Возрастные особенности зрительного анализатора

Особенности строения зрительного анализатора. Характеристика основных отделов зрительного анализатора: периферического, проводникового и центрального. Виды аномалий рефракции глаза. Основные причины развития близорукости, дальнозоркости и астигматизма.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 21.12.2011
Размер файла 59,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

зрительный анализатор глаз рефракция

Зрение принадлежит к числу интереснейших явлений природы. Над изучением зрения, его тончайших механизмов работают сотни исследователей во многих лабораториях мира. Зрение дает людям 90 % информации, воспринимаемой из внешнего мира. Хорошее зрение необходимо человеку для любой деятельности: учебы, отдыха, повседневной жизни. И каждый должен понимать, как важно оберегать и сохранять зрение. Дефицит движений современного человека неизбежно пагубно отражается и на функциональных свойствах зрительного анализатора - наших глазах. С другой стороны, чрезмерные информационные нагрузки на глаза и мозг приводят к серьезным нарушениям и заболеваниям. В развитых странах каждый четвертый - близорукий. Нарастают и возрастные изменения глаза, приводящие к дальнозоркости. И особенно остро в последнее время этот вопрос встал из-за пагубного влияния дисплеев и компьютеров на зрение. С возрастом происходят определенные изменения в органах зрения, что приводит к общему ухудшению самочувствия человека, к социальным и психологическим проблемам.

Глаз человека представляет сложную оптическую систему. Аномалии этой системы широко распространены среди населения. В возрасте 20 лет около 31% всех людей являются дальнозоркими гиперметропами; около 29% - близорукими или миопами и лишь 40% людей имеют нормальную рефракцию. Важность решения обозначенных проблем и необходимость изучения зрительного анализатора с целью предостережения болезней глаз определили выбор темы моего исследования.

Цель работы состоит в том, что бы выяснить, в чем заключаются возрастные изменения органов зрения. Цель определила выбор задач, которые состоят в следующем:

1. Рассмотреть строение зрительного анализатора и его возрастные особенности;

2. Изучить понятие рефракции глаза и ее аномалии: близорукость, дальнозоркость, астигматизм;

3. Рассмотреть явление аккомодации;

4. Ознакомится с профилактикой нарушения зрения у детей.

1.Строение зрительного анализатора и его возрастные особенности

1.1 Строение зрительного анализатора

Орган зрения является сложной системой и приспособлен для восприятия света и извлечения из него информации о внешнем мире. Именуемый зрительным анализатором, он состоит из трех отделов: периферического, проводникового и центрального.

Периферический отдел образуют два глазных яблока, представляющие собой совокупность оптической и световоспринимающей систем. Оптическая система каждого глаза состоит из оптических сред, создающих изображение предметов внешнего мира на сетчатке; а также мышечных систем, одна из которых управляет движением глаз, другая, расположенная внутри глазного яблока, обеспечивает фокусировку изображения на сетчатке и регулирует освещенность на ней, изменяя размер зрачка. Световоспринимающей системой глаза является его сетчатая оболочка, содержащая светочувствительные клетки - зрительные рецепторы. Проводниковым отделом служат зрительные нервы, которые соединяют отдельными волокнами зрительные рецепторы с клетками затылочной части коры головного мозга, где расположена центральное звено зрительного анализатора, воспринимающее и анализирующее то, что видит глаз.

Глазное яблоко человека имеет форму, близкую к шаровидной, состоит из нескольких оболочек и размещается в особом полом пространстве черепа - глазнице. Наружная, довольно прочная, соединительнотканная оболочка глазного яблока, обеспечивающая его форму, называется склерой или белковой оболочкой. Толщина ее около 1 мм. В передней части глазного яблока склера переходит в более выпуклую прозрачную роговую оболочку, или роговицу, толщина которой в центральной зоне уменьшается до 0,5 мм.

Под склерой находится более тонкая (около 0,3 мм) сосудистая оболочка (хориодея), состоящая из сети мелких кровеносных сосудов, питающих глазное яблоко. Спереди сосудистая оболочка утолщается и переходит в так называемое ресничное тело и радужную оболочку. Радужная оболочка состоит из нежных соединительнотканных фибрилл, кровеносных сосудов, мышечных волокон и пигментных клеток (от числа последних и зависит цвет глаз). В центре радужной оболочки имеется отверстие - зрачок. Он играет роль, подобную диафрагме в фотоаппарате.

Находящиеся в радужной оболочке кольцевые и радиальные мышечные элементы ведают сужением и расширением зрачка. Благодаря им диаметр зрачка глаза при изменении освещенности может изменяться в пределах от 2 до 8 мм. К ресничному телу прикреплена тончайшими цинновыми связками прозрачная двояковыпуклая линза - хрусталик.

Щелевидное пространство между роговицей и радужной оболочкой называется передней камерой, а пространство между радужной оболочкой и хрусталиком - задней камерой. Обе камеры заполнены жидкостью, которая называется водянистой влагой. Остальная полость глазного яблока заполнена студенистым веществом, называемым стекловидным телом.

К сосудистой оболочке по всей ее внутренней поверхности прилегает пигментный слой эпителиальных клеток. Перед пигментным слоем, примыкая к нему, лежит самая внутренняя из оболочек глаза - сетчатая оболочка, или ретина. Она выполняет основную функцию глаза - воспринимает формируемое оптикой глаза изображение внешнего мира, преобразует его в нервное возбуждение и направляет в мозг. Строение сетчатки чрезвычайно сложно. Обычно в ней насчитывают десять слоев.

