Влияние основных тяжелых металлов на растения

Влияние кобальта, молибдена, никеля, марганца, меди и цинка на процессы обмена веществ и физиологические функции растений. Анализ взаимосвязи между типом почвы, количеством микроэлементов и процессами роста и развития растений на данной территории.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 14.01.2012
Размер файла 13,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СОДЕРЖАНИЕ

Введение

1 Кобальт

2 Молибден

3 Никель

4 Марганец

5 Медь

6 Цинк

Заключение

Список использованной литературы

ВВЕДЕНИЕ

Тяжелые металлы (Cu, Ni, Со, Pb, Sn, Zn, Cd, Bi, Sb, Hg) относятся к микроэлементам. То есть химическим элементам, присутствующим в организмах в низких концентрациях (обычно тысячные доли процента и ниже). Изучение минерального питания растительных организмов включает в себя знакомство и с микроэлементами.

В настоящее время при помощи специальных, особо чувствительных методов удалось определить в составе организмов свыше 60 таких химических элементов. Однако можно утверждать, что названное число не является пределом и в состав организмов, в самом деле, входят все известные химические элементы и их изотопы, (как стабильные, так и радиоактивные).

Химические элементы, которые, входя в состав организмов растений, животных и человека, принимают участие в процессах обмена веществ и обладают выраженной биологической ролью, получили название биогенных элементов. К числу биоэлементов относятся: азот, водород, железо, йод, калий, кальций, кислород, кобальт, кремний, магний, марганец, медь, молибден, натрий, сера, стронций, углерод, фосфор, фтор, хлор, цинк.

Указанный перечень будет, несомненно, увеличиваться по мере роста наших знаний. Например, биогенное значение кобальта и молибдена определилось недавно. Некоторые элементы биогенны только по отношению к определенным классам, родам, а иногда и видам организмов. Например, бор необходим для растений, но пока не может считаться биогенным по отношению к животным и человеку.

Значительное количество химических элементов, постоянно обнаруживаемых в организмах, оказывает определенное влияние на течение процессов обмена веществ и на ряд физиологических функций в эксперименте, однако еще не известно, какую роль эти элементы играют в организмах в природных условиях, и поэтому их биогенное значение пока сомнительно. К таким элементам относятся алюминий, барий, бериллий, бром, висмут, галлий, германий, кадмий, литий, мышьяк, никель, олово, радий, ртуть, рубидий, свинец, серебро, сурьма, титан, уран, хром, цезий.

Количественное содержание биоэлементов, входящих в состав организмов, сильно варьирует в зависимости от среды обитания, способа питания, видовой принадлежности и т. п.

Микроэлементам, несмотря на их малое количественное содержание в организмах, принадлежит значительная биологическая роль. Помимо общего благоприятного влияния на процессы роста и развития, установлено специфическое воздействие ряда микроэлементов на важнейшие физиологические процессы - например, фотосинтез у растений.

Связь между ролью элемента в живом организме и положением его в периодической системе хорошо прослежена для многих микроэлементов, однако далеко еще не все стороны этой зависимости изучены в достаточной степени.

Обратимся теперь к сущности влияния микроэлементов на живой организм. Наиболее характерна высокая биологическая активность микроэлементов, т. е. способность чрезвычайно малых доз их оказывать сильное действие.

Мощное воздействие микроэлементов на физиологические процессы и организме объясняется тем, что они вступают в теснейшую связь с биологически активными органическими веществами - гормонами, витаминами. Изучена также их связь со многими белками и ферментами. Именно указанными взаимоотношениями и определяются основные пути вовлечения микроэлементов в биологические процессы.

1 КОБАЛЬТ

В биосфере кобальт преимущественно рассеивается, однако на участках, где есть растения - концентраторы кобальта, образуются кобальтовые месторождения. В верхней части земной коры наблюдается резкая дифференциация кобальта - в глинах и сланцах в среднем содержится 2·10-3% кобальта, в песчаниках 3·10-5, в известняках 1·10-5. Наиболее бедны кобальтом песчаные почвы лесных районов. В поверхностных водах его мало, в Мировом океане его лишь 5·10-8%. Будучи слабым водным мигрантом, он легко переходит в осадки, адсорбируясь гидроокисями марганца, глинами и другими высокодисперсными минералами.

Содержание кобальта в почвах определяет количество этого элемента в составе растений данной местности, а от этого зависит поступление кобальта в организм травоядных животных.

