Лекарственные растения и лекарственное растительное сырье, содержащие флавоноиды

Распространение флавоноидов в растительном мире, локализация и роль в растениях, их физико-химические свойства. Процентное содержание флавоноидов в течение вегетационного периода. Факторы, влияющие на накопление флавоноидов. Производные флавана.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 22.12.2011
Размер файла 23,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекарственные растения и лекарственное растительное сырье, содержащие флавоноиды

Введение

Флавоноидами называется группа природных фенольных соединений - производных бензо-гамма-пирона, в основе которых лежит скелет, состоящий из двух бензольных колец (А и В), соединенных между собой трехуглеродной цепочкой (пропановый скелет), т.е. состоящий из С6-С3-С6 углеродных единиц.

Это гетероциклические соединения с атомом кислорода в кольце.

При замещении в хромоне атома водорода в б-положении на фенильную группу образуется 2-фенил - (б) - бензо-г-пирон или флавон, который состоит из 2 ароматических остатков А и B и трехуглеродного звена (пропановый скелет).

При участии пропанового мостика в большинстве флавоноидов образуется гетероцикл - производное пирана или гамма-пирона.

Под термином флавоноиды объединены различные соединения, генетически связанные друг с другом, но обладающие различным фармакологическим действием.

Свое название они получили от латинского слова flavus - желтый, так как первые выделенные из растений флавоноиды имели желтую окраску, позднее установлено, что многие из них бесцветны).

Начало отечественным работам по изучению флавоноидов растений положено русским ботаником Бородиным И.П. в 1863 году, а в 1903 году Валяшко Н.А. провел исследования по доказательству строения ряда флавоноидов (рутина, робинина).

1. Распространение в растительном мире

Флавоноиды широко распространены в растительном мире.

Они обнаружены почти во всех высших растениях (цветковых и споровых), а также в зеленых водорослях (ряски), споровых (мхи, папоротники), хвощях (хвощ полевой), и у некоторых насекомых (мраморно-белая бабочка).

Особенно богаты флавоноидами высшие растения, относящиеся к семействам:

цитрусовых

розоцветных (различные виды боярышников, черноплодная рябина), бобовых (софора японская, стальник полевой, солодка),

гречишных (различные виды горцев - перечный, почечуйный, птичий: гречиха),

астровых (бессмертник песчаный, сушеница топяная, пижма),

яснотковых (пустырник сердечный.

Более часто флавоноиды встречаются в тропических и альпийских растениях.

Значительно реже встречаются в микроорганизмах и насекомых.

Около 40% флавоноидов приходится на группу производных флавонола, несколько меньше группа производных флавона, значительно реже встречаются флаваноны, халконы, ауроны.

2. Локализация и роль в растениях

Флавоноиды обнаружены в различных частях и органах растения. Чаще они накапливаются в надземной части растения

- травах: пустырника, горцев перечного, почечуйного, птичьего, сушеницы топяной, череды, зверобоя, фиалки полевой и трехцветной, астрагалов шерстистоцветкового, хвоща полевого;

- цветках - пижмы, бессмертника песчаного, боярышника, василька синего, бутонах софоры японской;

- листьях - чая китайского; плодах - боярышника, софоры японской, рябины черноплодной, экзокарпии цитрусовых; реже в подземных органах - корнях солодки, стальника, шлемника байкальского.

В растениях флавоноиды содержатся чаще всего в виде гликозидов, которые растворены в клеточном соке, сосредоточены в вакуолях и фторо- и хлоропластах.

Процентное содержание флавоноидов в течение вегетационного периода подвержено большим колебаниям.

Наиболее богаты ими молодые цветки, незрелые плоды.

Максимальное накопление флавоноидов в надземной части - в период бутонизации и цветения, затем содержание флавоноидов снижается, в подземных органах максимальное накопление в период плодоношения.

Содержание флавоноидов в растениях различно: в среднем 0,5-5%, иногда достигает 20% (в цветках софоры японской).