Распределение палочек и колбочек по сетчатке не равномерно. В месте сетчатки, через которое проходит зрительная линия глаза, расположены одни колбочки. Этот участок сетчатки, несколько углубленный, диаметром примерно 0,4 мм, что соответствует углу 1,2°, называется центральной ямкой - fovea centralis (лат.) - сокращенно, фовеола или фовеа. В центральной ямке находятся только колбочки, их число здесь достигает 4 - 5 тыс. Фовеола располагается в середине горизонтально расположенного овального участка сетчатки размером от 1,4 до 2 мм (что соответствует угловым размерам, равным 5 - 7°), известного под названием желтого пятна или macula ( macula - по лат. «пятно»), В этом пятне содержится придающий ему соответствующую окраску пигмент, а помимо колбочек встречаются уже и палочки, однако число колбочек здесь значительно превышает число палочек.

Желтое пятно (по новой классификации - «пятно сетчатки») и особенно его углубление - фовеа, являются областью наиболее ясного видения. Эта область обеспечивает высокую остроту зрения: здесь от каждой колбочки к зрительному нерву отходит отдельное волокно; в периферической же части сетчатки одно зрительное волокно соединяется с рядом элементов (колбочек и палочек). В сетчатке есть участок, совсем лишенный палочек и колбочек и поэтому нечувствительный к свету. Это место сетчатки, где ствол зрительного нерва, идущий к мозгу, выходит из глаза. Этот круглый участок сетчатки на дне глаза, диаметром около 1,5 мм, называют диском зрительного нерва. Соответственно ему в поле зрения можно обнаружить слепое пятно. Колбочки и палочки различаются по своим функциям: палочки более светочувствительны, но не различают цветов, колбочки различают цвета, но менее чувствительны к свету. Цветные объекты при слабом освещении, когда весь зрительный процесс осуществляется палочками, отличаются только яркостью, цвет же объектов в этих условиях не ощущается. В палочках имеется особое вещество, разлагающееся под действием света, - зрительный пурпур, или родопсин. В колбочках существует зрительный пигмент, называемый иодопсином. Разложение зрительного пурпура и зрительного пигмента под действием света представляет собой фотохимическую реакцию, в результате которой в нервных волокнах появляется электрическая разность потенциалов. Световое раздражение в виде нервных импульсов передается от глаза в мозг, где и воспринимается нами в виде света.

В последнем слое сетчатки, прилегающем к сосудистой оболочке, в виде отдельных зерен находится черный пигмент. Существование пигмента имеет большое значение для приспособления глаза к работе при различных уровнях освещенности, а также для уменьшения рассеяния света внутри глаза.

Проводниковым отделом зрительного анализатора является зрительный нерв. От каждого глазного яблока отходит зрительный нерв, в составе которого около 1 млн. нервных волокон. В области основания головного мозга лежит перекрест зрительных нервов, где происходит разделение каждого зрительного нерва следующим образом: нервные волокна, идущие от наружной части сетчатки, идут в одноименное полушарие, а от внутренней части (которая ближе к носу) нервные волокна поступают в противоположное полушарие.

Центральной частью является зрительная зона в коре затылочной доли больших полушарий. Центральный отдел состоит из подкоркового центра (наружные коленчатые тела) и коркового зрительного центра (fissura calcarina) затылочной доли головного мозга.

1.2 Возрастные особенности зрительного анализатора у детей

Глазное яблоко у человека развивается из нескольких источников. Светочувствительная оболочка (сетчатка) происходит из боковой стенки мозгового пузыря (будущий промежуточный мозг); главная линза глаза -- хрусталик -- непосредственно из эктодермы; сосудистая и фиброзная оболочки -- из мезенхимы. На ранней стадии развития зародыша (конец 1-го, начало 2-го месяца внутриутробной жизни) на боковых стенках первичного мозгового пузыря (prosencephalon) появляется небольшое парное выпячивание -- глазные пузыри. Концевые отделы их расширяются, растут в сторону эктодермы, а соединяющие с мозгом ножки суживаются и в дальнейшем превращаются в зрительные нервы. В процессе развития стенка глазного пузыря впячивается внутрь его и пузырь превращается в двухслойный глазной бокал. Наружная стенка бокала в дальнейшем истончается и трансформируется в наружную пигментную часть (слой), а из внутренней стенки образуется сложно устроенная световоспринимающая (нервная) часть сетчатки (фотосенсорный слой). На стадии формирования глазного бокала и дифференцировки его стенок, на 2-м месяце внутриутробного развития, прилежащая к глазному бокалу спереди эктодерма вначале утолщается, а затем образуется хрусталиковая ямка, превращающаяся в хрусталиковый пузырек. Отделившись от эктодермы, пузырек погружается внутрь глазного бокала, теряет полость и из него в дальнейшем формируется хрусталик.

На 2-м месяце внутриутробной жизни в глазной бокал через образовавшуюся на нижней его стороне щель проникают мезенхимные клетки. Эти клетки образуют внутри бокала кровеносную сосудистую сеть в формирующемся здесь стекловидном теле и вокруг растущего хрусталика. Из прилежащих к глазному бокалу мезенхимных клеток образуется сосудистая оболочка, а из наружных слоев -- фиброзная оболочка. Передняя часть фиброзной оболочки становится прозрачной и превращается в роговицу. У плода 6-8 мес. кровеносные сосуды, находящиеся в капсуле хрусталика и в стекловидном теле, исчезают; рассасывается мембрана, закрывающая отверстие зрачка (зрачковая мембрана).

