Биноминальная номенклатура. Половое размножение

Современная классификация растений и животных. Подробная характеристика вопросов полового размножения и оплодотворения. Ключевые методы, генетические модели и уровни изучения наследственности. Классификация человеческих рас: европеоидная, монголоидная.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 09.01.2012
Размер файла 56,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Естественная система. Бинарная номенклатура

размножение оплодотворение наследственность раса

Уже давно выявилась тенденция выделять с целью классификации естественные системы, которые бы отражали естественные связи между организмами. Чрезвычайно важным шагом на пути к научной классификации организмов оказались создание в 1663 г. английским естествоиспытателем Д. Реем (1627-1705) концепции вида. Он считал, что видом является группа сходных организмов, имеющих сходных предков, и что «...один вид никогда не зарождается из семян другого вида». Принимая вид в качестве реальной, но неизменной категории, Д. Рей классифицировал животные организмы на несколько групп по некоторым анатомическим особенностям, например, по строению копыт, рогов. Конечно, эта классификация была примитивной, но она все же дала начало естественным системам классификации.

Основы современной классификации растений и животных были заложены в XVIII в. шведским ученым К. Линнеем (1707-1778). Считая, что нахождение определенного порядка в природе является главнейшей целью науки, К. Линней в качестве основной (начальной) систематической (таксономической) единицы (таксона) определил вид, под которым он понимал совокупность организмов, сходных между собой, как сходны дети от одних родителей, и способных давать плодовитое потомство. Однако К. Линней считал, что со времени создания виды постоянны и неизменны. Он полагал также, что каждый классифицируемый организм должен быть сравним с идеальным типом и что все подобные организмы должны группироваться вокруг идеального типа. На основе изучения сходства организмов он подразделил животных на млекопитающих, птиц, пресмыкающихся, рыб, насекомых, червей, а также ввел в оборот такие таксономические единицы, как вид, род, отряд, класс, разместив их в виде иерархической системы и определив их соподчиненность, заключающуюся в том, что каждая категория более высокого уровня включает в себя одну или несколько категорий низшего порядка. Например, класс включает в себя несколько отрядов, отряд -- несколько родов, а род -- несколько видов.

Кроме того, для научного наименования организмов он ввел так называемую бинарную номенклатуру, в соответствии с которой наименование организмов одного вида, принадлежащих к одному роду, состоит из родового и видового латинских названий, причем первым словом является обозначение рода, вторым -- вида. Например, научное название (бинарное обозначение) ландыша майского есть Convallaria majalis, садового гороха -- Pissum sativum, домашней кошки -- Fells doinast.ica, тигра -- Felis tigris. По К. Линнею вслед за бинарным обозначением вида обычно указывают первооткрывателя вида и год открытия вида. Например, научное наименование аскариды человеческой будет Ascaris lumbricoides L., 1758. Это означает, что род аскариды человеческой есть Ascaris, вид есть lumbricoides, и что этот организм впервые был классифицирован К. Линнеем в 1758 г. Линнеевская система является естественной системой классификации.

Значительный вклад в систематику принадлежит французскому ученому Ж. Ламарку (1744-1829), который разделил животных на беспозвоночных и позвоночных, а также определил основные группы (типы) червей (плоские, круглые и кольчатые).

В XIX в. французский ученый Ж. Кювье (1769-1832) ввел в оборот понятие о типе животных и описал несколько типов.

Позднее, когда было разработано понятие о семействе, в соответствии с принципами естественной классификации виды животных и растений стали объединяться в роды, роды -- в семейства, семейства -- в отряды, отряды -- в классы, классы -- в типы, типы -- в царства.

В XIX в. немецкий ученый Э. Геккель (1834-1919) разделил живой мир на три царства, а именно: протисты, животные и растения. Он ввел в обиход также понятие о генеалогическом древе, в котором главными категориями стали, так называемые стволы. Из одного ствола происходят классы, отряды, семейства, роды. Позднее были предложены и другие подразделения царств.

В связи с совершенствованием классификации сейчас выделяют еще более дифференцированные систематические единицы в пределах основных систематических групп (таксонов), добавляя к ним приставку над или под (над царство, под царство, надсемейство, подсемейство, над тип, подтип). Наконец, часто выделяют такие таксоны, как раздел, над раздел, триба.

С введением в биологию теории эволюции Ч. Дарвина систематика организмов стала развиваться с учетом их естественного родства и происхождения (филогенетического родства). Поскольку сходство строения и функциональной активности обусловлено эволюционными связями, то учет этих особенностей определил эволюционное направление в систематике. Как считал Ч. Дарвин «Всякая истинная классификация есть генеалогическая». Таким образом, учет сходств строения и эволюционных связей между организмами стал классическим направлением в систематике.

