента, как правило состоит из двух частей. Первая часть отражает название субстрата, превращения которого катализируется данным ферментом. Вторая часть названия имеет окончание "-аза", указывает на природу реакции. Например, фермент, отщепляющий от молочной кислоты (лактата) атомы водорода, называется лактатдегидрогеназа. А фермент, катализирующий изомеризацию глюкозо-6-фосфата в фруктозо-6-фосфат называется глюкозофосфатизомераза. Фермент, участвующий в синтезе гликогена называется гликогенсинтетаза.
Тема 2. Этапы метаболизма и биологическое окисление
2.1 Общая характеристика обмена веществ
Обмен веществ и энергии - это обязательное условие существования живых организмов.
Организм из внешней среды получает энергию и строительные вещества, затем эти вещества перерабатываются и, наконец, ненужные продукты переработки выделяются из организма в окружающую среду. Таким образом, обмен веществ может быть представлен в виде трех процессов.
1. Пищеварение - это процесс в ходе которого пищевые вещества, как правило высокомолекулярные и для организма чужеродные, под действием пищеварительных ферментов расщепляются и превращаются в простые соединения - универсальные для всех живых организмов. Белки, например, распадаются на аминокислоты точно такие же как аминокислоты самого организма. Из углеводов пищи образуется универсальный моносахарид - глюкоза. Поэтому конечные продукты пищеварения могут вводиться во внутреннюю среду организма и использоваться клетками для разнообразных целей.
2. Метаболизм - это совокупность химических реакций, протекающая во внутренней среде организма. Правда, иногда слово "метаболизм" понимают как синоним обмена веществ.
3. Выделение - это процесс удаления отработанных веществ из организма. Этот процесс происходит, как на последних этапах пищеварения, так и в ходе метаболизма. В последнем случае в выделении участвует кровь и особые органы выделения продуктов распада азотистых веществ - почки.
Рассмотрим, однако, более подробно собственно метаболизм.
Метаболизм включает в себя два процесса, которые являются двумя его неразрывными сторонами: катаболизм и анаболизм.
Катаболизм - это процессы расщепления веществ, результатом которых является извлечение энергии и получение молекул меньшего размера. Конечными продуктами катаболизма являются углекислый газ, вода, аммиак.
Катаболизм в организме человека и большинства живых существ характеризуется следующими особенностями.
· В процессе катаболизма преобладают реакции окисления.
· Катаболизм протекает с потреблением кислорода.
· В процессе катаболизма выделяется энергия, примерно половина которой аккумулируется в форме молекул аденозинтрифосфата (АТФ). Значительная часть энергии выделяется виде тепла.
Анаболизм - это реакции синтеза. Для этих процессов характерны следующие особенности.
· Анаболизм - это, главным образом, реакции восстановления.
· В процессе анаболизма происходит потребление водорода.
· Источником энергии для реакций анаболизма служит АТФ.
2.2 Строение и биологическая роль АТФ
Аденозинтрифосфат или сокращенно АТФ - это универсальное энергетическое вещество организма. АТФ - нуклеотид, в состав молекулы которого входят азотистое основание - аденин, углевод - рибоза и три остатка фосфорной кислоты.
Особенностью молекулы АТФ является то, что второй и третий остатки фосфорной кислоты присоединяются связью, богатой энергией, иначе называемой макроэргической связью. Часто соединения, имеющие макроэргическую связь (а мы столкнемся с ними в процессе изучения предмета) обозначатся термином "макроэрги" или макроэргические вещества.
Строение АТФ можно отразить схемой
При использовании АТФ в качестве источника энергии обычно происходит отщепление путем гидролиза последнего остатка фосфорной кислоты.
АТФ + Н2О > АДФ + Н3РО4 + энергия
В физиологических условиях, то есть при условиях, которые имеются в живой клетке, расщепление моля АТФ сопровождается выделением 10 - 12 ккал энергии (43 -50 кДж).
Главными потребителями энергии АТФ в организме являются
· реакции синтеза;
· мышечная деятельность;
· транспорт молекул и ионов через мембраны.
Таким образом биологическая роль АТФ заключается в том, что это вещество в организме является своего родом эквивалентом ЕВРО или доллара в экономике. Основным поставщиком АТФ в клетке является тканевое дыхание - завершающий этап катаболизма, протекающий в митохондриях большинства клеток организма.
2.3 Тканевое дыхание
Тканевое дыхание - это основной способ получения АТФ используемый абсолютным большинством клеток организма.