Верхние и нижние веки начинают формироваться на 3-м месяце внутриутробной жизни, вначале в виде складок эктодермы. Эпителий конъюнктивы, в том числе и покрывающий спереди роговицу, происходит из эктодермы. Слезная железа развивается из выростов конъюнктивального эпителия, появляющихся на 3-м месяце внутриутробной жизни в латеральной части формирующегося верхнего века.

Глазное яблоко у новорожденного относительно большое, его переднезадний размер 17,5 мм, масса -- 2,3 г. Зрительная ось глазного яблока проходит латеральнее, чем у взрослого человека. Растет глазное яблоко на первом году жизни ребенка быстрее, чем в последующие годы. К 5 годам масса глазного яблока увеличивается на 70%, а к 20-25 годам -- в 3 раза по сравнению с новорожденным.

Роговица у новорожденного относительно толстая, кривизна ее в течение жизни почти не меняется; хрусталик почти круглый, радиусы его передней и задней кривизны примерно равны. Особенно быстро растет хрусталик в течение 1-го года жизни, в дальнейшем темпы роста его снижаются. Радужка выпуклая кпереди, пигмента в ней мало, диаметр зрачка равен 2,5 мм. По мере увеличения возраста ребенка толщина радужки увеличивается, количество пигмента в ней возрастает, диаметр зрачка становится большим. В возрасте 40-50 лет зрачок немного суживается.

Ресничное тело у новорожденного развито слабо. Рост и дифференцировка ресничной мышцы осуществляются довольно быстро. Зрительный нерв у новорожденного тонкий (0,8 мм), короткий. К 20 годам жизни диаметр его возрастает почти вдвое. Мышцы глазного яблока у новорожденного развиты достаточно хорошо, кроме их сухожильной части. Поэтому движение глаза возможно сразу после рождения, однако координация этих движений наступает со 2-го месяца жизни ребенка.

Слезная железа у новорожденного имеет небольшие размеры, выводные канальцы железы тонкие. Функция слезоотделения появляется на 2-м месяце жизни ребенка. Влагалище глазного яблока у новорожденного и детей грудного возраста тонкое, жировое тело глазницы развито слабо. У людей пожилого и старческого возраста жировое тело глазницы уменьшается в размерах, частично атрофируется, глазное яблоко меньше выступает из глазницы.

Глазная щель у новорожденного узкая, медиальный угол глаза закруглен. В дальнейшем глазная щель быстро увеличивается. У детей до 14-15 лет она широкая, поэтому глаз кажется большим, чем у взрослого человека.

2. Рефракция глаза. Аномалии рефракции глаза. Профилактика нарушения зрения у детей

2.1 Рефракция глаза. Острота зрения

Рефракция (от лат. refringere -- отражать, разламывать), оптическая установка глаза в. состоянии покоя аккомодации. Глаз как оптический аппарат построен по типу фотографической камеры. В глазу, так же как в фотографической камере, отличают две основные составные части: светопреломляющий аппарат и светочувствительный экран. Светопреломляющий аппарат глаза имеет сложный состав. Он состоит из роговицы, камерной влаги, хрусталика и стекловидного тела. Из них наиболее важное значение имеют роговица и хрусталик. Роль светочувствительного экрана в глазу играет сетчатка. Луч света на своем пути до сетчатки должен пройти четыре преломляющих поверхности: переднюю и заднюю поверхность роговицы и переднюю и заднюю поверхность хрусталика. Преломляющая сила оптического аппарата глаза зависит от радиуса кривизны преломляющих поверхностей, отстояния этих поверхностей друг от друга и от показателя преломления сред глаза. Все эти величины, за исключением показателей преломления, могут быть определены на живом глазу.

Рефракция глаза изменяется с возрастом: она меньше нормальной у новорождённых, в пожилом возрасте может снова уменьшаться.

До сих пор речь шла только об оптике глаза. Но основное ее назначение - не только получение качественного изображения, но и его переработка в нервные сигналы, а также передача с минимальными потерями в мозг. Качество зрения принято характеризовать остротой зрения. Она определяется тем минимальным углом между лучами, идущими от двух точек, при котором эти точки еще видны раздельно, а не сливаются в одну - так называемый минимальный угол разрешения. Чем больше этот угол, тем ниже острота зрения. Для людей с нормальным зрением этот угол в среднем равен 1 угловой минуте. Считается, что при этом угле два луча возбуждают две колбочки сетчатки, между которыми находится еще одна, не возбуждаемая. Острота зрения выражается числом, обратным минимальному углу разрешения, в минутах. Так как при снижении остроты зрения этот угол больше 1 минуты, то острота выражается либо числом 1, либо дробью меньше 1. В России острота зрения выражается в десятичных дробях. Нормальная острота зрения обозначается цифрой 1,0 (после запятой обязательно ставится ноль), пониженная в два раза (то есть при минимальном угле разрешения в 2 минуты) - 0,5, в десять раз - 0,1 и так далее. Острота зрения обычно измеряется без очков («без коррекции») и с очками («с коррекцией»), причем не только с теми, которые человек носит, но и с теми, которые дают наивысшую остроту зрения («с полной коррекцией», «абсолютная острота зрения»). Именно этот последний показатель - острота зрения с полной коррекцией - является главной характеристикой зрения.