Половое размножение. Сперматогенез и овогенез

Половое размножение встречается как у одноклеточных, так и у многоклеточных растений и животных.

Половое размножение у бактерий осуществляется путем конъюгации, служащей аналогом полового процесса и являющейся системой рекомбинации этих организмов, тогда как у простейших половое размножение происходит тоже путем конъюгации либо путем сингамии и аутогамии.

У многоклеточных организмов (растений и животных) половое размножение связано с образованием зародошевых или половых клеток (гамет), оплодотворением и образованием зигот.

Половое размножение является значительным эволюционным приобретением организмов. С другой стороны, оно способствует пересортировке генов, появлению разнообразия организмов и повышению их конкурентоспособности в непрерывно меняющихся условиях окружающей среды.

У одноклеточных организмов половое размножение существует в нескольких формах. У бактерий половое размножение можно аналогизировать с имеющими место у них конъюгацией, заключающейся в передаче плазмидной или хромосомной ДНК от клеток-доноров (содержащих плазмиды) к клеткам-реципиентам (не содержащих плазмиды), а также с трансдукцией бактерий, заключающейся в передаче генетического материала от одних бактериальных клеток к другим фагам. Конъюгация встречается также у инфузорий, у которых во время этого процесса происходит переход ядер от одних особей к другим, после чего следует деление последних.

Одной из распространенных форм полового размножения у одноклеточных животных, например, у паразитических споровиков, является копуляция. Половое размножение у них заключается в слиянии двух особей, которые являются гаметами, в одну, являющуюся споровой формой, из которой затем развивается новый организм. Независимо от способа слияния генетического материала у одноклеточных организмов существенной особенностью этого слияния является то, что оно сопровождается генетической рекомбинацией.

У многоклеточных растений и животных половое размножение происходит через образование женских и мужских половых клеток (яйцеклеток и сперматозоидов), последующее оплодотворение яйцеклетки сперматозоидом и образование зиготы. У растений половые клетки продуцируются в специализированных репродуктивных структурах, у животных они продуцируются в половых железах, называемых гонадами.

Между соматическими и половыми клетками животных существует важное различие. Оно заключается в том, что соматические клетки способны к делению, т. е. репродуцируют себя и кроме того из них образуются половые клетки. Напротив, половые клетки не делятся, но они «начинают» репродукцию целого организма.

Диплоидные соматические клетки, из которых образуются мужские половые клетки, называют сперматогониями, а диплоидные соматические клетки, из которых образуются женские половые клетки -- овогониями. Процесс образования (роста и дифференциации) мужских и женских половых клеток носит название гаметогенеза.

Сперматогенез -- это процесс образования зрелых мужских половых клеток. Сперматозоиды развиваются в мужских половых железах (семенниках, или тестисах) из специализированных соматических клеток . Такими специализированными клетками служат так называемые примордиальные зародышевые клетки, которые мигрируют к тестисам в раннем периоде эмбриогенеза мужского индивидуума. Следовательно, примордиальные клетки являются прародителями (предшественниками) зрелых половых клеток. У млекопитающих после достижения половой зрелости сперматозоиды образуются практически всю жизнь.

Различают 4 периода сперматогенеза: размножение, рост, деления созревания и формирование, или спермиогенез (спермиотелиозис). В 1-м периоде диплоидные исходные мужские половые клетки (сперматогонии) несколько раз делятся путём митоза (число делений у каждого вида постоянно). Во 2-м периоде половые клетки (сперматоциты 1-го порядка) увеличиваются в размерах, а ядро их проходит длительную профазу, во время которой совершается конъюгация гомологичных хромосом и кроссинговер, сопровождающийся обменом участками между гомологичными хромосомами, и образуются тетрады. В 3-м периоде происходят два деления созревания (мейоз), осуществляется редукция или уменьшение числа хромосом вдвое (при этом в одних тетрадах при первом делении к полюсам веретена расходятся гомологичные хромосомы, при втором -- хроматиды, а в других, наоборот, -- сначала хроматиды, затем гомологичные хромосомы). Таким образом, каждый сперматоцит 1-го порядка даёт 2 сперматоцита 2-го порядка, которые после второго деления образуют 4 одинаковые по размерам гаплоидные клетки -- сперматиды. Последние не делятся, вступают в 4-й период сперматогенеза, или спермиогенез, и превращаются в сперматозоиды: сперматида из округлой становится вытянутой, происходит новообразование одних структур (акросома, побочное ядро, жгутик и т. Д.), исчезновение других (рибосомы, эндоплазматический ретикулум и т.д.) и перемещение многих органелл внутри клетки, называют телокинетическими движениями. Большая часть цитоплазмы исчезает из клетки. Вытянутое ядро с конденсированным хроматином и акросомой (производное аппарата Гольджи) размещаются на апикальном полюсе клетки и образуют головку сперматозоида; центриоль ложится обычно у базального полюса ядра, от неё берёт начало жгутик; митохондрии окружают центриоль или формируют т. Н. побочное ядро, расположенное в промежуточном отделе сперматозоида.