В лепестках цветков обычно находятся антоцианы (гликозиды антоцианидинов), обусловливая окраску большинства алых, красных, розово-лиловых и синих цветков.

В окраске желтых цветков принимают участие флавоноловые гликозиды, ауроны и халконы, хотя наиболее важным источником желтой окраски в природе являются каротиноиды.

Гликозилирование флавоноидных пигментов цветков имеет существенное значение:

1 - обеспечивает их устойчивость к свету и действию ферментов;

2 - в форме гликозидов улучшается растворимость пигментов в клеточном соке.

Плодам окраску придают антоцианы.

В листьях из флавоноидов преобладают флавоноловые гликозиды.

В семенах флавоноиды могут находиться в свободном и связанном состояниях.

Под влиянием ферментов они расщепляются на сахара и агликоны.

В качестве cахаров встречаются D-глюкоза, D-галактоза, D-ксилоза, L-рамноза и L-арабиноза, может присоединяться также одна D-глюкуровая кислота.

Кетогексозы обычно не принимают участия в образовании флавоноидных гликозидов.

Все перечисленные сахара встречаются в пиранозной форме, а арабиноза - в фуранозной форме.

Сахара, как правило, соединены в-связью с фенольными гидроксилами.

Из дисахаридов во флавоноидных гликозидах наиболее распространены рутиноза (рамноза 4-глюкоза); софороза (глюкоза + глюкоза); самбубиоза (ксилоза + глюкоза).

О трисахаридах известно меньше, чем о дисахаридах, описано всего 6 трисахаридов.

Не найдены флавоноидные гликозиды, содержащие более трех остатков сахаров.

Все флавоноидные гликозиды делятся на три группы: O-гликозиды, С-гликозиды и комплексные соединения.

3. Факторы, влияющие на накопление флавоноидов

Наиболее богаты ими молодые органы.

Основными являются

возраст и фаза развития растений.

Наибольшее количество флавоноидов накапливается у многих растений в надземной части в фазе бутонизации и цветения, затем содержание флавоноидов снижается;

В подземных органах максимальное накопление в период плодоношения.

Накоплению флавоноидов способствует умеренная влажность и умеренная температура, высота над уровнем моря, почва должна быть богата азотом, калием, фосфором; и др.).

Т.е. в южных и высокогорных районах, под влиянием света и на почвах, богатых микроэлементами, увеличивается содержание флавоноидов.

4. Биологическая роль флавоноидов

Как фенольные соединения принимают участие в окислительно-восстановительных процессах и в процессе фотосинтеза.

Совместно с аскорбиновой кислотой участвуют в энзиматических (ферментативных) процессах окисления и восстановления.

В семенах флавоноиды могут быть ингибиторами прорастания.

Являясь растительными пигментами, флавоноиды (антоцианы) придают яркую окраску цветкам, чем привлекают насекомых и тем самым способствуют опылению и размножению растений.

Классификация.

Современная классификация основана на:

- степени окисления и гидроксилирования пропанового скелета

С6-С3-С6;

- положении бокового фенильного радикала;

- наличии или отсутствии гетероцикла.

Исходя из этого флавоноиды подразделяются на несколько групп:

1. Окисленные

Флавоны - бесцветные или слегка желтого цвета, их гидроксилированные формы находятся в цветках пижмы, ромашки (флавон апигенин). Фенильная группа расположена во 2-м положении.

Менее всего распространены в природе: изофлавоноиды, неофлавоноиды, бифлавоноиды.

Изофлавоноиды (корни стальника полевого). Фенильная группа находится в 3-м положении у С3. Образование изофлавоноидов характерно для представителей семейств бобовых, подсемейства мотыльковых, реже для семейств касатиковых и розоцветных.

Неофлавоноиды - производные 4-фенилхромона;

Бифлавоноиды - димерные соединения, состоящие из связанных С-С-связью флавонов, флавононов и флавон-флаванонов.

К производным флавона принадлежат флавонолы, флаванонолы, флаваноны. Флавоны и флавонолы - это наиболее окисленные формы флавоноидов широко встречаются у растений.)