Как аномалии рефракции влияют на остроту зрения без очков? Теоретически, это можно рассчитать исходя из размеров кругов светорассеяния, получающихся на сетчатке при наблюдении светящейся точки глазами с разной рефракцией. Но, во-первых, в реальном глазу это не совсем круги. Благодаря присутствию астигматизма фигуры светорассеяния чаще напоминают овал, чем круг. Во-вторых, благодаря светорассеянию в средах глаза и мелким неправильностям преломляющих поверхностей, их форма бывает неправильной, а границы размыты. Более того, вместо одной фигуры точка может давать несколько фигур светорассеяния разной плотности. Решающему устройству в зрительной системе предстоит выбрать, какое из изображений соответствует истинному положению точки. Очевидно, в силу того же астигматизма одни линии (например, вертикальные) представляются более четкими, а другие, перпендикулярные им, более размытыми.

2.2 Аномалии рефракции глаза: близорукость, дальнозоркость, астигматизм

Рассмотрим основные виды аномалий рефракции:

В зависимости от положения главного фокуса (точка, в которой сходятся параллельные оптической оси лучи, идущие в глаз) по отношению к сетчатке различают два вида рефракции - эмметропию, когда лучи фокусируются на сетчатке, или соразмерную рефракцию, и аметропию - несоразмерную рефракцию, которая может быть трех видов: миопия (близорукость)- это сильная рефракция, параллельные оптической оси лучи фокусируются перед сетчаткой и изображение получается нечетким; гиперметропия (дальнозоркость) - слабая рефракция, оптической силы недостаточно и параллельные оптической оси лучи фокусируются за сетчаткой и изображение так же получается нечетким. И третий вид аметропии - астигматизм -- наличие в одном глазу двух различных видов рефракции или одного вида рефракции, но разной степени преломления. При этом образуется два фокуса и в результате изображение получается нечетким.

Миопия(близорукость). Известно, что к окончанию школы миопия развивается у 20--30 процентов школьников, а у 5% - она прогрессирует и может привести к слабовидению и слепоте. Уровень прогрессирования может составлять от 0,5 Д до 1,5 Д за год. Наибольший риск развития близорукости представляет возраст 8--20 лет.Существует много гипотез происхождения близорукости, которые связывают ее развитие с общим состоянием организма, климатическими условиями, расовыми особенностями строения глаз и т.д. В России наибольшее распространение получила концепция патогенеза миопии, предложенная Э.С. Аветисовым. Первопричиной развития близорукости признается слабость цилиарной мышцы, чаще всего врожденная, которая не может длительно выполнять свою функцию (аккомодировать) на близком расстоянии. В ответ на это глаз в период его роста удлиняется по переднезадней оси. Причиной ослабления аккомодации является и недостаточное кровоснабжение цилиарной мышцы. Снижение же работоспособности мышцы в результате удлинения глаза приводит к еще большему ухудшению гемодинамики. Таким образом, процесс развивается по типу «порочного круга».Сочетание слабой аккомодации с ослабленной склерой (чаще всего это наблюдается у пациентов с близорукостью, передающейся по наследству, аутосомно-рецессивном типе наследования) приводит к развитию прогрессирующей близорукости высокой степени. Можно считать прогрессирующую миопию многофакторным заболеванием, причем в различные периоды жизни имеют значение то одни, то другие отклонения в состоянии как организма в целом, так и глаза в частности. Большое значение придается фактору относительно повышенного внутриглазного давления, которое у миопов в 70% случаев выше 16,5 мм рт. ст., а также склонность склеры миопов к развитию остаточных микродеформаций, что и приводит к увеличению объема и длины глаза при высокой миопии.

Различают три степени миопии:* слабую - до 3,0 Д;* среднюю - от 3,25 Д до 6,0 Д;* высокую - 6,25 Д и выше.

Острота зрения у миопов всегда ниже 1,0. Дальнейшая точка ясного зрения находится на конечном расстоянии перед глазом. Таки образом, миоп рассматривает предметы на близком расстоянии, т. е постоянно вынужден конвергировать. При этом его аккомодация находится в покое. Несоответствие конвергенции и аккомодации может приводить к утомлению внутренних прямых мышц и развитию расходящегося косоглазия. В ряде случаев по этой же причине возникает мышечная астенопия, характеризующаяся головными болями, утомляемостью глаз при работе.

На глазном дне при миопии слабой и средней степени может определяться миопический конус, представляющий собой небольшой ободок в виде серпа у височного края диска зрительного нерва. Его наличие объясняется тем, что в растянутом глазу пигментный эпителий сетчатки и сосудистая оболочка отстают от края диск зрительного нерва, и растянутая склера просвечивает через прозрачную сетчатку. Все вышесказанное относится к стационарной миопии, которая по завершению формирования глаза уже не прогрессирует. В 80% случае степень миопии останавливается на первой стадии; в 10--15% - на второй стадии и у 5--10% развивается миопия высокой степени. Наряду аномалией рефракции существует прогрессирующая форма близорукости, которая носит название злокачественной миопии («миопия gravis» когда степень близорукости продолжает увеличиваться всю жизнь. При годичном увеличении степени миопии менее чем на 1,0 Д, о считается медленно прогрессирующей. При увеличении более чем 1,0 Д - быстро прогрессирующей. Помочь в оценке динамики близорукости могут изменения длины оси глаза, выявляемые с помощь эхобиометрии глаза. При прогрессирующей миопии, имевшиеся на глазном дне, миопические конусы увеличиваются и охватывают диск зрительно нерва в виде кольца чаще неправильной формы. При больших степенях миопии образуются истинные выпячивания области заднего полюса глаза - стафиломы, которые определяют при офтальмоскопии по перегибу сосудов на ее краях.