Овогенез -- это процесс формирования яйцеклеток. Его функциями являются обеспечение гаплоидного набора хромосом в ядре яйцеклетки и обеспечение питательных потребностей зиготы. Овогенез в своем проявлении в основном сопоставим со сперматогенезом.

У млекопитающих и человека овогенез начинается еще во внутриутробном периоде (до рождения). Овогонии, представляющие собой мелкие клетки с довольно крупным ядром и локализованные в фолликулах яичников, начинают в фолликулах дифференцироваться в первичные овоциты. Последние формируются уже на третьем месяце внутриутробного развития, после чего они вступают в профазу первого мейотического деления. Ко времени рождения девочки все первичные овоциты уже находятся в профазе первого мейотического деления. Первичные овоциты остаются в профазе вплоть до наступления половой зрелости женского индивида. Когда при наступлении половой зрелости фолликулы яичника созревают, мейотическая профаза в первичных овоцитах возобновляется. Первое мейотическое деление для каждой развивающейся яйцеклетки завершается вскоре перед временем овуляции этой яйцеклетки. В результате первого мейотического деления и неравномерного распределения цитоплазмы одна образовавшаяся клетка становится вторичным овоцитом, другая -- полярным (редукционным) тельцем.

Вторичное мейотическое деление у человека наступает, когда вторичный овоцит (развивающаяся яйцеклетка) проходит из яичника в фаллопиеву трубу. Однако это деление не завершается до тех пор, пока во вторичный овоцит не проникает ядерное содержимое сперматозоида, что происходит обычно в фаллопиевой трубе. Когда ядро сперматозоида проникает во вторичный овоцит, то последний делится, в результате чего образуется овотида (зрелая яйцеклетка) с пронуклеусом, содержащим одиночный набор из 23 материнских хромосом. У некоторых других видов образуются яйцеклетки, определяющие как мужской пол, так и женский. Важно подчеркнуть, что здесь происходит также расщепление и рекомбинация генов, основу которой создает расхождение хромосом. Другая клетка, образующаяся в результате второго мейотического деления у человека, является вторым полярным тельцем, не способным к дальнейшему развитию. В это время подвергается делению надвое и полярное (редукционное) тельце. Таким образом, развитие одного овоцита первого порядка сопровождается образованием одной овотиды и трех редукционных телец. В яичниках таким путем на протяжении жизни обычно созревает 300-400 овоцитов, но в месяц созревает лишь один овоцит. В течение дифференциации яйцеклеток формируются мембраны, уменьшается в размере их ядро.

У некоторых видов животных овогенез протекает быстро и непрерывно и приводит к образованию большого количества яйцеклеток.

Вопреки сходству со сперматогенезом овогенез характеризуется некоторыми специфическими особенностями. Питательный материал (желток) первичного овоцита не распределяется поровну между четырьмя клетками, которые образуются в результате мейотических делений. Основное количество желтка сохраняется в одной большой клетке, тогда как полярные тельца содежат очень мало этого вещества. Первые и вторые полярные тельца получают в результате делений те же самые хромосомные наборы, что и вторичные овоциты, но они не становятся половыми клетками. Поэтому яйцеклетки намного богаче питательным материалом по сравнению со сперматозоидами. Особенно сильно это различие проявляется в случае яйцекладущих животных.

