Концепции современного естествознания

Развитие взглядов на пространство в истории науки. Формирование и основные свойства пространства. Создание теории электромагнитного поля. Развитие взглядов на время в истории науки. Физические теории времени и пространственно-временной континуум.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 27.12.2011
Размер файла 606,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

СОДЕРЖАНИЕ

Введение

1. Развитие взглядов на пространство в истории науки

2. Развитие взглядов на время в истории науки

Заключение

Список использованных источников

ВВЕДЕНИЕ

Для обыденных житейских представлений пространство и время -- нечто привычное, известное, очевидное. Но если задуматься, то возникают сложные вопросы, напряженно обсуждавшиеся во все периоды развития естествознания.

Можно сказать, что каждый объект характеризуется своеобразной «упаковкой» входящих в него элементов, их расположением друг относительно друга и это делает любые объекты протяженными. Кроме того, каждый объект занимает какое-то определенной место среди других объектов, граничит с ними. Все эти предельно общие свойства, выражающие структурную организацию материального мира выступают как первые, наиболее общие характеристики пространства.

Пространство и время относятся к числу важнейших форм бытия материи или ее атрибутов, без которых невозможно существование материи. В мире нет материи, не обладающей пространственно-временными свойствами, как не существует пространства и времени самих по себе вне материи или независимо от нее.

Пространство есть форма бытия материи, характеризующая ее протяженность, структурность, сосуществование и взаимодействие элементов во всех материальных системах. Пространство выражает сосуществование, протяженность и структурность любых взаимодействующих объектов.

Время характеризует последовательность смены состояний и длительность бытия любых объектов и процессов, внутреннюю связь изменяющихся и сохраняющихся состояний.

Все структурно разделенные объекты материального мира находятся в движении и развитии, представляют собой процессы, которые развертываются по определенным этапам, в них можно выявить сменяющие друг друга стадии. Смена этих стадий может характеризоваться определенной повторяемостью. Одна стадия может наступать быстрее, чем другая, т.е. характеризоваться понятием длительности. Сравнение различных длительностей может стать основой для количественных мер, выражающих скорость развертывания процессов, их темп и ритм. Если рассмотреть отношения длительностей как некоторые самостоятельные признаки процессов, то получим представление о времени как таковом. Представление о времени и само понятие времени имеют смысл лишь постольку, поскольку мир находится в состоянии движения и развития. Если бы материя была бы вне движения, понятие времени не имело бы смысла.

В обыденной жизни и практике понятие времени образуется благодаря сравнению, сопоставлению различных процессов движения. Например, мы говорим: «Лекция длится полтора часа». Это означает, что сложные, развертывающиеся один за другим качественно специфические процессы, такие как изложение лектором текста, запись и усвоение этого текста и т.п. -- взяты как единой целое, сравниваются, сопоставляются с другим процессом -- колебаниями маятника часов и вызванным этими колебаниями движением часовой и минутной стрелок. Для того чтобы произвести отсчет времени, мы всегда находим какой-то квазипериодический (повторяющийся в некоторых основных чертах) процесс, который выбирается за эталон, и с ним сопоставляются непериодические, более сложные процессы.

1. РАЗВИТИЕ ВЗГЛЯДОВ НА ПРОСТРАНСТВО В ИСТОРИИ НАУКИ

В обыденном восприятии под пространством понимают некую протяженную пустоту, в которой могут находиться какие-либо предметы. Однако между небесными телами есть некоторое количество вещества, да и физический вакуум содержит виртуальные частицы. В науке пространство рассматривается как физическая сущность, обладающая конкретными свойствами и структурой [2, с. 44].

Пространство и время -- всеобщие и необходимые объективные формы бытия материи. «В мире, -- писал В.И. Ленин, -- нет ничего кроме движущейся материи, а движущаяся материя не может двигаться иначе, чем в пространстве и времени». Материя объективно существует в форме вещества и поля, образует Вселенную, существующую независимо от того, ощущаем мы ее или нет.

Основные свойства пространства формировались по мере освоения человеком территорий и развития геометрии (от греч. geometria -- землемерие). Сложившиеся к III в. до н. э. знания систематизировал древнегреческий математик Евклид. В своем знаменитом произведении «Начала», состоящем из 15 книг, ставшем основой геометрии, он организовал научное мышление на основе логики. В первой книге Евклид определил идеальные объекты геометрии: точка, прямая линия, плоскость, поверхность.