В процессе тканевого дыхания от окисляемого вещества отнимаются два атомов водорода и по дыхательной цепи, состоящей из ферментов и коферментов, передаются на молекулярный кислород, доставляемый кровью из воздуха во все ткани организма. В результате присоединения атомов кислорода и водорода образуется вода. За счет энергии, выделяющееся при движении электронов, по дыхательной цепи, в митохондриях осуществляется синтез АТФ из АДФ и фосфорной кислоты. Обычно синтез трех молекул АТФ сопровождается образованием одной молекулы воды.
В качестве субстрата окисления в тканевом дыхании используются разнообразные промежуточные продукты распада углеводов, жиров и белков. Однако наиболее часто подвергаются окислению промежуточные продукты цикла лимонной кислоты, называемого иначе циклом трикарбоновых кислот или циклом Кребса (изолимонная, альфа-кетоглутаровая, янтарная, яблочная кислоты - это субстраты цикла трикарбоновых кислот). Цикл лимонной кислоты - это завершающий этап катаболизма, в ходе которого происходит окисление остатка уксусной кислоты, входящей а ацетилкофермент А до углекислого газа и воды. В свою очередь ацетилкофермент А - универсальное вещество организма, в которое при своем распаде превращаются главные органические вещества - белки, жиры и углеводы. Тканевое дыхание - это сложный ферментативный процесс. Ферменты тканевого дыхания делятся на три группы: никотинамидные дегидрогеназы, флавиновые дегидрогеназы и цитохромы. Эти ферменты и составляют дыхательную цепь.
Никотинамидные дегидрогеназы отнимают два атома водорода у окисляемого субстрата и присоединяют его к молекуле кофермента НАД (никотинамидадениндинуклеотид) При этом НАД переходит в свою восстановленную форму НАД.Н2.
Флавиновые дегидрогеназы отщепляют два атома водорода от НАД.Н2 и временно присоединяют к ФМН (флавинмононуклеотид). Это кофермент в состав которого входит витамин В2. Затем происходит передача двух атомов водорода флавину, который в свою очередь передает эти атомы на цитохромы.
Цитохромы - это ферменты, содержащие в своем составе ионы трехвалентного железа, которые, присоединяя водород, переходят в двухвалентную форму. Цитохромов несколько и они обозначаются латинскими буквами a, a-3 b, c. Цитохромы передают водород на молекулярный кислород, и образуется вода.
При движении по дыхательной цепи выделяется энергия, которая аккумулируется виде молекул АТФ. Этот процесс называется окислительным или дыхательным фосфорилированием. В сутки в организме образуется не менее 40 кг АТФ. Особенно интенсивно эти процессы идут в мышцах при физической работе.
2.4 Анаэробное, микросомальное и свободнорадикальное окисление
В некоторых случаях отнятие атома водорода от окисляемых веществ происходит в цитоплазме. Эти процессы происходят без участия кислорода. Поэтому акцепторы водорода здесь другие. Наиболее часто водород присоединяет пировиноградная кислота, возникающая при распаде углеводов и аминокислот. Пировиноградная кислота может присоединить водород и таким образом превратиться в лактат или молочную кислоту. Такой процесс, происходящий, в частности в мышцах при недостатке кислорода, называется анаэробным окислением или гликолизом. За счет выделяющейся при этом энергии в цитоплазме также идет образование АТФ. Процесс образования АТФ в цитоплазме получил название анаэробного или субстратного фосфорилирования. Этот процесс гораздо менее эффективен, нежели тканевое дыхание.
В некоторых случаях при окислении атомы кислорода включаются в молекулы окисляемых веществ. Такое окисление протекает на мембранах эндоплазматической сети и называется микросомальное окисление. За счет включения кислорода окисляемого субстрата возникает гидроксильная группа (-ОН). Поэтому этот процесс часто называют гидроксилирование. В этом процессе активное участие принимает аскорбиновая кислота или витамин С.
Биологическая роль этого процесса не связана с синтезом АТФ. Она состоит в следующем.
1. Включаются атомы кислорода в синтезируемее вещества.
2. Обезвреживаются различные токсичные вещества, так как включение атома кислорода в молекулу яда уменьшает токсичность этого яда, делает его водорастворимым, и облегчат почкам его выведение.
В редких случаях кислород, поступающий из воздуха в организм, превращается в активные формы (О2, НО2, НО+, Н2 О2 и др.), называемые свободными радикалами или оксидантами.
Свободные радикалы кислорода вызывают реакции окисления, затрагивающие белки, жиры, нуклеиновые кислоты. Это окисление получило название свободнорадикальное окисление.
Особенное влияние этот процесс оказывает на жирные кислоты. Перекисное окисление липидов (ПОЛ) помогает обновлению липидного слоя биологических мембран.