Яйцеклетки млекопитающих имеют овальную или несколько вытянутую форму и характеризуются типичными чертами клеточного строения. Они содержат все структуры, характерные для соматических клеток, однако внутриклеточная организация яйцеклетки очень специфична и определяется тем, что яйцеклетка является также и средой, которая обеспечивает развитие зиготы. Одна из характерных особенностей яйцеклеток заключается в сложности строения их оболочек. У очень многих животных различают первичную, вторичную и третичную оболочки яйцеклеток. Первичная оболочка (внутренняя) формируется еще на стадии овоцита. Представляя собой поверхностный слой овоцита, она

имеет сложную структуру, т. К. пронизана выростами прилегающих к ней фолликулярных клеток. Вторичная (средняя) оболочка полностью сформирована фолликулярными клетками, а третичная (наружная) образована веществами, представляющими собой продукты секреции желез яйцеводов, через которые проходят яйцеклетки. У птиц, например, третичными оболочками яйцеклеток служат белковая, подскорлуповая и скорлуповая оболочки. Для яйцеклеток млекопитающих характерно наличие двух оболочек. Структура внутриклеточных компонентов яйцеклеток специфична в видовом отношении, а иногда имеет даже индивидуальные особенности.

Оплодотворение

Оплодотворение и его типы. Процесс слияния гамет получил название оплодотворения. В результате оплодотворения хромосомы яйцеклетки и сперматозоида оказываются в одном ядре, образуется зигота- первая клетка нового организма.

По месту прохождения оплодотворения различают два его типа.

Внешнее оплодотворение происходит вне организма самки, обычно в водной среде. Оно характерно для рыб, земноводных, большинства моллюсков, некоторых червей.

Практически всем наземным и некоторым водным видам живых существ свойственно внутреннее оплодотворение, при котором «встреча» сперматозоида и яйцеклетки происходит в половых путях самки.

У млекопитающих оплодотворение происходит в яйцеводах самки. Двигающаяся по направлению к матке яйцеклетка встречается там со сперматозоидами, причем их контакту способствуют особые химические вещества, выделяемые яйцеклеткой. Эти вещества активируют сперматозоиды и позволяют им «опознать» яйцеклетку. При контактах с яйцеклеткой акросома сперматозоида разрушается, при этом находившийся в ней фермент гиалуронидаза начинает растворять оболочку яйцеклетки. Однако количество гиалуронидазы, выделяемого одним сперматозоидом, для этого недостаточно: необходимо чтоб фермент выделялся из тысячи сперматозоидов. Только в этом случаи одни из них может проникнуть в яйцеклетку. Как только это произошло, вокруг яйцеклетки формируется особая оболочка, препятствующая попаданию других сперматозоидов.

Ядро сперматозоида в цитоплазме яйцеклетки увеличивается примерно до размера ядра яйцеклетки. Ядро двигаются навстречу друг другу и сливаются. Таким образом, в образовавшейся клетки - зиготе - восстанавливается диплоидный набор хромосом, и начинается ее дробление.

Итак, у человека для оплодотворения необходим только один сперматозоид. Однако оплодотворение возможно лишь в том случае, когда в половые пути женщины попадает одновременно около 300 млн. сперматозоидов. Даже если их будет 2 млн., оплодотворение не произойдет.

Сперматозоидам приходиться проходить долгий и трудный путь по матки и яйцеводу. Не всем сперматозоидам его удается пройти. Если сопоставить размеры сперматозоида и человека, то последнему, чтобы пройти путь, аналогичный пути сперматозоида, необходимо будет пробежать 10 км. Кроме того, по яйцеводу сперматозоиды движутся навстречу току жидкости, что создает для них дополнительные препятствия. Наконец, для выделения достаточного количества гиалуронидазы, растворяющей оболочку яйцеклетки, также необходимо множество сперматозоидов.

Двойное оплодотворение. Особый вид оплодотворения характеризует наиболее многочисленную и процветающую группу растений - покрытосеменные. Он получил название двойного оплодотворения.

В пыльниках тычинок из материнских клеток в результате мейоза образуется гаплоидные микроспоры. Каждая микроспора делится, образуя две также гаплоидные клетки - вегетативную и генеративную, которые формируют пыльцевое зерно. Пыльцевое зерно покрыто двумя оболочками. Пыльцевое зерно представляет собой мужской гаметофит. При попадание пыльцевого зерна на рыльце пестика вегетативная клетка прорастает, образуя пыльцевую трубку, которая в своем росте стремится к завязи. Генеративная клетка перемещается в пыльцевую трубку, делится, образуя два неподвижных спермия.