Эти объекты рассматривались через некоторые характеристики реального окружающего мира или каких-либо предметов, часто для этого использовались представления о луче света или натянутой струне. Например, образ прямой линии связан с лучом света. Но было известно, что в неоднородных средах световой луч преломляется; и сам же Евклид получил закон равенства углов отражения и падения, а Аристотель рассуждал о кажущемся преломлении палки, погруженной частично в воду. Исходя из наиболее простых свойств линий и углов Евклид путем строгих логических доказательств пришел в планиметрии к формулировке условий равенства треугольников, равенства площадей, теореме Пифагора, к золотому сечению, кругу и правильным многоугольникам. В книгах V--VI и X он излагает теорию несоизмеримых Евдокса и правила подобия, VII--IX -- теорию чисел, а в последних трех -- геометрию в пространстве. От телесных углов, объемов параллелепипедов, призм, пирамид и шара Евклид переходит к исследованию пяти правильных («Платоновых») тел и доказательству, что их существует только пять.

Изложение Евклида построено в виде строго логических выводов теорем из системы аксиом и постулатов (кроме системы определений). Согласно им и определены основные представления о пространстве, которые использованы И. Ньютоном в его «Математических началах натуральной философии» (1687):

- однородность -- нет выделенных точек пространства, параллельный перенос не изменяет вид законов природы;

- изотропность -- в пространстве нет выделенных направлений, и поворот на любой угол сохраняет неизменными законы природы;

- непрерывность -- между двумя различными точками в пространстве, как близко бы они не находились, всегда есть третья;

- трехмерность -- каждая точка пространства однозначно определяется набором трех действительных чисел -- координат;

- «евклидовость» -- описывается геометрией Евклида, в которой, согласно пятому постулату, параллельные прямые не пересекаются или сумма внутренних углов треугольника равна 180°.

Пятый постулат геометрии Евклида привлекал к себе особое внимание, и некие его эквиваленты привели в XIX в. к возможности иных геометрий, в которых сумма углов треугольника больше (геометрия Римана -- геометрия на сфере) или меньше 180° (геометрии Лобачевского и Больяйи).

Положение тел в окружающем пространстве определяется тремя координатами (долгота, широта, высота), т.е. наглядным представлениям соответствует трехмерность пространства. Птолемей в своем труде «Альмагест» утверждал, что в природе не может быть более трех пространственных измерений. Для определения положения в пространстве Р. Декарт обосновал единство физики и геометрии. Развив идею близкодействия, он объяснял все явления природы механическим взаимодействием частиц, он запомнил мир тонкой материей -- эфиром. Он ввел прямоугольную систему координат («декартовы координаты») -- х, у, z. Для описания орбит планет при их движении вокруг Солнца удобнее сферическая система координат, вычисляющая положение Солнца и учитывающая, что гравитационное поле убывает одинаково по всем направлениям. Выбор системы координат -- это просто выбор способа описания, и он не может влиять на свойства континуума, который нужно описать. Пространства и континуумы независимо от способа описания обладают своими внутренними геометрическими свойствами (например, кривизной). Пространство называют искривленным, если в него невозможно ввести координатную систему, которая может считаться прямолинейной. Иначе -- оно плоское [2, с. 45].

Физический мир Декарта состоит из двух сущностей: материи (простой «протяженности, наделенной формой») и движения. Поскольку «природа не терпит пустоты» (Аристотель), протяженность заполнена «тонкой материей» -- эфиром, которую Бог наделил непрерывным движением. Декарт описал все процессы своими механическими законами движения и построил «космологический роман» (трактаты «Мир» и «Начала философии»). Декартово представление о флюидах, заполняющих пространство, господствовало в науке XIX и частично XX вв., оказав существенное влияние на развитие оптики и электричества. Вес, как и любая сила, у Декарта -- свойство движения тонкой материи, отождествляемой с пространством. Поэтому механицизм Декарта сводит силы к свойствам пространства.