Свободнорадикальное окисление может приносить и вред, если происходит слишком интенсивно. Поэтому в организме существует специальная антиоксидантная система, важнейшей частью которой является витамин Е (токоферол).
Тема 3. Строение и обмен углеводов
3.1 Общая характеристика и классификация углеводов. Функции углеводов в организме
Углеводы составляют более 80% всех органических соединений биосферы Земли.
Исключительную роль в энергетическом обмене биосферы играет глюкоза. Именно этот углевод образуется в процессе фотосинтеза. И именно, глюкоза запускает энергетический обмен в нашем организме.
Углеводы делятся на три основных класса: моносахариды, олигосахариды и полисахариды.
Моносахариды или простые сахара не подвергаются гидролизу и получить из них более простые углеводы невозможно. К моносахаридам относятся: рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза и другие.
Олигосахариды состоят из нескольких моносахаридов, соединенных ковалентными связями. При гидролизе они распадаются на входящие в них моносахариды. Примером олигосахаридов могут служить дисахариды, состоящие из двух молекул моносахаридов. Наиболее распространенные дисахариды сахароза (пищевой или тростниковый сахар), состоящий из остатков глюкозы и фруктозы, лактоза(молочный сахар), состоящий из остатков глюкозы и галактозы.
Полисахариды представляют собой длинные неразветвленные цепи. Включающие сотни и тысячи моносахаридных остатков. Наиболее известные из них - крахмал, целлюлоза, гликоген - состоят из остатков глюкозы.
Функции углеводов в организме весьма разнообразны.
1. Энергетическая.
2. Структурная функция (входят в состав клеточных структур).
3. Защитная (синтез иммунных тел в ответ на антигены).
4.Антисвертывающая (гепарин).
5. Гомеостатическая (поддержание водно-солевого обмена)
6. Механическая ( входят в состав соединительных и опорных тканей).
3.2 Строение и биологическая роль глюкозы и гликогена. Синтез и распад гликогена
Эмпирическая формула глюкозы С6Н12О6. Она может иметь различные пространственные формы. В организме человека глюкоза как правило находится в циклической форме:
Свободная глюкоза в организме человека в основном находится в крови, где ее содержание довольно постоянно и колеблется в диапазоне от 3,9 до 6,1 ммоль/л.
Глюкоза главный источник энергии в организме.
Другим углеводом типичным для человека является гликоген. Состоит гликоген из сильно разветвленных молекул большого размера, содержащих десятки тысяч остатков глюкозы. Эмпирическая формула гликогена: (С6 Н12 О5)n где n число остатков глюкозы.
Основные запасы гликогена сосредоточены в печени и мышцах.
Гликоген является запасной формой глюкозы.
В норме с пищей поступает 400 - 500 г углеводов. Это, главным образом, крахмал, клетчатка, сахароза, лактоза, гликоген. Переваривание углеводов происходит в разных частях пищеварительного тракта, начиная с ротовой полости. Осуществляют его ферменты амилазы. Единственный углевод, который не расщепляется в нашем организме - это клетчатка. Все остальные расщепляются до глюкозы, фруктозы, галактозы и.т. д. и вовлекаются в процессы катаболизма, Значительная часть глюкозы превращается в печени в гликоген. Между приемами пищи часть гликогена в печени превращается в глюкозу, которая поступает в кровь.
Глюкоза, используемая для синтеза гликогена, предварительно активируется. Затем после ряда превращений образует гликоген. В этом процесс участвует нуклеотид УТФ (уридинтрифосфат), который по строению напоминает АТФ. В ходе реакций образуется промежуточное соединение - уридиндифосфатглюкоза (УДФ-глюкоза). Именно это соединение образует молекулы гликогена, вступая в реакцию с так называемой затравкой. Затравкой служат имеющиеся в печени молекулы гликогена.
Реакции образования гликогена обеспечиваются энергией молекулами АТФ. Синтез гликогена ускоряется гормоном инсулином.
Распад гликогена в печени осуществляется в обратном порядке и в конечном итоге образуется глюкоза и фосфорная кислота. Этот процесс ускоряется гормонами глюкагоном и адреналином. Распад гликогена в мышцах стимулирует гормон адреналин, который выделяется в кровь во время мышечной работы. При этом в мышцах не образуется свободная глюкоза и путь расщепления гликогена несколько иной.
3.3 Катаболизм углеводов. Гексозодифосфатный путь расщепления глюкозы
Катаболизм глюкозы осуществляется двумя путями.
· Основная часть углеводов (до95%) подвергается распаду по гексозодинофосфатному пути. Именно этот путь является основным источником энергии для организма.
· Остальная часть глюкозы расщепляется через гексозомонофосфатный путь.