В завязи из материнской клетки в результате мейоза образуется четыре гаплоидные мегаспоры. Три из них отмирают, а одна продолжается делиться, формируя зародышевый мешок с несколькими гаплоидными клетками, одна из которых является яйцеклеткой. Две гаплоидные клетки сливаются, образуя центральную диплоидную клетку. Зародышевый мешок является женским гаметофитом. После того как пыльцевая трубка прорастает в семязачаток, один из спермиев оплодотворяет яйцеклетку и образуется диплоидная зигота. Другой спермий сливается с центральной клеткой зародышевого мешка. Таким образом, у покрытосеменных растений при оплодотворении происходит два слияния, т.е. двойное оплодотворение. В результате первого из них возникает зигота, из которой развивается диплоидный зародыш семени, а в результате второго - триплоидная центральная клетка, из которой затем формируется эндосперм, за счет которого питается развивающийся зародыш нового растения.

Методы, генетические модели и уровни изучения наследственности

Главным и единственным методом изучения наследственности организмов является классический генетический (гибридологический) анализ, или, как его еще называют, формальный генетический анализ. Основы этого метода были разработаны Г. Менделем. Этот метод заключается в последовательном разложении генома анализируемого организма на группы сцепленных генов, а групп сцепления -- на генные локусы с дальнейшим установлением последовательности генных локусов вдоль хромосомных пар и выяснением тонкой структуры генов.

Генетический анализ в принципе подобен химическому анализу, задача которого заключается в разложении сложных химических соединений на более простые компоненты. Однако в отличие от химического анализа, например нуклеопротеидов, расщепление которых на структурные части основано на гидролизе, классический генетический анализ основывается на расщеплении (сегрегации) и рекомбинации генов в мейозе и осуществляется путем скрещиваний особей с разными признаками и учета результатов скрещиваний.

Схема генетического анализа организмов состоит из ряда последовательных этапов, а именно:

1. Идентификация генов.

2. Установление генных локусов на хромосомных парах.

3. Установление последовательности генных локусов вдоль хромосомных пар.

4. Выяснение тонкой структуры генов.

Результаты генетического анализа оформляют путем составления генетических карт.

Одним из важнейших показателей эффективности генетического анализа является его разрешающая способность, которая в общих чертах может быть аналогизирована с разрешающей способностью оптических методов исследования. Подобно тому, как разрешающая способность оптических приборов (микроскопов) ограничена волновой природой света, разрешающая способ-ность генетического анализа ограничивается количеством исследуемого потомства, получаемого в скрещиваниях, ибо чем большим является количество потомства, тем большей является возможность обнаружения среди них редких рекомбинантов и, следовательно, установления частоты кроссинговера.

Начиная с 1910 г., в генетике в качестве экспериментальной модели (системы) широко используют плодовую мушку Drosophila melanogaster . Являясь эукариотом с дифференцированными тканями, этот организм очень удобен для изучения многих вопросов наследственности.

В частности, у этого организма было идентифицировано и изучено большое количество генных и хромосомных мутаций, причем хромосомные мутации из-за больших размеров в клетках слюнной железы оказались доступными для изучения с помощью обычного микроскопа.

На этом организме была показана «мощь» генетического анализа. Однако разрешающая способность генетического анализа всегда имеет ограничения, поскольку возможность получения большого количества потомства всегда ограничена до определенных пределов даже у тех видов, у которых оно составляет сотни организмов на пару, как, например, у D. melanogaster. Поэтому у организмов, размножающихся половым путем, в том числе и у плодовой мушки возможно выполнение лишь трех первых этапов генетического анализа.

Однако изучение других генетических систем, в частности микроорганизмов, показало, что половая репродукция не является единственным путем, при котором осуществляется объединение, расщепление и рекомбинация генетических структур, происходящих от исходных (родительских) организмов. Эти процессы могут проходить и при других формах генетического обмена. У микроорганизмов бактериальных вирусов (фагов) и микроскопических грибов такими формами генетического обмена являются трансформация, конъюгация и трансдукция. Общим для них в сравнении с половой репродукцией высших организмов является то, что они приводят к объединению в одной клетке родительских генов и обеспечивают их расщепление и рекомбинацию, т. е. являясь альтернативами половой репродукции, представляют собой системы рекомбинации. Поэтому генетический анализ основывается и на таких системах рекомбинации. Больше того, использование этих систем рекомбинации привело к повышению разрешающей способности генетического анализа в гигантских размерах, ибо появилась возможность оперировать с огромным количеством организмов в потомстве, а также легко осуществлять тесты комплементации, а это позволило не только создать генетические карты ряда организмов ( фаги, низшие грибы), но и изучить тонкое строение их генов.

В качестве экспериментальных моделей широко используют также дрожжи. Являясь простейшими эукариотами, эти организмы обладают всеми преимуществами бактерий. Но кроме этого, они оказались доступными для изучения на них генетики митохондрий, сплайсинга РНК, гаплоидии и диплоидии.