Живя на поверхности почти сферической, мы пользуемся геометрией на плоскости, хотя правильнее говорить, что большие круги (параллели и меридианы) -- кратчайшие расстояния (что учитывается при прокладке курса самолетов, например). На геометрии Евклида построена механика Галилея--Ньютона, где тела движутся криволинейно только под действием сил. Ньютон пришел к идее абсолютных пространства (бесконечной однородной протяженности) и времени (бесконечной однородной длительности). Каждый объект обладает в пространстве определенным положением и ориентацией, а расстояние между двумя событиями точно определено, даже если они произошли в разные моменты времени.

Положение R тела в пространстве определяется только относительно системы каких-то объектов: у Ньютона -- относительно инерциальных систем отсчета. Так как ощущается лишь неравномерное движение (а не движение с постоянной скоростью), имеет смысл говорить об изменении скорости v = dR/dt тела в пространстве, и движения определяются только ускорением aW = dv/dt. Ньютон перевел эти, сугубо обыденные, ощущения на математический язык, у него все равномерные движения относительны, а ускоренные -- абсолютны. Причины, вызывающие ускоренные движения, он назвал силами. Силы F пропорциональны ускорению тел с коэффициентом М, называемым инертной массой: F = МaW. Если этот закон Ньютона прочесть справа налево, видно, что части системы при равномерном движении не испытывают силового воздействия. Значит, механическими средствами равномерное движение нельзя отличить от другого такого же и пространство само по себе не оказывает силового воздействия на движущиеся тела.

Механика Ньютона позволяет наблюдать только ускоренные движения, а ускорение ведет к возникновению в системе отсчета движущегося тела сил инерции. Таковы, например, давление ног человека, направленное вниз при кратковременной остановке лифта, движущегося в направлении вверх, или центробежная сила на вращающейся карусели. Приписывая появление сил инерции пространству, в котором происходит ускорение, Ньютон доказывал реальность его существования. Оно -- субстанция, способная динамически действовать на материальные тела [2, с. 46].

Создание теории электромагнитного поля дало возможность использовать оптические явления для измерения скорости движения в пространстве: свет должен распространяться в эфире (некоей жидкости, заполняющей пространство) с постоянной скоростью, зависящей от «упругости» эфира, а скорость света, измеренная наблюдателем, должна зависеть от направления распространения света. Но проведенный А. Майкельсоном и Э. Морли опыт показал, что никакого эффекта, связанного с эфиром, нет (1887). Пришлось отказаться от эфира и наглядных представлений Ньютона о пространстве и времени, и А. Эйнштейн предложил (1905) свою специальную теорию относительности (СТО).

В основе СТО лежат два постулата: скорость света в вакууме постоянна и не зависит от движения наблюдателя или источника света; все физические явления (механические и электродинамические) происходят одинаково во всех телах, движущихся относительно друг друга прямолинейно и равномерно. Это означало сокращение длин и замедление течения времени в соответствии с преобразованиями Лоренца для тел, движущихся со скоростями, близкими к скорости света. «Отныне пространство и время, взятые по отдельности, обречены влачить призрачное существование, и только единство их обоих сохранит реальность и самостоятельность» (Г. Минковский). Изменения длин и времен ощутимы лишь при скоростях, близких к скорости света; при меньших скоростях движение происходит по законам классической механики. В таком пространстве-времени уже удобнее криволинейные координаты. В разных системах координат по-разному будут выглядеть математические записи законов физических явлений. Итак, в СТО время и пространство объединяются в четырехмерное пространство-время.

В конце XIX в. появились неевклидовы теории пространства -- различные варианты геометрии Н.И. Лобачевского, Я. Больяйи и Ф.Б. Римана. Они отвергали один из постулатов Евклида -- в них через точку можно провести несколько прямых, параллельных заданной, или ни одной, соответственно. Проверкой было бы измерение суммы внутренних углов треугольника, но измерения Гаусса и Лобачевского не обнаружили отклонений физического пространства от евклидового. Пространство Римана, в котором сумма углов больше 180°, соответствует геометрии на сфере и легло в основу общей теории относительности (ОТО) -- обобщенной теории тяготения, разработанной Эйнштейном (1916). При наличии в пространстве тяготеющих масс (т. е. и поля тяготения) пространство искривляется, становится неевклидовым. Движения тел в нем происходят по кратчайшему пути -- по геодезическим линиям. Свойства пространства-времени определяются распределением и движением материи в пространстве.