ГДФ-путь может протекать в условиях отсутствия кислорода - анаэробно и в присутствии кислорода, то есть в аэробных условиях. Это очень сложная цепь последовательных реакций, конечным результатом которой является образование углекислого газа и воды. Этот процесс можно разбить на три этапа, последовательно идущих друг за другом.
Первый этап, называемый гликолизом, происходит в цитоплазме клеток. Конечным продуктом этого этапа является пировиноградная кислота.
1. Реакция состоит в том, что глюкоза превращается в глюкозо-6фосфат.
Глюкоза + АТФ > глюкоза-6-фосфат + АДФ
2. Глюкоза-6-фосфат превращается во фруктозо-6-фосфат
3. Фруктозо-6-фосфат переходит во фрутозо-1.6-фосфат
4. Далее из фруктозо-6-фосфата образуется фосфоглицериновый альдегид.
5.Затем из фосфоглицеринового альдегида образуется 1.3дифосфоглицерат
6. 1.3дифосфоглицерат переходит в3-фосфоглицерат,
7 который переходит в 2-фосфоглицерат, а затем
8 в фосфопируват, а тот
9 в пируват (пировиноградная кислота).
Общее уравнение гликолиза выглядит так:
Глюкоза + О2 + 8АДФ + 8 Н3РО4 > 2 Пируват + 2Н2О + 8 АТФ
Первый этап распада углеводов практически обратим. Из пирувата, а также из возникающего в анаэробных условиях лактата (молочная кислота), может синтезироваться глюкоза, а из неё гликоген.
Второй и третий этапы ГДФ-пути протекают в митохондриях. Эти этапы требуют присутствия кислорода. В ходе второго этапа от пировиноградной кислоты отщепляется углекислый газ и два атома водорода. Отщепленные атомы водорода по дыхательной цепи передаются на кислород с одновременным синтезом АТФ. Из пирувата же образуется уксусная кислота. Она присоединяется к особому веществу, коферменту А. Это вещество является переносчиком остатков кислот. Результатом этого процесса является образование вещества ацетилкофермент А. Это вещество обладает высокой химической активностью.
Ацетилкофермент А подвергается дальнейшему окислению в цикле трикарбоновых кислот. Это и есть третий этап. Первой реакцией цикла является взаимодействие ацетилкофермента А со щавелево-уксусной кислотой с образованием лимонной кислоты. Поэтому эти реакции и называют циклом лимонной кислоты. Образуя ряд промежуточных трикарбоновых кислот лимонная кислота вновь превращается в щавелево-уксусную и цикл повторяется Результатом этих реакций является образование отщепленного водорода, которые, пройдя по дыхательной цепи(см. предыдущую лекцию), образует с кислородом воду. В результате всех этих реакции образуется 36 молекул АТФ. В сумме ГДФ-путь дает 38 молекул АТФ в пересчете на одну молекулу глюкозы
Глюкоза + 6 О2 + 38 АДФ + 38 Н3 РО4 > 6СО2 + 6 Н2О +38 АТФ
Расщепление гликогена добавляет к этому уравнению еще одну молекулу АТФ,
При недостатке кислорода аэробный путь прерывается образованием пирувата, который превращается в лактат. В результате таких превращений образуется лишь две молекулы АТФ.
Общая схема ГДФ-пути выглядит так:
3.4 Гексозомонофосфатный путь распада углеводов
Как уже подчеркивалось выше ГМФ-путь распада углеводов - побочный. Данный путь встречается в надпочечниках, эритроцитах, жировой ткани, печени и протекает в цитоплазме клеток.
ГМФ-путь распада глюкозы имеет анаболическое назначение и обеспечивает различные реакции синтеза рибозой и водородом.
ГМФ-путь можно разделить на два этапа, причем, первый этап протекает обязательно, а второй не всегда.
Первый этап начинается с перехода глюкозы в активную форму глюкозо-6-фосфат, от которого затем отщепляется молекула углекислого газа и две пары атомов водорода, присоединившиеся к коферменту НАДФ (никотинамидадениндинуклеотидфосфат). Конечным продуктом первого этапа является рибозо-5-фосфат.
Образовавшийся в результате первого этапа НАДФ.Н2 поставляет атомы водорода в различные процессы синтеза, в частности для синтеза жирных кислот и холестерина. Рибозо-5-фосфат используется для синтеза нуклеотидов, из которых образуются затем нуклеиновые кислоты и коферменты.