Классический генетический анализ используют в генетике растений и животных, а также их культивируемых клеток. Однако по отношению к высшим организмам тех видов, которым присуще длительное время между генерациями и малое количество потомства на пару, он либо невозможен, либо очень затруднен. Из-за невозможности классического генетического анализа организмов ряда видов изучение их наследственности проводят с помощью других методов. Например, для изучения наследственности человека используют метод родословных (генеалогический анализ), цитогенетический, популяционный, близнецовый и другие современные методы.

Длительное время для изучения генетического контроля развития животных организмов использовали D. melanogaster. Однако, начиная с 60-х гг., в качестве модельного объекта в генетике развития стали использовать круглого гельминта Caenorhabditis. Имея длину в 1 мм, эта нематода состоит примерно из 1000 клеток. Ее генетический аппарат представлен 6 парами гомологичных хромосом, на которых локализовано около 3000 генов

Что касается растений, то для изучения генетики развития этих организмов используют травянистое растение Arabidopsis thaliana. Преимущества этого растения в качестве экспериментальной модели заключаются в том, что его легко культивировать в лабораторных условиях и что оно имеет очень короткий срок вегетации (всего лишь 5 недель).

У всех этих организмов идентифицированы различные мутации, созданы их геномные библиотеки и секвенировано большинство генов. Секвенирование стало методом изучения тонкого строения генов у всех организмов.

Развитие молекулярной биологии привело к разработке методологии генетической инженерии, которая нашла исключительно широкое применение в животноводстве, растениеводстве, а также в изучении нормальной и патологической наследственности человека.

Расы и их происхождения. Расизм

Человеческие расы - это исторически сложившиеся группировки людей внутри вида Homo sapiens sapiens. Расы отличаются друг от друга второстепенными физическими особенностями - цветом кожи, пропорциями тела, разрезом глаз, структурой волос и т.д.

Существуют различные классификации человеческих рас. В практическом плане популярна классификация, по которой выделяю три большие расы: европеоидная, монголоидная, и австрало негроидная. В пределах этих рас насчитывается около 30 малых рас. Между тремя основными группами рас существуют переходные расы.

Европеоидная раса. Для людей этой расы характерны светлая кожа, прямые или волнистые светло-русые волосы, серые, серо-зеленые, каре-зеленые и голубые широко открытые глаза, умеренно развитый подбародк, неширокий выступающий нос, нетолстые губы, хорошо развитый волосяной покров на лице у мужчин. Сейчас европеоиды живут на всех материках, но сформировались они в Европе и Передней Азии.

Монголоидная раса. Монголоиды обладают желтой или желто-коричневой кожей. Для них характерны темные жесткие прямые волосы, широкое уплощенное скуластое лицо, узкие и слегка раскосые карие глаза со складкой верхнего века во внутреннем углу глаза, плоский и довольно широкий нос, редкая растительность на лице и теле. Эта раса преобладает в Азии, но в результате миграции ее представители расселились по всему земному шару.

Австрало-негроидная раса. Негроиды темнокожи, для них характерны курчавые темные волосы, широкий и плоский нос, карие или черные глаза, редка растительность на лице и теле. Классические негроиды живут в экваториальной Африке, но схожий тип людей встречается по всему экваториальному поясу.

Австралоиды (коренные жители Австралии) почти так же темнокожи, как и негроиды, но для них характерны темные волнистые волосы, крупная голова и массивное лицо с очень широким и плоским носом, выступающим подбородком, значительный волосяной покров на лице и теле. Часто австралоидов выделяют в отдельную расу.

Расизм - антинаучная идеология о неравенстве человеческих рас.

Расизм зародился еще в рабовладельческом обществе, но основные расистские теории были сформулированы XIX в. В них обосновались преимущества одних рас над другими, белых над черными, выделялись «высшие» и «низшие» расы.

В фашистской Германии расизм был возведен в ранг государственной политики и служил оправданием уничтожения «неполноценных» народов на оккупированных территориях.

В США вплоть до середины ХХ в. расисты пропагандировали превосходство белых над черными и недопустимость межрасовых браков.

Интересно, что если в XIX в. и в первой половине ХХ в. расисты утверждали превосходство белой расы, то во второй половине ХХ в. появились идеологии, пропагандирующие превосходство черной или желтой расы. Таким образом расизм никак не связан с наукой и призван оправдать чисто политические и идеологические догмы.