На сетчатке появляются дегенеративные изменения в виде белых очагов с глыбками пигмента. Происходит обесцвечивание глазного дна, геморрагии. Эти изменения носят название миопической хориоретинодистрофии. Особенно снижается острота зрения, когда указанные явления захватывают область макулы (кровоизлияния, пятна Фукса). Больные в этих случаях жалуются, кроме снижения зрения, и на метаморфопсии, т. е. искривление видимых объектов. Как правило, все случаи прогрессирующей близорукости высокой степени сопровождаются развитием периферических хориоретинодистрофии, которые нередко являются причиной разрыва сетчатки и ее отслойки. Статистика показывает, что 60% всех отслоек возникает на миопических глазах.

Часто больные высокой миопией жалуются на «летающие мушки» (muscae volitantes), как правило, это также проявление дистрофических процессов, но в стекловидном теле, когда происходит утолщение или распад фибрилл стекловидного тела, склеивание их между собой с образованием конгломератов, которые становятся заметными в виде «мушек», «нитей», «мотков шерсти». Они бывают в каждом глазу, но обычно не замечаются. Тень от таких клеток на сетчатке в растянутом миопическом глазу больше, поэтому «мушки» и замечаются в нем чаще.

Гиперметропия (дальнозоркость).

Различают три степени гиперметропии:* слабую до 2 дптр;* среднюю от 2,25 до 5 дптр;* высокую свыше 5,25 дптр. В молодом возрасте при слабой, а нередко и средней степени гиперметропии зрение обычно не снижается вследствие напряжения аккомодации, но оно снижено при высоких степенях дальнозоркости. Различают явную и скрытую дальнозоркость. Скрытая дальнозоркость является причиной спазмирования цилиарной мышцы. При возрастном уменьшении аккомодации постепенно скрытая гиперметропия переходит в явную, что сопровождается снижением зрения вдаль. С этим связано и более раннее развитие пресбиопии при гиперметропии.При длительной работе на близком расстоянии (чтение, письмо, компьютер) нередко наступает перегрузка цилиарной мышцы, что проявляется головными болями, акомодативной астенопией, или спазмом аккомодации, которые можно устранить с помощью правильной коррекции, медикаментозного и физиотерапевтического лечения. В детском возрасте некорригированная гиперметропия средней и высокой степени может привести к развитию косоглазия, как правило, сходящегося. Кроме того, при гиперметропии любых степеней нередко наблюдаются трудно поддающиеся лечению конъюнктивиты и блефариты. На глазном дне может выявляться гиперемия и нечеткость контуров диска зрительного нерва - ложный неврит.

Астигматизм

Один из видов аномалии рефракции, при которой в разных меридианах одного и того же глаза имеются разные виды рефракции или разные степени одной и той же рефракции. Зависит астигматизм чаще всего от неправильности кривизны средней части роговицы. Передняя поверхность ее при астигматизме представляет собой не поверхность шара, где все радиусы равны, отрезок вращающегося эллипсоида, где каждый радиус имеет свою: длину. Поэтому каждый меридиан, соответствующий своему ради су, имеет особое преломление, отличающееся от преломления рядом лежащего меридиана. Среди бесконечного количества меридианов, которые отличаются один от другого разным преломлением, имеется один с наименьшим радиусом, т.е. с наибольшей кривизной, наибольшим преломлением, и другой - с наибольшим радиусом, наименьшей кривизной и наименьшим преломлением. Эти два меридиана: один - с наибольшим преломлением, другой - с наименьшим, получили название главных меридианов. Располагаются они большей частью перпендикулярно друг к другу и имеют чаще всего вертикальное и горизонтальное направление. Все остальные меридианы по преломлению являются переходными от сильнейшего к слабейшему. Виды астигматизма. Астигматизм слабой степени присущ почти всем глазам; если он не влияет на остроту зрения, то считается физиологическим, и в исправлении его нет необходимости. Кроме неправильности кривизны роговой оболочки, астигматизм может зависеть и от неравномерной кривизны поверхности хрусталика, поэтому различают роговичный и хрусталиковый астигматизм. Последний не имеет большого практического значения и обычно компенсируется роговичным астигматизмом. В большинстве случаев преломление в вертикальном или близко к нему стоящем меридиане бывает более сильное, в горизонтальном же - более слабое. Такой астигматизм называют прямым. Иногда, наоборот, горизонтальный меридиан преломляет сильнее вертикального. Такой астигматизм обозначают как обратный. Эта форма астигматизма даже в слабых степенях сильно понижает остроту зрения. Астигматизм, при котором главные меридианы имеют не вертикальное и горизонтальное направления, а промежуточное между ними, называется астигматизмом с косыми осями.Если в одном из главных меридианов имеется эмметропия, а в другом - миопия или гиперметропия, то такой астигматизм называют простым миопическим или простым гиперметропическим. В тех случаях, когда в одном главном меридиане миопия одной степени, а в другом - тоже миопия, но другой степени, астигматизм называется сложным миопическим, если в обоих главных меридианах гиперметропия, но в каждом в разной степени, то астигматизм называют сложным гиперметропическим. Наконец, если в одном меридиане миопия, а в другом - гиперметропия, то астигматизм будет смешанным.Различают также правильный астигматизм и неправильный, в первом случае сила каждого меридиана, как при других видах астигматизма, отличается от таковой других меридианов, но в пределах одного и того же меридиана, в части, расположенной против зрачка, преломляющая сила везде одна и та же (радиус кривизны на этом протяжении меридиана одинаков). При неправильном астигматизме каждый меридиан в отдельности и на разных местах своего протяжения преломляет свет с различной силой.