Второй этап протекает тогда, когда рибозо-5-фосфат полностью не расходуются для синтеза. Неиспользованные молекулы этого вещества вступают во взаимодействия друг с другом, в ходе которых они обмениваются группами атомов и в качестве промежуточных продуктов появляются моносахариды с различным числом атомов углерода, такие как триозы, пентозы, тетрозы, гексозы. В конечном итоге из шести молекул рибозо-5-фосфата образуется 5 молекул глюкозо-6-фосфата.
Таким образом, второй этап делает данный способ распада глюкозы цикличным, поэтому его называют пентозным циклом.
Пентозный цикл - это резервный путь энергетического обмена, который в ряде случаев может выдвигаться на первые роли.
Тема 4. Строение и обмен жиров и липоидов
4.1 Химическое строение и биологическая роль жиров и липоидов
Жиры или липиды - это группа разнообразных по строению веществ, обладающих одинаковыми физико-химическими свойствами: они не растворимы в воде, но хорошо растворимы в органических растворителях (бензол, толуол, бензин, гексан и др.)
Жиры делятся на две группы - собственно жиры или липиды и жироподобные вещества или липоиды.
Молекула жира состоит из глицерина и трех остатков жирных кислот, соединенных сложноэфирной связью. Это так называемые истинные жиры или триглицериды.
Жирные кислоты, входящие в состав жиров делятся на предельные и непредельные. Первые не имеют двойных связей и называются ещё насыщенными, а вторые имеют двойные связи и называются ненасыщенными. Есть ещё полиненасыщенные жирные кислоты, имеющие две и более двойные связи. Такие жирные кислоты в организме человека не синтезируются и должны обязательно поступать с пищей, так как являются для синтеза некоторых важных липоидов. Чем больше двойных связей, тем ниже температура плавления жира. Ненасыщенные жирные кислоты делают жиры более жидкими. Их много содержится в растительном масле.
Жиры разного происхождения отличаются набором жирных кислот, входящих в их состав.
Жиры нерастворимы в воде. Однако, в присутствии особых веществ - эмульгаторов - жиры при смешивании с водой образуют устойчивую смесь - эмульсию. Пример эмульсии - молоко, а пример эмульгатора - мыла - натриевые соли жирных кислот. В организме человека в роли эмульгаторов выступают желчные кислоты и некоторые белки.
В организме животных и человека можно выделит три класса липоидов.
1. Фосфолипиды, состоящие из жирных кислот, спирта и обязательно фосфорной кислоты.
2. Гликолипиды, состоящие из жирной кислоты, спирта и какого-нибудь простого углевода, чаще всего галактозы.
3. Стероиды, содержащие сложное стерановое кольцо.
Значение жиров и стероидов в организме очень велико.
· Жиры являются важным источником энергии. Из одного грамма жира организм извлекает около 9ккал энергии, что в 2 раза больше, чем из 1 г углеводов.
· Жиры защищают организм от переохлаждения и механических воздействий(например ударов).
· Жирные кислоты и липоиды входят в состав многих гормонов.
· Липоиды являются важнейшими компонентами клеточных мембран.
· Под воздействием УФ- излучения из липоида - холестерина образуется витамин D.
4.2 Переваривание и всасывание жиров
В суточном рационе обычно содержится 80- 100 г жиров. Переваривание жира в организме человека происходит в тонком кишечнике. Жиры предварительно с помощью желчных кислот превращается в эмульсию. В процессе эмульгирования крупные капли жира превращаются в мелкие, что значительно увеличивает их суммарную поверхность. Ферменты сока поджелудочной железы - липазы, являясь белками, не могут проникать внутрь капель жира и расщепляют только молекулы жира, находящиеся на поверхности. Поэтому увеличение общей поверхности капель жира за счет эмульгирования значительно повышает эффективность действия этого фермента. Под действием липазы жир путем гидролиза расщепляется до глицерина и жирных кислот. Поскольку в пище присутствуют разнообразные жиры, то в результате их переваривания образуется большое количество разновидностей жирных кислот. Продукты расщепления жира всасываются слизистой тонкого кишечника. Глицерин растворим в воде, поэтому его всасывание происходит легко. Жирные кислоты, нерастворимые в воде, всасываются виде комплексов с желчными кислотами (комплексы, состоящие из жирных и желчных кислот, называются холеиновыми кислотами) В клетках тонкой кишки холеиновые кислоты распадаются на жирные и желчные кислоты. Желчные кислоты из стенки тонкого кишечника поступают в печень и затем снова выделяются в полость тонкого кишечника.
Освободившиеся жирные кислоты в клетках стенки тонкого кишечника вновь соединяются с глицерином, в результате чего вновь образуется молекула жира. Но в этот процесс вступают только жирные кислоты, входящие в состав жира человека. Таким образом, синтезируется человеческий жир. Такая перестройка пищевых жирных кислот в собственные жиры называется ресинтезом жира. Ресинтезированные жиры по лимфатическим сосудам минуя печень поступают в большой круг кровообращения и откладываются в запас в жировых депо. Главные жировые депо организма располагаются в подкожной жировой клетчатке, большом и малом сальниках, околопочечной капсуле.