Любой человек, независимо от расовой принадлежности, является «продуктом» собственной генетической наследственности и социальной среды. В настоящие время общественно-экономические отношения, развивающиеся в современном человеческом обществе, могут оказать влияние на будущее рас. Предполагают, что в результате подвижности популяций человека и межрасовых браков в будущем может сформироваться единая раса. В тоже время в результате межрасовых браков могут сформироваться новые популяции с собственными специфическими сочетаниями генов. Так, например, в настоящее время на Гавайских островах на основе метисации европеоидов, монголоидов и полинезийцев происходит формирование новой расовой группы.

Итак, расовые различия являются результатом приспособления людей к определенным условия существования, а также исторического и общественно-экономического развития человеческого общества.

Характеристика абиотических факторов среды

Условия жизни (условия существования) - это совокупность необходимых для организма элементов, с которыми он находится в неразрывной связи и без которых существовать не может.

Приспособления организма к среде носят название адаптации. Способность к адаптациям - одно их основных свойств жизни вообще, обеспечивающее возможность ее существования, выживания и размножения. Адаптация проявляется на разных уровнях - от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экосистем. Адаптации возникают и изменяются в ходе эволюции вида.

Отдельные свойства или элементы среды, воздействующие на организмы, называются экологическими факторами. Факторы среды разнообразны. Они имеют разную природу и специфику действия. Экологические факторы подразделяются на две большие группы: абиотические и биотические.

Абиотические факторы - это комплекс условий неорганической среды, влияющих на живые организмы прямо или косвенно: температура, свет, радиоактивное излучение, давление, влажность воздуха, солевой состав воды и т.д.

Биотические факторы - это все формы воздействия живых организмов друг на друга. Каждый организм постоянно испытывает на себе прямое или косвенное влияние других, вступая в связь с представителями своего и других видов.

В отдельных случаях антропогенные факторы выделяют в самостоятельную группу наряду с биотическими и абиотическими факторами, подчеркивая чрезвычайное действие антропогенного фактора.

Антропогенные факторы - это все формы деятельности человеческого общества, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни. Значение антропогенного воздействия на весь живой мир Земли продолжает стремительно возрастать.

Изменения факторов среды во времени могут быть:

регулярно-постоянными, меняющими силу воздействия в связи со временем суток, сезоном года или ритмом приливов и отливов в океане;

нерегулярными, без четкой периодичности, например, изменение погодных условий в разные годы, бури, ливни, сели и т.д.;

направленными на протяжении определенных или длительных отрезков времени, например, похолодание или потепление климата, зарастание водоема и т.д.

Экологические факторы среды могут оказывать на живые организмы различные воздействия:

как раздражители, вызывая приспособительные изменения физиологических и биохимических функций;

как ограничители, обуславливающие невозможность существования в данных условиях;

как модификаторы, вызывающие анатомические и морфологические изменения организмов;

как сигналы, свидетельствующие об изменении других факторов.

Несмотря на большое разнообразие экологических факторов, в характере их взаимодействия с организмами и в ответных реакциях живых существ можно выделить ряд общих закономерностей.

Интенсивность экологического фактора, наиболее благоприятная для жизнедеятельности организма, - оптимум, а дающая наихудший эффект - пессимум, т.е. условия, при которых жизнедеятельность организма максимально угнетается, но он еще может существовать. Так, при выращивании растений в различных температурных режимах точка, при которой наблюдается максимальный рост, и будет оптимумом. В большинстве случаев это некий диапазон температур, составляющий несколько градусов, потому здесь лучше говорить о зоне оптимума. Весь интервал температур (от минимальной до максимальной), при которых еще возможен рост, называют диапазоном устойчивости (выносливости), или толерантности. Точка, ограничивающая его (т.е. минимальная и максимальная) пригодные для жизни температуры - это предел устойчивости. Между зоной оптимума и пределом устойчивости по мере приближения к последнему растение испытывает все нарастающий стресс, т.е. речь идет о стрессовых зонах, или зонах угнетения, в рамках диапазона устойчивости.

По мере удаления вверх и вниз но шкале не только усиливается стресс, а в конечном итоге, по достижении пределов устойчивости организма, происходит его гибель. Подобные эксперименты можно проводить и для проверки влияния других факторов. Результаты графически будут соответствовать кривой подобного типа.