2.3 Аккомодация. Изменение аккомодации с возрастом

Обозначая различные виды клинической рефракции (эмметропию, миопию, гиперметропию), мы оговаривали это условием полного покоя аккомодации, т.е. состоянием статической рефракции. Это обеспечивает четкое видение предметов в дальнейшей точке ясного зрения (punctum remotum - R). Однако в естественных условиях преломляющая сила оптической системы глаза постоянно меняется, позволяя хорошо видеть близлежащие предметы. Следовательно, действует не статическая, а динамическая рефракция глаза, связанная с аппаратом аккомодации.

В офтальмологии под аккомодацией (от лат. accomodatio - приспособление) понимают приспособительный механизм органа зрения, обеспечивающий четкое видение рассматриваемых предметов, находящихся на различном расстоянии от глаза.

Представление о механизме аккомодации впервые наиболее удачно было сформулировано Гельмгольцем. Согласно его теории, при сокращении цилиарной мышцы ослабевает натяжение цинновых связок хрусталика, и последний в силу своей эластичности стремится принять более шаровидную форму. При аккомодации происходят некоторые изменения в переднем отрезке глаза: суживается зрачок, уменьшается глубина передней камеры, хрусталик опускается несколько книзу. Сужение зрачка при аккомодации объясняется особенностями иннервации цилиарной мышцы, которая, как и сфинктер зрачка, иннервируется веточкой глазодвигательного нерва. Возбуждение глазодвигательного нерва, связанного с аккомодацией, рефлекторно передается и на сфинктер зрачка.

Наивысшее напряжение аккомодации характеризуется положением ближайшей точки ясного зрения (punctum proximum - Р), т.е. того самого короткого расстояния, на котором глаз еще может четко видеть предмет. Зная положение дальнейшей и ближайшей точек ясного зрения, можно получить представление о той полосе пространства, в пределах которой возможно ясное зрение, т.е. область аккомодации. Прирост рефракции, требуемый для перевода установки глаза с дальнейшей точки ясного зрения на ближайшую, называется объемом аккомодации.

Объем абсолютной аккомодации каждого глаза вычисляют по формуле Дондерса:

А = Р - (±R),

где Р - положение ближайшей точки ясного зрения, выраженное в диоптриях (динамическая рефракция); R - положение дальнейшей точки ясного зрения, выраженное в диоптриях (статическая рефракция). Последнюю исследуют посредством скиаскопии в условиях медикаментозного расслабления аккомодации. Определение ближайшей точки ясного зрения производят монокулярно. Тестом служит кольцо Ландольта, соответствующее остроте зрения 0,7 по таблице для исследования зрения на близком расстоянии. Его постепенно приближают к глазу, пока разрез в кольце становится неясным. С помощью линейки измеряют в сантиметрах расстояние от оптотипа до вершины роговицы. Чтобы вычислить это расстояние в диоптриях, делят 100 см на его величину.

Например, для эмметропического глаза дальнейшая точка ясного зрения находится в бесконечности, тогда R = 1/? = 0 дптр. Предположим, что ближайшая точка ясного зрения находится на расстоянии 10 см от глаза, тогда Р = 100/10 = 10,0 дптр. Объем аккомодации: А = Р - R= 10,0 дптр - 0 дптр =10,0 дптр. Область аккомодации занимает пространство от бесконечности до 10 см перед глазом.

У миопа дальнейшая точка ясного зрения лежит, например, в 33 см перед глазом, тогда R = 100/33 = 3,0 дптр. Ближайшая точка ясного зрения находится на расстоянии 8 см от глаза, тогда: Р = 100/8 = 13,0 дптр. Объем аккомодации: А = Р - R = 13,0 дптр -3,0 дптр = 10,0 дптр. Область аккомодации: 33 см- 8 см = 25 см.

Если же для примера взять гиперметропа, дальнейшая точка ясного зрения которого лежит в 50 см за глазом, то его R = 100/(-50) = -2,0 дптр. Если его ближайшая точка ясного зрения находится в 13 см от глаза, тогда Р = 100/13 = 8,0 дптр. Объем аккомодации: А = Р - R = 8,0 дптр - (-2,0 дптр) = 10,0 дптр. Область аккомодации простирается от 50 см за глазом до 13 см перед глазом. Из приведенных примеров видно, что глаза с различной рефракцией могут иметь один и тот же объем аккомодации, но область аккомодации будет различна.

Область аккомодации зависит от вида рефракции, наименьшую величину она имеет при миопии; объем аккомодации - от способности хрусталика менять свою кривизну. Эта способность изменяется с возрастом. Хрусталиковые волокна становятся беднее водой, уплотняются, особенно в центральной части, и образуется плотное ядро. Это явление физиологической инволюции хрусталика приводит к уменьшению его аккомодационной способности, в результате чего ближайшая точка ясного зрения отодвигается от глаза дальше 33 см.

Явление это называется пресбиопией (от греч. presbus - старик, ops - зрение) - старческое зрение. Такое название не совсем правильное, так как процесс ослабления аккомодации начинается в молодом возрасте (20-25 лет), но практически ощутимым становится в возрасте 40- 45 лет при эмметропической рефракции, при миопической - позже, гиперметропической - значительно раньше. При этом затрудняется рассматривание вблизи мелких предметов. Человеку с возрастом приходится все дальше отодвигать от глаз читаемый шрифт, так как клинически пресбиопия проявляется именно отдалением ближайшей точки ясного зрения.