Хотя в ОТО соотношение между количеством материи и степенью кривизны простое, но сложны расчеты -- для описания кривизны в каждой точке нужно знать значения 20 функций пространственно-временных координат. Десять функций соответствуют части кривизны, которая распространяется в виде гравитационных волн, т. е. в виде «ряби» кривизны; остальные десять определяются распределением масс, энергии, импульса, углового момента, внутренних напряжений в веществе и значениями универсальной гравитационной постоянной G. Из-за малости величины G нужно много масс, чтобы существенно «изогнуть» пространство-время. Величину 1/G подчас считают мерой жесткости пространства-времени (и наше пространство-время очень жесткое). Вся масса Земли создает кривизну, составляющую порядка 10-9 кривизны своей поверхности. Чтобы представить кривизну пространства-времени вблизи Земли, подбросим мяч в воздух. Если он будет находиться в полете 2 с и опишет дугу в 5 м, то свет за эти 2 с пройдет расстояние 600 000 км. Если представить дугу высотой 5 м, вытянутую по горизонтали до 600 000 км, то ее кривизна и будет соответствовать кривизне пространства-времени. В отличие от теории гравитации Ньютона теория Эйнштейна претендует на теорию пространства-времени, т. е. на теорию Вселенной в целом.

Большинство экспериментальных данных о гравитации хорошо описывается в пространстве Евклида или в динамике Ньютона, но есть немногочисленные явления (отклонение света в поле тяготения или смещение перигелия Меркурия), которые противоречат теории Ньютона и хорошо объясняются в ОТО.

Характер физических законов существенно зависит от масштаба исследуемых явлений, и принято говорить о микро-, макро- и мегамире. Объектами микромира являются атомные ядра и молекулы, атомы и элементарные частицы. К объектам макромира относят живую клетку, человека и соизмеримые с ним предметы. Мегамир -- это планеты, Солнце, звезды, галактики и вся Вселенная в целом. В мегамире существенную роль играют эффекты СТО и ОТО, преобладающим взаимодействием является гравитационное. В макромире законы движения тел определяются классической механикой, а в микромире -- квантовой физикой.

2. РАЗВИТИЕ ВЗГЛЯДОВ НА ВРЕМЯ В ИСТОРИИ НАУКИ

пространство время электромагнитный континуум

Время, как и пространство, имеет объективный характер. Они неотделимы от материи, связаны с ее движением и друг с другом. По выражению И. Пригожина, «для большинства основателей классической науки (и даже А. Эйнштейна) наука была попыткой выйти за рамки мира наблюдаемого, достичь вневременного мира высшей рациональности -- мира Спинозы». Фактически все картины мира, рожденные точной наукой, освобождены от развития, «отрицают время» [2, с. 56].

Понимание времени, увлекающего мир в непрерывное движение, наиболее ярко выразил Гераклит (ок. 530 -- 470 до н.э.): «В одну реку нельзя войти дважды», «Все течет, все изменяется», «Мир является совокупностью событий, а не вещей». Законы природы неизменны, они сохраняются в любом месте и в любое время. У Прокла (ок. 412 -- 485) для большей строгости к понятию времени применены геометрические рассуждения: «Время не подобно прямой линии, безгранично продолжающейся в обоих направлениях. Оно ограничено и описывает окружность. Движение времени соединяет конец с началом, и это происходит бесчисленное число раз. Благодаря этому время бесконечно». Платон (ок. 428 -- 347 до н. э.) писал: «Поскольку день и ночь, круговороты месяцев и лет, равноденствия и солнцестояния зримы, глаза открыли нам число, дали понятие о времени и побудили исследовать природу Вселенной». Архимед в трактате «О спирали» показывал, что спираль соединяет цикличность с поступательным движением. Может быть, спираль подойдет для наглядного образа времени, соединив поток и окружность?! Узор из спирали с солнцами был найден на остатках кувшинов неолита и на древнем календаре -- жезле из бивня мамонта, обнаруженном недавно в Восточной Сибири. Археологи истолковывают эти узоры как отображение идеи Времени.