Постоянно присутствуя в тканях растений, кобальт участвует в обменных процессах. В животном организме его содержание зависит от его уровня в кормовых растениях и почвах. Концентрация кобальта в растениях пастбищ и лугов в среднем составляет 2,2·10-5-4,5·10-5% на сухое вещество. Способность к накоплению этого элемента у бобовых выше, чем у злаковых и овощных растений. В связи с высокой способностью к концентрации кобальта морские водоросли по его содержанию мало отличаются от наземных растений, хотя в морской воде его значительно меньше, чем в почвах. Кобальт участвует в ферментных системах клубеньковых бактерий, осуществляющих фиксацию атмосферного азота; стимулирует рост, развитие и продуктивность бобовых и растений ряда других семейств. В микродозах кобальт является необходимым элементом для нормальной жизнедеятельности многих растений и животных. Вместе с тем повышенные концентрации соединений кобальта являются токсичными.

Кобальт применяют в сельском хозяйстве как микроудобрения - удобрения, содержащие микроэлементы (В, Cu, Mn, Zn, Со и др.), т. е. вещества, потребляемые растениями в небольших количествах. Известкование почв снижает усвояемость растениями кобальта. Так же влияет избыток марганца и железа в почвах; наоборот, фосфор усиливает поступление кобальта в растения.

тяжелый металл растение цинк

2 МОЛИБДЕН

Среднее содержание молибдена в почвах составляет 0,0003%, в изверженных породах - 0,000154%, в осадочных породах - 0,00024%. Больше всего молибдена находится в болотистых почвах и в почвах тундр. Богатство почв органическими веществами обусловливает низкий окислительный потенциал среды.

Наиболее растворимы в воде и доступны для растений соединения Мо6 в нейтральной и слабощелочной среде. На кислых почвах молибден мало доступен растениям, поэтому в таких условиях сказывается положительно внесение молибденовых удобрений. Влияние молибдена зависит от многих факторов: на кислых почвах эффект молибдена зависит от содержания подвижного алюминия (чем больше алюминия, тем выше эффект молибдена). Между молибденом и марганцем наблюдается обратная зависимость - избыток марганца вызывает недостаток молибдена, и, наоборот, присутствие молибдена улучшает состояние растений (льна), болеющих на кислых почвах от избытка марганца. Антагонистическая зависимость наблюдается также между молибденом и медью (молибден вытесняет медь).

Молибден особенно важен для бобовых растений; он концентрируется в клубеньках бобовых, способствует их образованию и росту и стимулирует фиксацию клубеньковыми бактериями атмосферного азота. Входя в состав фермента нитраторедуктазы (являющейся по своему строению молибдофлавопротеином), молибден восстанавливает нитраты у высших и низших растений и стимулирует синтез белка в них.

Молибден оказывает положительное влияние не только на бобовые растения, но и на цветную капусту, томаты, сахарную свеклу, лен и др. Растениями - индикаторами недостатка молибдена могут быть томаты, кочанная капуста, шпинат, салат, лимоны.

Молибден необходим не только для процесса синтеза белков в растениях, но и для синтеза витамина С и каротина, синтеза и передвижения углеводов, использования фосфора.

3 НИКЕЛЬ

Содержание никеля в почвах составляет 0,004%, в природных поверхностных водах - 0,00000034%. В растениях в среднем содержится 0,00005% на живой вес (в зависимости от вида растения, местности, почвы, климата и др.). Растения в районе никелевых месторождений могут накоплять в себе значительные количества никеля. При этом наблюдаются явления эндемического заболевания растений, например уродливые формы астр, что может быть биологическим и видовым индикатором в поисках никелевых месторождений. Морфологически измененные анемоны в обогащенных никелем биогеохимических провинциях концентрируют никель в 30-кратном размере; повышенное содержание никеля в почвенных растворах и в почвах Южного Урала, обогащенных никелем в 50-кратном размере, является причиной появления уродливых форм у сон-травы (семейство лютиковых) и грудницы (семейство сложноцветных).

При усвоении никеля растениями происходит взаимодействие с содержащимися в почве железом, кобальтом, хромом, магнием, медью, цинком, марганцем; при этом ионы марганца и магния не ингибируют, а ионы кобальта, меди, железа и цинка - ингибируют абсорбцию никеля на 25-42%. Существуют указания на то, что растения, произрастающие на серпентиновых почвах, не проявляют признаков токсического повреждающего воздействия никеля, в случаях, если соотношение медь: никель равно или более 1, или соотношение железо: никель равно или более 5. Среди растений существует различие в чувствительности по отношению к воздействию никеля. Токсические уровни никеля в листве растений (млн. -1 сухой массы): рис 20-25, ячмень 26, виды твердой древесины 100-150, цитрусовые 55-140, сорняки 154. Типичные симптомы повреждающего токсического действия никеля: хлороз, появление желтого окрашивания с последующим некрозом, остановка роста корней и появления молодых побегов или ростков, деформация частей растения, необычная пятнистость, в некоторых случаях - гибель всего растения.

4 МАРГАНЕЦ

Марганец находится в почвах в среднем в количестве 0,085%. Однако в отдельных случаях при высоком общем содержании марганца в почвах количество усвояемых его форм, переходящих в солянокислую или солевую форму, может быть явно недостаточно. В среднем растворимая часть Мn в почве составляет 1-10% от общего его содержания.