4.3 Катаболизм жиров
Использование жира в качестве источника энергии начинается с его выхода из жировых депо в кровяное русло. Этот процесс называется мобилизация жира. Мобилизация жира ускоряется под действием симпатической нервной системы и гормона адреналина.
В печени происходит гидролиз жира до глицерина и жирных кислот.
Глицерин легко переходит в фосфоглицериновый альдегид. Это вещество является также промежуточным продуктом углеводов в поэтому легко вовлекается в углеводный обмен. Жирные кислоты соединяются с коферментом А и образуют соединение ацилкофермент А (ацил-КоА). эти процессы происходят в цитоплазме. Далее ацил-КоА передает жирную кислоту корнетину. Корнетин переносит жирную кислоту внутрь митохондрии и вновь отдает ее кофермента А, но в этот раз митохондриальному. В митохондриях окисление жирных кислот проходит в два этапа. Первый этап - в-окисление. Окислению подвергается углеродный атом жирной кислоты, находящийся в положении "бета". От жирной кислоты, связанной с КоА, дважды отщепляется по два атома водорода, которые затем по дыхательной цепи передаются на молекулярный кислород. В итоге образуется вода и образуется пять молекул АТФ. Этот процесс повторяется многократно, пока жирная кислота полностью не превратится в ацетил-КоА.
Схема бета-окисления
Второй этапом окисления - цикл трикарбоновых кислот, в котором происходит дальнейшее окисление остатка уксусной кислоты, входящей в ацетилкофермент А, до углекислого газа и воды. При окислении одной молекулы ацетилкофермента А выделяется до 12 молекул АТФ. Таким образом, окисление жирных кислот до углекислого газа и воды дает большое количество энергии. Например, из одной молекулы пальмитиновой кислоты (С15 Н31СООН) образуется 130 молекул АТФ. Однако, в силу особенностей строения жирных кислот (слишком много атомов углерода по сравнению с кислородом) их окисление существенно затруднено по сравнению с углеводами. Поэтому жир обеспечивает организм энергией при работе средней мощности, но зато продолжительной. Отсюда вывод, чтобы сжигать жир нужно осуществлять работу средней мощности, но продолжительную.
При продолжительных физических нагрузках и избыточном образовании ацетилкофермента А, происходит реакция конденсации уксусной кислоты с образованием кетоновых тел. В мышцах, почках и миокарде эти тела вновь переходят в ацетилкофермент А.Таким образом кетоновые тела играют важную роль при длительных спортивных тренировках. Однако при перетренировке они могут образовывать в крови ацетон, который выделяется с потом, мочой и выдыхаемым воздухом.
Схема. Активация синтеза кетоновых тел при голодании
Точечные линии - скорость метаболических путей снижена; сплошные линии - скорость метаболических путей повышена. При голодании в результате действия глюкагона активируются липолиз в жировой ткани и 3-окисление в печени. Количество оксалоацетата в митохондриях уменьшается, так как он, восстановившись до малата, выходит в цитозоль, где опять превращается в оксалоацетат и используется в глюконеогенезе. В результате скорость реакций ЦТК снижается и, соответственно, замедляется окисление ацетил-КоА. Концентрация ацетил-КоА в митохондриях увеличивается, и активируется синтез кетоновых тел. Синтез кетоновых тел увеличивается также при сахарном диабете
4.4 Синтез жиров
Синтезируются жиры из глицерина и жирных кислот.
Глицерин в организме возникает при распаде жира (пищевого и собственного), а также легко образуются из углеводов.
Жирные кислоты синтезируются из ацетилкофермента А. Ацетилкофермент А - универсальный метаболит. Для его синтеза необходимы водород и энергия АТФ. Водород же получается из НАДФ.Н2. В организме синтезируются только насыщенные и мононасыщенные (имеющие одну двойную связь) жирные кислоты. Жирные кислоты, имеющие две и более двойных связей в молекуле, называемые полинасыщенные, в организме не синтезируются и должны поступать с пищей. Для синтеза жира могут быть использованы жирные кислоты - продукты гидролиза пищевого и собственного жиров.
Все участники синтеза жира должны быть в активном виде: глицерин в форме глицерофосфата, а жирные кислоты в форме ацетилкофермента А. Синтез жира осуществляется в цитоплазме клеток (преимущественно жировой ткани, печени, тонкой кишки). Пути синтеза жиров представлены в схеме.