Флавонолы - бледно-желтого цвета.

Отличаются от флавонов наличием группы - ОН в 3-м положении.

Выделено более 210 флавоноловых агликонов.

Самые известные из них - кверцетин, кемпферол, изорамнетин, мирицетин.

С увеличением количества гидроксильных групп и в зависимости от их положения возрастает густота окраски. Чаще встречаются соединения с 4-5 гидроксильными группами, например:

кемпферол - 3,5,7,4' - тетрагидроксифлавонол

кверцетин - 3,5,7,3', 4'-пентагидрооксифлавонол.

Большое значение имеет для медицины гликозид рутин - агликоном которого является 3,5,7,3', 4'-тетрагидрооксифлавонол, сахаристая часть представлена глюкозой и рамнозой.

3-рутинозид (глюкорамнозид) кверцетина

Рутин содержится в гречихе, горцах (перечном, почечуйном, спорыше), траве фиалки, пустырника, зверобоя, плодах и бутонах софоры японской, плодах рябины черноплодной.

5. Восстановленные (производные флавана)

Флаваны - производные 2-фенилхромана

К производным флавана относятся катехины (флаван-3-олы),

Лейкоантоцианидины (флаван - 3,4 - диолы) и антоцианидины.

Катехины - наиболее восстановленные флавоноидные соединения.

Молекула флаван-3-олов содержит два ассиметрических атома углерода в пирановом кольце (С2 и С3), поэтому для каждой молекулы возможны четыре изомера и два рацемата.

Так изомеры (+) - катехин и (-) - эпикатехин отличаются конфигурацией гидроксильной группы у 3-его углеродного атома:

Катехины и лейкоантоцианидины обычно гликозилированных форм не образуют. В растениях они существуют в виде мономеров или в виде конденсированных соединений (дубильные вещества).

Катехины представляют собой наиболее восстановленные флавоноидные соединения, бесцветные соединения, легко поддаются окислению, в результате чего приобретают разную окраску (например, чай, различный цвет которого /черный, красный, желтый/ обусловлен степенью окисленности катехинов).

Лейкоантоцианидины - (флаван - 3,4 - диолы) бесцветны, это лабильные соединения, легко окисляющиеся до соответствующих антоцианидинов при нагревании с кислотами и при этом становятся окрашенными веществами.

Многие красные и синие окраски цветков с различными оттенками обусловлены присутствием антоцианидинов.

Особенностью строения антоцианидинов является наличие свободной валентности у кислорода в пирановом кольце. Благодаря положительному заряду антоцианидины в кислом растворе ведут себя как катионы и образуют соли с кислотами, в щелочном растворе - как анионы и образуют соли с основаниями. В зависимости от рН среды изменяется окраска антоцианидинов.

В зависимости от рН среды окраска цветков меняется. В кислотной среде они образуют розовую, красную окраску, в щелочной среде - от голубой до синей с разными оттенками.

Антоцианидины - в растениях присутствуют в виде гликозидов (антоцианов). Придают растительным тканям разнообразную окраску - от розовой до черно-фиолетовой. Окраска антоцианов объясняется особенностями их строения - числом и расположением гидроксильных и метоксильных групп и способностью образовывать комплексы с ионами металлов.

Встречаются соединения с семью гидроксильными группами. Метилирование гидроксилов еще больше увеличивает разнообразие оттенков.

Флаваноны - небольшая группа флавоноидов, в основе структуры которых лежит дигидро-гамма-пироновое кольцо.

Флаваноны (гидрированное производное флавона) в отличие от флавона не имеют двойной связи между углеродами во 2-м и 3-м положениях.

В присутствии щелочей кольцо раскрывается и образуются халконы. В кислой среде халконы превращаются в флаваноны.

Например, нарингенин (флаванон) и нарингенин (халкон) содержатся в соцветиях бессмертника в свободном состоянии и в виде 5-моноглюкозида.

К производным ликвиритигенина (флаванона) и изоликвиритигенина (халкона) относится гликозид ликвиритин (находится в корне солодки и придает ей желтый цвет).