Кислая реакция почвы (при рН ниже 6,0) благоприятствует усвоению растениями Мn2+; слабощелочная реакция (рН выше 7,5) стимулирует образование гидрта Мn(ОН)2, трудно усваиваемого растениями.

Среднее содержание марганца в растениях равно 0,001%. Марганец служит катализатором процессов дыхания растений, принимает участие в процессе фотосинтеза. Исходя из высокого окислительно-восстановителыюго потенциала марганца можно думать, что марганец играет такую же роль для растительных клеток, как железо - для животных. Марганец усиливает гидролитические процессы, в результате чего нарастает количество аминокислот, способствует продвижению ассимилятов, образующихся в процессе фотосинтеза от листьев к корням и другим органам.

5 МЕДЬ

Общее содержание меди в почвах составляет около 0,002%, причем на долю растворимой части приходится около 1% этого количества.

В почвах встречаются несколько форм меди, в различной степени усваиваемой растениями:

а) водорастворимая медь,

б) обменная медь, поглощенная органическими и минеральными коллоидами,

в) труднорастворимые медные соли,

г) медьсодержащие минералы,

д) комплексные металлоорганические соединения меди.

Медь необходима для жизнедеятельности растительных организмов. Почти вся медь листьев сосредоточена в хлоропластах и тесно связана с процессами фотосинтеза; она участвует в синтезе таких сложных органических соединений, как антоциан, железопорфирины и хлорофилл; медь стабилизирует хлорофилл, предохраняет его от разрушения.

Медь способствует синтезу в растениях железосодержащих ферментов, в частности пероксидазы.

Установлено положительное влияние меди на синтез белков в растениях и благодаря этому - на водоудерживающую способность растительных тканей. Напротив, при недостатке меди гидрофильность коллоидов тканей уменьшается. Под влиянием медных удобрений повышается устойчивость озимой пшеницы к полеганию.

6 ЦИНК

Среднее содержание цинка в почвах составляет 0,005%; из этого количества на долю растворимого цинка приходится не более 1%.

Солончаковые и солонцеватые почвы содержат больше всего подвижного цинка (0,0087-0,014%), что связано с высокой дисперсностью солонцеватых почв и наличием в них соединений цинка типа цинкатов натрия и калия. Промежуточное положение по количеству подвижных форм цинка занимают черноземы и серые лесные почвы; меньше всего таких форм в подзолистых почвах (0,00185-0,00241%). На кислых почвах цинк более подвижен и выносится из почв в больших количествах; поэтому на кислых почвах чаще наступает дефицит цинка, на щелочных почвах цинк наименее подвижен.

В среднем в растениях обнаруживается 0,0003% цинка. В зависимости от вида, местности произрастания, климата и т. п. содержание цинка в растениях весьма варьирует.

Цинк является компонентом ряда ферментных систем. Он необходим для образования дыхательных ферментов-цитохромов А и Б, цитохромоксидазы (активность которой резко падает при недостаточности цинка), входит в состав ферментов алкогольдегидразы и глицилглициндипептидазы. Цинк связан с превращением содержащих сульфгидрильную группу соединений, функция которых состоит в регулировании уровня окислительно - восстановительного потенциала в клетках. При недостатке цинка в вакуолях клеток накопляются полифенолы, фитостерин, лецитин как продукты неполного окисления углеводов и белков; в листьях обнаруживается больше редуцирующих сахаров и фосфора и меньше сахарозы и крахмала. При отсутствии цинка нарушается процесс фосфорилирования глюкозы. Недостаток цинка ведет к значительному уменьшению в растениях ростового гормона - ауксина.

Цинк является составным компонентом фермента карбоангидразы. Входя в состав карбоангидразы, цинк влияет на важнейшую фотохимическую реакцию «темновой» утилизации углекислого газа растениями и на процесс выделения СО2, т. е. на процесс дыхания растений. Растения, развивающиеся в условиях недостаточности цинка, бедны хлорофиллом; напротив, листья, богатые хлорофиллом, содержат максимальные количества цинка. В зеленых листьях цинк, возможно, связан с порфиринами.

Под влиянием цинка происходит увеличение содержания витамина С, каротина, углеводов и белков в ряде видов растений, цинк усиливает рост корневой системы и положительно сказывается на морозоустойчивости, а также жаро-, засухо- и солеустойчивости растений. Соединения цинка имеют большое значение для процессов плодоношения.