Следует отметить, что глицерин и жирные кислоты могут быть получены из углеводов. Поэтому при избыточном потреблении их на фоне малоподвижного образа жизни развивается ожирение.
Тема 5. Строение и обмен нуклеиновых кислот
5.1 Строение мононуклеотидов
По своему строению нуклеиновые кислоты являются полинуклеотидами, состоящими из мононуклеотидов или нуклеотидов.
Нуклеотид сложное органическое соединение, состоящее из трех частей: азотистого основания, углевода и остатков фосфорной кислоты.
Азотистые основания - это гетероциклические органические соединения, относящиеся к двум классам - пурины и пиримидины. Из пуринов в состав нуклеиновых кислот входят аденин и гуанин
А из пиримидинов цитозин, тимин(ДНК) и урацил(РНК) .
Углеводом, входящим в состав нуклеотидов может быть рибоза (РНК) и дезоксирибоза (ДНК)
Азотистое основание, связанное с углеводом называется нуклеозидом.
Фосфорная кислота присоединяется эфирной связью к пятому атому углерода рибозы или дезоксирибозы. Нуклеотиды, входящие в состав нуклеиновых кислот имеют один остаток фосфорной кислоты и называются мононуклеотидами. Однако в клетке встречаются ди- и тринуклеотиды.
Например, нуклеотид, состоящий из аденина, рибозы и одного остатка фосфорной кислоты называется аденозинмонофосфат или АМФ, а из цитозина и одного остатка фосфорной кислоты цитозинмонофосфат или ЦМФ.
5.2 Строение нуклеиновых кислот
С точки зрения химии нуклеиновые кислоты - нерегулярные полимеры, состоящие из довольно сложно устроенных мономеров, называемых нуклеотидами.
Нуклеиновых кислот в клетках встречается два класса - ДНК и РНК. ДНК - дезоксирибонуклеиновая кислота, а РНК - рибонуклеиновая кислота.
Структура ДНК очень сложна и своеобразна. Каждый нуклеотид, из которого состоит ДНК, состоит из остатков сахара дезоксирибозы, остатка фосфорной кислоты и азотистого основания. Азотистых оснований четыре разновидности: аденин, гуанин, цитозин, и тимин. Нуклеотиды соединены в длинные цепи с помощью фосфорно-диэфирных связей.
В 1953 году исследователи Джеймс Уотсон и Френсис Крик предложили модель, которая объясняла строение молекулы ДНК. Согласно их теории ДНК состоит из двух спиральных цепей, соединенных водородными связями. Азотистые основания обеих цепей находятся внутри спирали и образуют водородные связи. Эти связи соединяют цепи ДНК не случайным образом, а по принципу комплементарности или соответствия. Суть этого принципа в следующем, если в одной цепи стоит тимин, то в противоположной цепи, ему соответствует аденин, а против гуанина всегда стоит цитозин. Это значит, что при удвоении ДНК на каждой из её цепей может быть достроена другая, и вместо одной молекулы получатся сразу две.
Принцип комплементарности лежит в основе всех процессов связанных с реализацией генетической информации: репликации ДНК (удвоения ДНК), транскрипции(синтеза РНК на ДНК матрицах), и трансляции(биосинтеза белка на основе матриц РНК).
На схемах ниже продемонстрирована структура ДНК и принцип комплементарности.
Структура ДНК
Принцип комплементарности.
Помимо ДНК в клетках встречаются три разновидности РНК: информационные (и-РНК), транспортные (т-РНК) и рибосомные (р-РНК). Все они отличаются от ДНК рядом особенностей. Во-первых, вместо азотистого основания тимина они содержат урацил. Во-вторых, вместо сахара дезоксирибозы они содержат рибозу. В-третьих, они, как правило, односпиральные.
5.3 Переваривание и всасывание нуклеиновых кислот. Катаболизм
С пищей в сутки в организм поступает около 1 г нуклеиновых кислот.
Переваривание нуклеиновых кислот происходит в тонком кишечнике. Сначала, поступившие с пищей нуклеиновые кислоты под действием ферментов панкреатического сока - нуклеаз - превращаются в мононуклеотиды. Затем уже под влиянием ферментов тонкого кишечника от мононуклеотидов отщепляется фосфорная кислота, и образуются нуклеозиды. Часть нуклеозидов расщепляется затем на азотистое основание и углевод.
Продукты переваривания нуклеиновых кислот поступают в кровь, а затем в печень и другие органы.
В клетках организмов обмен РНК протекает значительно более интенсивно, чем обмен ДНК. В конечном итоге нуклеиновые кислоты расщепляются на азотистые основания, углеводы и фосфорную кислоту.