Представителем флаванона является гесперетин (находится в виде гликозида в плодах цитрусовых - лимонах)

Флаваноны - это оптически активные вещества, в растениях обычно находятся в виде левовращающих форм.

Известно более 30 представителей этой группы флавоноидов (агликонов), которые обычно встречаются совместно с халконами в растениях семейств: розоцветных, бобовых, астровых.

Флаванонолы (дигидрофлавонолы) отличаются от флаванонов наличием

– ОН группы при С-3 и, подобно катехинам, содержат два ассиметрических атома углерода в молекуле (С-2 и С-3).

Очень лабильны и поэтому в растениях не накапливаются в больших количествах.

Природные дигидрофлавононы, соответствующие флавонолам кемпферолу и кверцетину, называются аромадендрин и таксифолин:

Большинство дигидрофлавонолов выделено из древесины хвойных (сосна, ель, лиственница) и лиственных (эвкалипт, бук, вишня) пород.

Особую группу флавоноидов составляют соединения с пятичленным гетероциклическим кольцом, так называемые ауроны,

это производные 2-бензилиден кумаранона или 2-бензфуранона:

Аурон

Считается, что ауроны могут образовываться из соответствующих халконов под действием обнаруженного в растениях фермента - халконазы.

Они встречаются в растениях редко, например в семействе астровых, бобовых, норичниковых.

В растениях присутствуют в форме гликозидов. Это желтые, оранжевые или оранжево-красные пигменты растений.

5. Биосинтез флавоноидов

Хорошо изучен. Большой вклад в изучение биосинтеза внесли такие ученые как американский ученый Г. Гризебах, канадский ученый Е. Андерхилл, отечественный ученый профессор института физиологии растений М.Н. Запрометов.

Установлено, что биосинтез идет по смешанному пути.

Ядро А образуется по ацетатно-малонатному пути, кольцо В-через шикимовую кислоту.

Образование кольца В

Образовавшаяся при гликолитическом распаде сахаров шикимовая кислота при участии АТФ последовательно проходит через ряд промежуточных соединений и превращается в префеновую кислоту.

Префеновая кислота является ключевым промежуточным веществом в биосинтезе не только флавоноидов, но и кумаринов, ароматических аминокислот и других фенольных соединений.

Она способна превращаться в целый ряд продуктов, например к образованию п-кумаровой кислоты.

Вначале происходит аминирование префеновой кислоты с одновременным ее декарбоксилированием.

Образуется тирозин, дезаминирование которого приводит к п-кумаровой кислоте, формулу которой можно написать двояко, причем второе обозначение отчетливо показывает кольцо В, вернее, структурный фрагмент - С36.

Образование кольца А и флавоноида (халкона)

Триуксусная к-та п-кумаровая кислота

Уксусная кислота (ацетил-Ко А) полимеризуется в триуксусную кислоту, которая вступает в реакцию с п-кумаровой кислотой.

В результате их конденсации, замыкания цепи и энолизации образуется халкон.

Халкон считается предшественником всех других групп флавоноидов:

При окислении халконов образуются флавоны, флавонолы,

а при восстановлении - антоцианидины, катехины, лейкоантоцианидины.

6. Физико-химические свойства

флавоноид растение накопление лекарственный

В чистом виде флавоноиды - кристаллические соединения, бесцветные (изофлавоны, катехины, лейкоантоцианидины, флаванонолы, флаваноны), желтые (флавоны, флавонолы, халконы, ауроны), а также окрашенные в красный, синий или фиолетовый цвета (антоцианидины). Без запаха горького вкуса, с определенной температурой плавления (гликозиды 100-1800С, агликоны до 3000С).

В зависимости от рН среды. В кислой среде они имеют оттенки красного или розового цветов; в щелочной - синего.

Гликозиды, катехины и лейкоантоцианидины хорошо растворимы в воде, этаноле и метаноле различной концентрации, но нерастворимы в полярных органических растворителях.

Агликоны, за исключением катехинов и лейкоантоцианидинов растворяются в этиловом эфире, ацетоне, этилацетате, спиртах, практически нерастворимы в воде.