ЗАКЛЮЧЕНИЕ

Тяжелые металлы(Cu, Ni, Со, Pb, Sn, Zn, Cd, Bi, Sb, Hg) относятся к микроэлементам. То есть химическим элементам, присутствующим в организмах в низких концентрациях (обычно тысячные доли процента и ниже). Химические элементы, которые, входя в состав организмов растений, животных и человека, принимают участие в процессах обмена веществ и обладают выраженной биологической ролью. Мощное воздействие микроэлементов на физиологические процессы и организме объясняется тем, что они вступают в теснейшую связь с биологически активными органическими веществами - гормонами, витаминами. Изучена также их связь со многими белками и ферментами.

Микроэлементам, несмотря на их малое количественное содержание в организмах, принадлежит значительная биологическая роль. Помимо общего благоприятного влияния на процессы роста и развития, установлено специфическое воздействие ряда микроэлементов на важнейшие физиологические процессы - например, фотосинтез у растений.

Многие металлы, преимущественно микроэлементы, в растворах обладают ярко выраженным каталитическим действием. Это каталитическое действие микроэлементы проявляют и в живом организме, особенно тогда, когда они вступают во взаимодействие с органическими веществами, содержащими азот.

Максимальную каталитическую активность металлы как таковые или, чаще, их металлоорганические (органо-минеральные) соединения приобретают, вступая в соединения с белками. Именно такое строение имеют многие биологические катализаторы - ферменты. Помимо значительного повышения активности, роль белкового компонента заключается в придании таким соединениям, в основном ферментам, специфичности действия.

При взаимодействии микроэлементов с белковыми компонентами ферментов образуются металлоэнзимы.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Физиология растений: Учебник. / Вл.В. Кузнецов, Г.А. Дмитриева. Изд. 2-е, перераб. и доп. - М.: высш.шк., 2006. - 742 с.: ил.

2. Физиология и биохимия сельскохозяйственных растений. Под редакцией Н.Н. Третьякова. - 2-е изд. - М: Колос С, 2005. - 656 с.: ил.

3. http://www.bsu.ru.

4. http://fizrast.ru.

Размещено на Allbest.ru


Подобные документы

  • Влияние основных тяжелых металлов на растения: кобальт; молибден; никель; марганец; медь; цинк. Химические элементы, которые, входя в состав организмов растений, животных и человека, принимают участие в процессах обмена веществ.

    курсовая работа [502,2 K], добавлен 25.05.2004

  • Группировка почв по обеспеченности растений микроэлементами. Биогеохимическая характеристика микроэлементов меди и цинка, основные закономерности их распределения в почвах Омского Прииртышья. Роль микроэлементов меди и цинка в системе почва - растение.

    реферат [45,6 K], добавлен 13.08.2015

  • Активирование определенных ферментативных систем растений с помощью микроэлементов. Роль почвы как комплексного эдафического фактора в жизни растений, соотношение микроэлементов. Классификация растений в зависимости от потребности в питательных веществах.

    курсовая работа [1005,7 K], добавлен 13.04.2012

  • Влияние перегрева растений на их функциональные особенности, виды опасностей. Связь между условиями местообитания растений и жароустойчивостью. Приспособления и адаптация растений к высоким температурам. Экологические группы растений по жароустойчивости.

    реферат [9,8 K], добавлен 23.04.2011

  • Влияние органических комплексов микроэлементов на основные функции организма в процессах обмена веществ: развитие, размножение, кроветворение. Действие кобальта: суточная потребность, проявления избытка, синергисты и антагонисты, содержание в продуктах.

    реферат [17,1 K], добавлен 19.05.2011

  • Причины токсичности тяжелых металлов и поливалентных катионов. Строение высшего растения, особенности корневой системы и надземной части растений. Роль различных тканей растения в транспорте и распределении тяжелых металлов и поливалентных катионов.

    курсовая работа [2,1 M], добавлен 27.05.2012

  • Культура ткани в размножении пшеницы. Гормональная регуляция в культуре ткани, схема контроля органогенеза. Роль гуминовых кислот в процессе стимуляции роста растений, их влияние на характер белкового и углеводного обмена растений пшеницы in vitro.

    курсовая работа [1,9 M], добавлен 05.11.2011

  • Характеристика основных групп растений по отношению к воде. Анатомо-морфологические приспособления растений к водному режиму. Физиологические адаптации растений, приуроченных к местообитаниям разной увлажненности.

    курсовая работа [20,2 K], добавлен 01.03.2002

  • Описание основных функций, выполняемых процессами выделения веществ у растений. Понятие аллелопатии, экскреции и секреции. Функции специализированных секреторных структур у растений. Группы эпидермальных образований, участвующих в выделении веществ.

    презентация [3,0 M], добавлен 15.03.2011

  • Изучение строения и физиологических особенностей светолюбивых и теневыносливых растений. Влияние ризосферной микрофлоры на поглощение минеральных веществ корнями. Поступление воды в растение. Физиологические основы орошения. Химический состав клетки.

    реферат [31,1 K], добавлен 22.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.