Первую физическую теорию времени дал Ньютон: «Абсолютное, истинное математическое время, само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью». Абсолютное время -- идеальная мера длительности всех механических процессов. Как не наблюдаемо истинно равномерное движение, так и измерить время можно, только приближаясь к истинному, математическому, входящему в уравнения. Абсолютное время однородно, это означает симметрию относительно сдвигов. Значит, и точка отсчета времени не имеет значения, она не меняет длительность. То же можно сказать и о пространственных симметриях классической механики. В пространстве нет выделенных ни точек, ни направлений, т. е. оно однородно и изотропно. Ньютон не только исключил время из своей картины Вселенной, но и утвердил его в сознании как внешний параметр. Стало возможным рассматривать непрерывные периодические процессы равной длительности для построения модели, легко вводить метрику времени. Это позволило построить всю систему мира, подтвердить впечатляющие предсказания теории Ньютона для Вселенной.

Непрерывность времени означает, что между двумя моментами времени, как близко бы они не располагались, всегда можно выделить третий. (Сегодня нет достаточных оснований, чтобы говорить о дискретности времени.) Особым свойством времени является его однонаправленность или необратимость. Это свойство времени рассматривают как следствие второго Начала термодинамики, или Закона возрастания энтропии. В классической физике существует абсолютное, «вселенское время». Г.Лейбниц считал время относительным, «порядком последовательностей». Но в современной физике не существует единого «всемирного» хода времени. В биологии и геологии время рассматривали иначе. Так, основоположник геологии датчанин Н. Стенсен строил пространственные отношения не на основе движения или перемещения тел в нем, а с точки зрения временной последовательности «раньше -- позже». Этот подход естествен для геолога, рассматривающего историю планеты через наслоения в камне.

Пространственно-временной континуум -- новое средство характеристики физических явлений, используя которое для описания событий в природе нужно применять не два, а четыре числа, дала СТО. С точки зрения Эйнштейна, физическое пространство, постигаемое через объекты и их движения, имеет три измерения и положение объектов характеризуется тремя числами. Момент события -- четвертое число. Потому мир событий есть четырехмерный континуум. У Эйнштейна не имеет смысла деление этого мира на время и пространство, поскольку описание мира событий «посредством статической картины на фоне четырехмерного пространственно-временного континуума» более удобно и объективно. Измеренное значение времени оказалось зависимым от движения наблюдателей [2, с. 57].

Время для движущегося наблюдателя течет медленнее, чем для неподвижного: Этот эффект замедления может быть заметен лишь для скоростей, сравнимых со скоростью света в вакууме с. По выражению Вернадского, СТО «отрицала только независимое от пространства, абсолютное время, но не придавала ему никаких новых свойств -- принимала его тем же изотропным, аморфным временем, каким понимал его Ньютон». Таким образом, традиция классической физики сохранена.

Обсудим явление, известное как «парадокс близнецов». Пусть, например, А. и В. -- близнецы. В. улетает с большой скоростью в далекое космическое путешествие, А. остается на Земле. Через какое-то время В. возвращается и оказывается моложе А. Если v -- скорость, с которой путешествовал В., а ф0 -- время, которое прошло на Земле за время его путешествия, то время, которое прошло на борту его корабля , где с = 3 * 108 м/с -- скорость света в вакууме. И чем больше скорость v, тем значительнее будет разница. Причем тот, кто почувствовал ускорение, тот и окажется моложе. Например, собственное время жизни р+-мезона составляет 2,5 * 10-8 с. Если бы не было релятивистского замедления времени, то до распада такая частица проходила бы в среднем расстояние (2,5 10"8 с) * (3 * 108 м/с) ? 7 м. Но, как показывает опыт, проведенный на ускорителях, эти частицы способны проходить значительно большие расстояния, если их скорость сравнима со скоростью света. Поэтому всегда необходимо уточнять, относительно какого тела и связанной с ним системы координат оно рассматривается [2, с. 58].