Агликоны и гликозиды флавоноидов лишены запаха;

Некоторые из них обладают горьким вкусом.

Флавоноидные гликозиды обладают оптической активностью, способны к кислотному и ферментативному гидролизу.

Скорость гидролиза и условия его проведения различны для различных групп флавоноидов.

О-гликозиды при действии разбавленных минеральных кислот и ферментов гидролизуются до агликона и углеводного остатка.

С-гликозиды с трудом расщепляются лишь при действии крепких кислот (конц. хлористоводородная или уксусная - смесь Килиани) при длительном нагревании.

Катехины и лейкоантоцианидины легко окисляются в присутствии кислорода воздуха, под действием света и щелочей, превращаясь в окрашенные соединения - продукты конденсации, вплоть до высокомолекулярных полимерных форм.

При нагревании до температуры 200°С эти соединения возгоняются, а при более высокой температуре разрушаются.

Размещено на Allbest.ru


Подобные документы

  • Синтез флавоноидов в растениях. Биологическая активность флавоноидов и их классификация. Определение антиоксидантной активности ДГК методом люминол-зависимой хемилюминесценции. Изучение перекисного окисления липидов в присутствии дигидрокверцетина.

    дипломная работа [2,4 M], добавлен 25.06.2009

  • Изучение отдельных представителей семейства бобовых, выявление содержания в них флавоноидов, установление диапозона лечебных свойств лекарственного растительного сырья, богатого флавоноидами. Лекарственные растения, травы и растительные препараты.

    курсовая работа [40,9 K], добавлен 19.06.2008

  • Флавоноиды как обширная группа полифенольных соединений, генетически связанных друг с другом. Знакомство с основными особенностями идентификации биологически активных веществ спектрофотометрическим методом в экстрактах листьев красной и чёрной смородины.

    статья [68,9 K], добавлен 22.08.2013

  • Березовый гриб как стерильная форма фитопатогенного гриба трутовика скошенного семейства гименохеновых грибов. Знакомство с причинами образования чаги. Рассмотрение основных групп тритерпеновых сапонинов. Анализ схемы строения молекулы флавоноидов.

    дипломная работа [1,3 M], добавлен 12.01.2014

  • Лечение лекарственными растениями как один из способов лечения людей, увеличения работоспособности, борьбы с болезнями, улучшения качества жизни. Виды лекарственных трав, среда их обитания, отличительные признаки, лечебные свойства и их применение.

    презентация [664,9 K], добавлен 17.11.2011

  • Определение, функции основных аминокислот, их физико-химические свойства и критерии классификации. Оптическая активность, конфигурация и конформация аминокислот. Растворимость и кислотно-основные свойства аминокислот. Заменимые и незаменимые аминокислоты.

    реферат [2,3 M], добавлен 05.12.2013

  • Первичная структура полинуклеотидов. Вторичная и третичная структуры ДНК. Типы РНК и их биологические функции. Физико-химические свойства ДНК. Структура и физико-химические свойства РНК. Определение нуклеозидфосфатов методом тонкослойной хроматографии.

    курсовая работа [1,4 M], добавлен 20.03.2011

  • Растения, обладающие лекарственными свойствами. Применение лекарственных растений в медицине, ветеринарии и пищевой промышленности. Свойства адониса амурского, аира обыкновенного, бадана тихоокеанского, винограда амурского и девясила японского.

    презентация [328,4 K], добавлен 18.11.2014

  • Растения как биологическое царство, одна из групп многоклеточных организмов, принципы и механизмы их питания. Роль жилок в процессе насыщения растений питательными веществами. Принципы транспорта веществ внутри растения, ответственные за него органы.

    презентация [619,8 K], добавлен 05.06.2014

  • Зелёные насаждения, их использование в качестве основного элемента художественного оформления Мурманска. Применение растений для озеленения городских и пригородных территорий (дачных участков), в лекарственных целях. Краткая характеристика растений.

    реферат [40,1 K], добавлен 28.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.