Далее пуриновые азотистые основания в процессе катаболизма теряют аминогруппу в виде аммиака, окисляются и превращаются в мочевую кислоту.
Пиримидиновые основания подвергаются более глубокому расщеплению до углекислого газа, воды и аммиака.
Углеводы вовлекаются в ГМФ-путь распада и превращаются в глюкозу.
Фосфорная кислота распаду не подвергается. Она используется в реакциях фосфорилирования и фосфолиза или при избытке выделяется из организма с мочой.
5.4 Синтез нуклеотидов
Все клетки организма способны синтезировать необходимые нуклеиновые кислоты и не нуждаются в наличии в пище готовых нуклеиновых кислот или их составных частей. Поэтому содержание готовых нуклеиновых кислот в пище для организма принципиального значения не имеет, хотя продукты их распада могут частично использоваться организмом.
Синтез пуриновых и пиримидиновых нуклеотидов происходит на основе рибозо-5-фосфата. из глюкозы при её распаде по ГМФ-пути. Свободные азотистые основания обычно для этого синтеза не используются.
При синтезе пуриновых нуклеотидов к рибозо-5-фосфату присоединяются атомы углерода и азота, из которых образуется пуриновое кольцо. Источниками этих атомов являются аминокислоты глицин, глутамин, аспарагиновая кислота. Часть атомов углерода поставляется коферментами, содержащими в своём составе фолиевую кислоту и биотин. Промежуточным продуктом синтеза пуриновых нуклеотидов является инозиновая кислота. Далее из инозиновой кислоты образуются пуриновые нуклеотиды.
Подобные документы
Строение и биологическая роль липидов (жиров). Роль витаминов для организма и причины гиповитаминозов. Биохимические сдвиги в крови и в моче при мышечной работе. Биохимические основы питания и особенности питания спортсменов-силовиков, атлетов и бегунов.
реферат [38,2 K], добавлен 20.06.2012Результат расщепления и функции белков, жиров и углеводов. Состав белков и их содержание в пищевых продуктах. Механизмы регулирования белкового и жирового обмена. Роль углеводов в организме. Соотношение белков, жиров и углеводов в полноценном рационе.
презентация [23,8 M], добавлен 28.11.2013Специфические свойства, структура и основные функции, продукты распада жиров, белков и углеводов. Переваривание и всасывание жиров в организме. Расщепление сложных углеводов пищи. Параметры регулирования углеводного обмена. Роль печени в обмене веществ.
курсовая работа [261,6 K], добавлен 12.11.2014Функции обмена веществ в организме: обеспечение органов и систем энергией, вырабатываемой при расщеплении пищевых веществ; превращение молекул пищевых продуктов в строительные блоки; образование нуклеиновых кислот, липидов, углеводов и других компонентов.
реферат [28,0 K], добавлен 20.01.2009Обмен белков, липидов и углеводов. Типы питания человека: всеядность, раздельное и низкоуглеводное питание, вегетарианство, сыроедение. Роль белков в обмене веществ. Недостаток жиров в организме. Изменения в организме в результате изменения типа питания.
курсовая работа [33,5 K], добавлен 02.02.2014Основные виды нуклеиновых кислот. Строение и особенности их строения. Значение нуклеиновых кислот для всех живых организмов. Синтез белков в клетке. Хранение, перенос и передача по наследству информации о структуре белковых молекул. Строение ДНК.
презентация [628,3 K], добавлен 19.12.2014Общая характеристика и роль макроэргических соединений в обмене веществ. Специфика белков мышечной ткани, их строение и функции. Аэробная работоспособность, ее биохимические факторы. Норма сахара в крови, изменение уровня глюкозы в крови при работе.
контрольная работа [1,5 M], добавлен 08.07.2011Гетерогенность клеточного состава нервной ткани как одна из ее морфологических особенностей. Роль нейроглиальных клеток в функциональной активности ЦНС. Состав и особенности метаболизма нуклеиновых кислот, аминокислот и белков, нейроглиальных клеток.
реферат [23,7 K], добавлен 26.08.2009Биологическая роль нуклеиновых кислот. Строение и значение ферментов. Общая характеристика и биологические функции почек. Патологические компоненты в моче. Молекулярные механизмы утомления. Основные факторы, лимитирующие спортивную работоспособность.
контрольная работа [129,7 K], добавлен 20.06.2012Роль и значение белков, жиров и углеводов для нормального протекания всех жизненно важных процессов. Состав, структура и ключевые свойства белков, жиров и углеводов, их важнейшие задачи и функции в организме. Основные источники данных пищевых веществ.
презентация [322,6 K], добавлен 11.04.2013