Задержка времени, предсказанная СТО, подтверждается м-мезонами, распадающимися во время полета к Земле от места возникновения в верхних слоях атмосферы. Это показывают детекторы, установленные на воздушных шарах, на поверхности Земли и в шахтах (рис. 2, а). Согласно СТО, с увеличением относительной скорости, кроме замедления времени, уменьшаются линейные размеры тел вдоль направления движения и увеличивается масса (L0 и М0 -- линейные размеры и масса тела в состоянии покоя):

Свойства пространства-времени в ОТО зависят от распределения тяготеющих масс, и движение тел определяется кривизной пространства-времени (рис. 2, б, в). Но влияние масс сказывается только на метрических свойствах часов, так как меняется лишь частота при переходе между точками с разными гравитационными потенциалами. Иллюстрацией относительного хода времени, по мнению Эйнштейна, могло бы стать обнаружение процессов вблизи предсказанных им черных дыр.

А. Эйнштейн в фундаментальных законах физики не допускал необратимости, его беспокоила направленность времени, связанная со вторым началом термодинамики. Хотя решение, соответствующее нестационарной Вселенной, полученное А.А. Фридманом из его космологических уравнений, позднее было подтверждено наличием красного смещения в спектрах далеких галактик, установленного Э. Хабблом, Эйнштейн считал гипотезу взрывающейся Вселенной временной и относился к ней с недоверием. В 60 --80-е гг. XX в. отношение к эволюционным процессам стало меняться, мир предстал существенно нелинейным с необратимыми процессами в своей основе. Поэтому и времени в новой эволюционной картине мира уготована иная роль.

Для определения момента произошедшего события обычно достаточно одного измерения, указания только одного числа. Такое восприятие времени настолько привычно, что большее число измерений для времени трудно вообразить. Но наблюдаемые события происходят от прошлого к будущему. И это качественно отличает временное измерение от пространственного, причем для любого наблюдателя в данной точке пространства последовательность событий сохраняется. Можно сказать, что понятия «прошлое» и «будущее» в данной точке пространства есть понятия абсолютные. Для пространственных осей нет такого выделения направлений, и поворот на 180° вокруг оси, перпендикулярной линии, которая соединяет два одновременных события, переводит происходящее слева от наблюдателя событие в правое. То есть понятия «правое» и «левое» относительны для одновременных событий. Направленность времени тесно связана с пониманием причинности: причина должна предшествовать следствию. Это свойство времени относится к классу нерешенных проблем в физике и во всем естествознании.

ЗАКЛЮЧЕНИЕ

Для обыденного сознания характерно традиционное представление о пространстве и времени как о каких-то внешних условиях бытия, в которые помещена материя и которые сохранились бы, даже если бы эта материя исчезла. Такой взгляд приводил в прошлом к концепции абсолютного пространства и времени, получившей наиболее отчетливую формулировку в труде Ньютона «Математические начала натуральной философии». Здесь пространство и время определялись как две самодовлеющие сущности, существующие вне и независимо от каких-либо материальных процессов.

Лукреций в своей поэме «О природе вещей» говорил, что не существует времени самого по себе, вне движения и покоя тел. Первоначально понятие пространства как бесконечной пустоты и условия для движения тел, фигурировавшее в атомистике Демокрита, постепенно вытеснялось пониманием пространства как протяженности вещества и эфира. Гипотеза эфира как всепроникающей небесной субстанции использовалась еще Аристотелем, но в физике Нового времени стала исходным принципом волновой природы света и учения об электричестве. Эйнштейн говорил: «Пустого пространства, т.е. пространства без поля, не существует. Пространство и время существуют не сами по себе, а как структурное свойство поля». Энгельс в «Анти-Дюринге» (1876 г.) писал: «Основные формы всякого бытия есть пространство и время». И в «Диалектике природы»: «Эти две формы существования материи есть ничто». Пространство и время объединялись еще до Ньютона кембриджскими неоплатониками (единая сущность) и после Ньютона до Эйнштейна -- в теории Гамильтона. Огромен вклад, который внесла теория относительности, развитая Эйнштейном.