Таблица. Найдите соответствие и дайте полное обоснование вашему ответу

Основные механизмы эволюции

Явления

1. Ароморфоз

А. Отсутствие пищевой системы у бычьего цепня

2. Идиоадаптация

Б. Появление внутреннего оплодотворения и оболочек яйца у пресмыкающихся в процессе эволюции

3. Общая дегенерация

В. Различные формы клюва у птиц

Г. Появление многоклеточности в процессе эволюции

Д. Различия в форме тела и окраса пресноводных рыб.

К ароморфозу относятся: появление внутреннего оплодотворения и оболочек яйца у пресмыкающихся в процессе эволюции; появление многоклеточности в процессе эволюции. Эти признаки относятся к ароморфозу, так как представляют собой крупные, масштабные, эволюционные изменения, которые ведут к общему подъему организаций, повышают интенсивность жизнедеятельности. Дают значительные преимущества в борьбе за существование, делают возможным переход в новую среду обитания.

К идиоадаптации относятся: различные формы клюва у птиц; различия в форме тела и окраса пресноводных рыб. Эти признаки относятся к идиоадаптации, так как представляют собой мелкие эволюционные изменения, которые повышают приспособленность организмов к определенным условиям среды обитания.

К общей дегенерации относится - отсутствие пищевой системы у бычьего цепня. Этот признак относится к дегенерации, так как представляет собой эволюционное изменение, которое ведёт к упрощению организации, к утрате ряда систем и органов.

Почему отношение между шмелем и клевером считают симбиозом.

Отношение между шмелем и клевером считается симбиозом, так как происходит опыление клевера шмелем, и организмы испытывают положительное взаимное влияние друг на друга, вступая в непосредственное взаимодействия с внешней средой.

Размещено на Allbest.ru


Подобные документы

  • Необходимые условия размножения. Сроки полового созревания у различных видов животных. Элементы и функции полового аппарата самцов, периоды сперматогенеза. Схема яичника у самки и овулярный цикл. Особенности процессов оплодотворения, беременности и родов.

    презентация [286,8 K], добавлен 05.12.2013

  • Вегетативное размножение - размножение растений при помощи вегетативных органов: ветвей, корней, побегов, листьев или их частей. Преимущества вегетативного размножения. Разные способы размножения растений, методы выращивания растений семенным способом.

    реферат [19,9 K], добавлен 07.06.2010

  • Виды вегетативного размножения растений. Типы искусственного вегетативного размножения растений. Деление куста, корневые и стеблевые отпрыски. Размножение растений отводками и прививками, окулировка и копулировка. Характеристика метода культуры клеток.

    реферат [6,0 M], добавлен 09.12.2011

  • Способы размножения растений: вегетативное и половое. Факторы, влияющие на прорастание семян. Способы размножения луковичных растений. Характеристика регуляторов роста ("Эпин экстра", "Циркон", "Флоравит 3Р") и их влияние на рост и развитие растений.

    дипломная работа [3,7 M], добавлен 17.06.2017

  • Размножение — способность живых организмов к сохранению генофонда популяции. Цитологическая основа и формы бесполого размножения: деление, шизогония, почкование, спорообразование, фрагментация. Половое размножение: гермафродитизм, партеногенез, апомиксис.

    презентация [858,3 K], добавлен 24.02.2013

  • Половой процесс и эволюция размножения. Бесполое размножение. Размножение делением, спорами, вегетативное размножение. Половое размножение. Гаметы и гонады. Осеменение. Усложнение половой системы. Спаривание. Способы воспроизведения потомства.

    реферат [38,0 K], добавлен 31.10.2008

  • Типы размножения, их отличительные черты и характерные признаки, свойственность для тех или иных типов и классов водорослей. Схема бесполого размножения, механизмы освобождения клеток. Половое размножение и факторы внешней среды, провоцирующие его.

    реферат [25,5 K], добавлен 29.07.2009

  • Полиплоидия и отдаленная гибридизация растений, методы работы И.В. Мичурина. Общие принципы селекции животных и растений, типы скрещивания и методы разведения в животноводстве. Примеры создания высокопродуктивных пород домашних животных, гетерозис.

    реферат [20,6 K], добавлен 13.10.2009

  • Роль наследственности в непрерывности жизни. Непрерывность передачи генетической информации от родителей к потомству - обеспечение единства организмов и среды. Понятие генома, генотипа и фенотипа. Генетические модели и уровни изучения наследственности.

    реферат [27,4 K], добавлен 27.01.2010

  • Способность размножаться как одна из основных способностей живых организмов, ее роль в жизнедеятельности, выживании организмов. Типы размножения, их характеристика, особенности. Преимущества полового размножения перед бесполым. Этапы развития организмов.

    реферат [2,0 M], добавлен 09.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.