Впервые закономерности возрастного ослабления аккомодативной способности глаза были изучены Дондерсом, построившим схему динамики статической и динамической рефракции в возрастном аспекте. Строгая закономерность снижения аккомодативной способности круто обрывается к 60 годам. Около 65 лет ближайшая точка ясного зрения отодвигается в бесконечность, и вся аккомодация равна нулю. Это значит, что хрусталик полностью теряет способность увеличивать свою кривизну. Исправляют пресбиопию при помощи собирательных линз convex (+).

Аккомодация каждого глаза в отдельности называется абсолютной аккомодацией. Но у большинства людей зрение совершается двумя глазами (бинокулярно), и их аккомодация связана с конвергенцией (сведение зрительных осей обоих глаз на рассматриваемом предмете). Степень конвергенции соответствует степени напряжения аккомодации.

Так, если эмметропические глаза конвегируют к точке, находящейся от них на расстоянии 1 м, то нужно затратить 1,0 Д аккомодации. Если глаза конвергируют на 33 см, то затрачивается 3,0 Д аккомодации.

Аккомодация глаз при определенной конвергенции зрительных осей называется относительной аккомодацией. Различают положительную и отрицательную части относительной аккомодации. Отрицательная часть - это та величина относительной аккомодации, которая затрачивается при зрительной работе глаз в данный момент. Положительная часть относительной аккомодации составляет тот запас аккомодативной способности глаза, который в данный момент не тратится.

Отношение между двумя частями относительной аккомодации имеет практическое значение. Для спокойной зрительной работы на близком расстоянии без явлений утомления надо, чтобы положительная часть относительной аккомодации была вдвое больше отрицательной, т.е. чтобы в запасе осталось больше аккомодации, чем ее истрачено. В противном случае наступает утомление цилиарной мышцы, что проявляется неприятным чувством усталости в глазах и ухудшением зрительной функции: рассматриваемые детали расплываются, сливаются. При определении относительной аккомодации подбирают самое сильное собирательное и самое сильное рассеивающие стекла, которые не нарушают ясность зрения при одной и той же конвергенции. При этом аккомодация, определенная собирательным стеклом, будет отрицательной частью, а определенная рассеивающим стеклом - положительной частью относительной аккомодации.

3. Профилактика нарушения зрения у детей

У новорожденных зрение почти в 25 раз слабее, чем у взрослых, но этого вполне достаточно, чтобы наблюдать за лицами родных с близкого расстояния. К трем месяцам малыши уже способны следить за игрушками, а к шести видят предметы на различном расстоянии почти так же хорошо, как и взрослые. К сожалению, здоровые глаза и хорошее зрение встречаются далеко не всегда. В России, по данным Министерства здравоохранения, более миллиона детей страдают различными заболеваниями глаз и нарушениями зрения: близорукостью, дальнозоркостью, астигматизмом, амблиопией («ленивый глаз») и косоглазием. С каждым годом число таких детей растет. Поэтому специалисты придают большое значение профилактике и ранней диагностике нарушений зрения.

Первый раз посетить офтальмолога необходимо еще с новорождённым. В этом возрасте врач сможет определить наличие глаукомы, катаракты, нистагма и врожденного косоглазия, оценить состояние сосудов глазного дна. В два-три года, как правило, впервые проверяют остроту зрения ребенка, диагностируют косоглазие и амблиопию. Затем зрение проверяют непосредственно перед поступлением в школу, а далее -- в 11-12 и в 14-15 лет. При этом оцениваются бинокулярные функции, цветовое зрение, выявляется наличие близорукости или дальнозоркости.

Ранняя диагностика позволяет не только выявить заболевание, но и предотвратить возможные отклонения в развитии -- ведь резкое снижение остроты зрения ограничивает процесс познания окружающего мира, негативно влияет на формирование речи, память, воображение.

Правила чтения

· Нельзя читать лежа.

· Расстояние от глаз до книги или тетради должно равняться длине предплечья от локтя до конца пальцев.

· Во время занятий рабочее место ребенка должно быть достаточно хорошо освещено. Свет должен падать на страницы сверху и слева.

· Книжки для дошкольников и младших школьников должны быть с крупным шрифтом. Детям, у которых плохо развита аккомодация, а зрительные нагрузки чрезвычайно велики, грозит близорукость.

· Во время чтения следует делать перерывы от трех до пяти минут.

· Чтобы разгрузить глазную мышцу рекомендуется выполнять несложные упражнения для глаз: поморгайте; закрыв глаза, повращайте глазными яблоками; подойдя к окну, расслабьтесь, посмотрите вдаль.

Упражнения для снятия усталости глаз

· Крепко зажмурить глаза на 3-5 сек, затем открыть.

· Быстро моргать глазами в течение 30-60 сек.

· Поставить указательный палец правой руки по средней линии лица на расстоянии 25-30 см от глаз, перевести взгляд на кончик пальца и смотреть на него 3-5 сек, затем опустить руку, продолжая смотреть туда же в течение 5 сек.

· Смотреть на кончик пальца вытянутой руки, медленно согнуть палец и приблизить его к глазам (в течение 3-5 сек).

· Отвести правую руку в сторону, медленно передвинуть палец согнутой руки справа налево и, не двигая головой, следить глазами за пальцем. Повторить упражнение, перемещая палец слева направо.

· Приложить палец к носу, смотреть на него, затем убрать и перевести взгляд на кончик носа. Закрыть глаза и повращать глазными яблоками вправо, влево, вверх, вниз, не поворачивая головы.