Возникает вопрос: сохранило ли определение Энгельса свою силу после революционных открытий XX в.? СТО показала ошибочность представления о существовании абсолютного пространства и абсолютного времени. Общая теория относительности (ОТО) выявила, что геометрия пространства- времени -- не Евклидова, а Риманова. Определение Энгельса, которое не включало ни утверждения о существовании абсолютного пространства и абсолютного времени, ни утверждения о соответствии Евклидовой геометрии структуре пространства и времени, значит, не устарело и сохранило свое значение до настоящего времени. Более того, великие открытия Эйнштейна подтвердили правильность определения пространства и времени как формы существования движущейся материи. Это означает, что определение Энгельса опередило уровень естествознания XIX в., так как включает в себя зависимость пространства и времени от материального движения, что противоречило ньютоновской концепции, но подтверждало эйнштейновскую.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Горелов А.А. Концепции современного естествознания. М.: Центр, 1997. - 208 с.

Дубнищева Т.Я. Концепции современного естествознания: учеб. пособие для студ. вузов / Татьяна Яковлевна Дубнищева. -- 6-е изд., испр. и доп. -- М.: Издательский центр «Академия», 2006. -- 608 с.

Касперович Г.И. Концепции современного естествознания. Мн: 2002. - 182 c.

Кунафин М.С. Концепции современного естествознания: Учебное пособие. Изд-е . - Уфа, 2003 г.

Тулинов В.Ф. Концепции современного естествознания: Учебное пособие. Изд-е . 2-е - М.: Юнити-Дана, 2004. - 416.

Хорошавина С.Г. Концепции современного естествознания: курс лекций / Изд. 4-е. -- Ростов н/Д: Феникс, 2005. -- 480 с.

Размещено на Allbest.ru


Подобные документы

  • Изучение понятий пространства (реального, концептуального, перцептуального) и времени как форм существования материи. Ознакомление с принципом относительности Галилея, законами Ньютона, космологической теорией Бруно и координационной системой Декарта.

    контрольная работа [28,0 K], добавлен 25.04.2010

  • Основные черты и отличия науки от других отраслей культуры. Проблемы, решаемые отдельными естественными науками. Свойства пространства и времени. Главные выводы специальной и общей теории относительности. Естественнонаучные модели происхождения жизни.

    контрольная работа [40,6 K], добавлен 18.11.2009

  • Зарождение неклассического естествознания. Пространство и время в истории философии: гносеологический статус понятий, их отношение к материи. Субстанциальная и реляционная концепции. Пространство и время в классической и не классической картине мира.

    реферат [24,5 K], добавлен 13.12.2010

  • Естественнонаучная и гуманитарная культура. Дифференциация, интеграция и математизация в современной науке. Культурный уровень организации материи. Квантовомеханическая концепция описания микромира. Пространство и время в общей теории относительности.

    курс лекций [47,9 K], добавлен 16.11.2009

  • Цель и предмет курса "Концепции современного естествознания", основные термины и понятия. Специфические черты науки, виды культуры. История становления научных знаний. Естественнонаучная картина мира. Внутреннее строение Земли. Законы химии и биологии.

    шпаргалка [136,9 K], добавлен 12.02.2011

  • Классическая механика как фундамент естественнонаучной теории. Возникновение и развитие классического естествознания. Система Коперника. Галлилео Галлилей. Исаак Ньютон. Формирование основ классической механики. Метод флюксий.

    контрольная работа [99,8 K], добавлен 10.06.2007

  • Возникновение науки. Развитие рациональных знаний Древнего Востока, Древней Греции, эпохи средневековья, эпохи Возрождения. Научная революция XVI-XVII вв. и становление классической науки. Ее развитие и завершение в XIX в. Кризис современной науки.

    реферат [666,1 K], добавлен 06.07.2008

  • Библейские представления и развитие естествознания. Взаимоотношение времени и вечности в теории сотворения. Концепции возникновения жизни, их разновидности и особенности. Основные положения естественнонаучной теории, этапы зарождения жизни на Земле.

    курсовая работа [48,9 K], добавлен 11.11.2010

  • Возникновение и развитие науки или теории. Предмет и метод теории систем. Этапы становления науки. Закономерности систем и закономерности целеобразования. Поиск подходов к раскрытию сложности изучаемых явлений. Концепции элементаризма и целостности.

    реферат [33,7 K], добавлен 29.12.2016

  • Характерные черты естествознания, отличие от других отраслей науки. Пространство как характеристика структурности, протяженности материальных объектов. Общая характеристика планет земной группы. Причины и физическая природа землетрясений, селей, оползней.

    шпаргалка [34,3 K], добавлен 24.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.