· Смотреть вдаль прямо перед собой 2-3 сек, затем перевести взор на кончик носа на 3-5 сек.

· Производить круговые движения по часовой стрелке рукой на расстоянии 30-35 см от глаз, при этом следить за кончиком пальца. Повторить упражнение, перемещая руку против часовой стрелки.

Список используемой литературы

1. М.Р.Гусева, И.М.Мосин, Т.М.Цховребов, И.И.Бушев. Особенности течения невритов зрительного нерва у детей. Тез. 3 Всесоюзной конференции по актуальным вопросам детской офтальмологии. М.1989; n.136-138

2. Е.И.Сидоренко, М.Р Гусева, Л.А. Дубовская. Церебролизиан в лечении частичных атрофии зрительного нерва у детей. Ж. Невропатологии и психиатрии. 1995; 95: 51-54.

3. М.Р.Гусева, М.Е.Гусева, О.И.Маслова. Результаты исследования иммунного статуса у детей с невритами зрительного нерва и рядом демиелинизирующих состояний. Кн. Возрастные особенности органа зрения в норме и при патологи. I., 1992, с.58-61

4. Е.И.Сидоренко, А.В.Хватова, М.Р.Гусева. Диагностика и лечение оптических невритов у детей. Методические рекомендации. М., 1992, 22 с.

5. М.Р.Гусева, Л.И.Фильчикова, И.М.Мосин и соавт. Электрофизиологические методы в оценке риска развития рассеянного склероза у детей и подростков с моносимптомным оптическим невритом Ж.Невропатологии и психиатрии. 1993; 93: 64-68.

6. И.М.Мосин. Дифференциальная и топическая диагностика оптических невритов у детей. Дис.канд.мед.наук (14.00.13) Моск.НИИ глазных болезней им. Гельмгольца М.,1994, 256 с,

7. М.Е.Гусева Клинико-параклинические критерии демиелинизирующих заболеваний у детей. Автореферат дисс.к.м.н., 1994

8. М.Р.Гусева Диагностика и патогенетическая терапия увеитов у детей. Дисс. докт.мед.наук в форме научного доклада. М.1996, 63с.

9. И.З.Карлова Клинико-иммунологические особенности оптического неврита при рассеянном склерозе. Автореферат дисс.к.м.н., 1997

Размещено на Allbest.ru


Подобные документы

  • Структура и функции зрительного анализатора, его роль в жизни животных. Анатомическое строение глаза: глазодвигательный и придаточный аппараты, дренажная система; сигналы зрительного нерва. Свето- и цветоощущение, центральное и периферическое зрение.

    курсовая работа [882,2 K], добавлен 15.05.2013

  • Понятие сетчатки как внутренней оболочки глаза, являющейся периферическим отделом зрительного анализатора. Строение сетчатки, ее основные слои, функции и особенности кровоснабжения. Центральная зона сетчатки. Анализ симптомов при заболевании сетчатки.

    презентация [896,3 K], добавлен 23.11.2014

  • Исследование рефлекторных реакций человека и работы мышц глаза, схема строения зрительного анализатора. Биологическое значение безусловных рефлексов. Изменение дыхания у человека в состоянии относительного покоя и при выполнении двигательной нагрузки.

    практическая работа [295,7 K], добавлен 24.07.2010

  • Обзор особенностей получения и анализа информации об изменениях условий внешней и внутренней среды нервной системой. Исследование внешнего и внутреннего строения глаза. Функции рецепторной, периферической и проводниковой частей зрительного анализатора.

    презентация [4,8 M], добавлен 12.03.2013

  • Анатомия проводящих путей зрительного анализатора глаза. Палочки и колбочки, организация и морфология фоторецепторов. Электрические сигналы в ответ на свет в фоторецепторах позвоночных. Слуховая кора и обработка слуховых сигналов, локализация звука.

    реферат [400,5 K], добавлен 28.10.2009

  • Значение зрения для человека. Внешнее строение зрительного анализатора. Радужная оболочка глаза, слезный аппарат, расположение и строение глазного яблока. Строение сетчатки, оптическая система глаза. Бинокулярное зрение, схема движения взгляда.

    презентация [804,4 K], добавлен 21.11.2013

  • Внешнее и внутреннее строение глаза, рассмотрение функций слезных желез. Сравнение органов зрения у человека и животных. Визуальная зона коры больших полушарий и понятие аккомодации и светочувствительности. Зависимость цветового зрения от сетчатки.

    презентация [1,2 M], добавлен 14.01.2011

  • Понятие об анализаторах, их роль в познании окружающего мира, свойства и внутреннее строение. Строение органов зрения и зрительного анализатора, его функции. Причины нарушения зрения у детей и последствия. Требования к оснащенности в учебных помещениях.

    контрольная работа [46,1 K], добавлен 31.01.2017

  • Крупные железы пищеварительного аппарата. Развитие печени и поджелудочной железы. Строение зрительного анализатора. Веки и образования конъюнктивы. Эмбриогенез органа зрения. Наружное, среднее и внутреннее ухо. Слуховые косточки и их соединения.

    реферат [10,3 M], добавлен 30.11.2010

  • Зрительный анализатор как совокупность структур, воспринимающих световую энергию в виде электромагнитного излучения. Функции и механизмы, обеспечивающие ясное видение в различных условиях. Цветовое зрение, зрительные контрасты и последовательные образы.

    контрольная работа [2,2 M], добавлен 27.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.